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CHAPTER 1 
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The paper presents a new existence result for three-climensional {3-D) 
sha.pe memory model which has the form of a. nonlinear thermoela.stic
ity system with viscosity v > O and ca.pilla.rity x > O. In contra.st to 
the previous a.uthors results, proved under assumption o < 2"1x < v, 
here we admit x > O and v > O possibly arbitrarily small. With such as
sumption the obtained existence result becomes more a.dequate for shape 
memory problems where viscosity e:ffects a.re negligible small. Moreover, 
we consider a broader class of boundary conditions. 
The main new part of the present paper constitutes solvability analysis 
of the initial-boundary-value problems for viscoelasticity system with 
capillarity. 
Keywords: nonlineat · thermoelasticity, viscosity, capillarity, shape 
memory, globa.l ex.istence 
AMS Subject Classiflcation: 35K50, 35K60, 35Q72, 74B20 

1. Introduction 

The goal of this paper is to present a new existence result for three

dimensional (3-D) shape memory model which has been previously studied 
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by the authors under mare restrictive assumptions in (10], (11]. The model, 
firstly introduced and studied in (13], (14], (9], has the form of the following 
nonlinear thermoelasticity system with viscosity v > O and strain-gradient 
coefficient (called capilarity) x > O: 

Utt - vQu, + xQ2u =V· F,(e, 0) + b 
ui,=o = uo, u,l,=o = u1 
B(8,)u = O 

in nT = n X (O, T), 
in n, 
on s'f' = S x (0, T), 

co(e, 0)0, - kofl0 = 0F,e,(e, 0) + v(Ae,) • e, + g 

01,=o = Bo 
n· '10= O 

where 

co(e, 0) = Cv - 0F,ee(e, 0), 

(1.1) 

(1.2) 

(1.3) 

and B( 8, )u stands for one of the following two types of boundary condi
tions 

u~ O, Qu = O on ,c;T, 
or (1.4) 

u= O, (Ae(u))n = O on s'f'. 

Here fl C !R 3 is a bounded domain with a smooth boundary S, occupied 
by a solid body in a reference configuration with constant mass density 
(p = 1); n is the unit outward norma! vector to S; T > O is an arbitrary 
fixed time; u : nT -, JR 3 is the displacement and 0 fłT -, IR+ is the 
absolute temperature. The second order tensors 

E = e(u) = ~(Vu+(Vul) and e, = e(u,) = ~(Vu, + (Vu,l) 

denote respectively the linearized strain and the strain rate. The operator 
Q stands for the linearized elasticity operator defined by 

Qu =V· (Ae(u)) =µ!lu+(>,+ µ)V(V · u), (1.5) 

where A = (A,,,i) is the fourth order elasticity tensor represent.ing linear 
isotropic Hooke's law 

Ae(u) = .Atre(u)I + 2µe(u), (1.6) 

I is the identity tensor, and >., µ are the Lame constants such that µ > O 
and 3). + 2µ > O. 
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Correspondingly, the fourth order operator Q2 = QQ is given by 

Q 2u = v' • (Ae(Qu)) = µ 2 !:, 2 u + (.>. + µ)(.>. + 3µ)v'v' · (!:,u). (1.7) 

Moreover, F(e, 8) denotes the elastic energy which is a nonconvex (multi
well) function of e with the shape strongly depending on 8. The remaining 
quantities in (1.1), (1.2) have the following meaning: co(e, 8) is the specific 
beat coeflicient, c0 , ko, v and x are positive num bers denoting respectively 
thermal specific heat, beat conductivity, viscosity and capilla.rity. 

System (1.1), (1.2) describes balance laws for the linear momentum and 
the interna] energy. The underlying free energy density has the Landau
Ginzburg form 

f(e(u), 'v'e(u), 8) = -c0 8 log O+ F(e(u), 8) + i1Quj 2 (1.8) 

with the three terms representing respectively thermal, elastic and strain
gradient ( capillarity) energy. The corresponding stress tensor is given by 

óf 
S = óe (e(u), 'v'e(u),8) + S" = F,.(e(u),8)- xAe(Qu) + vAe(u,), 

(1.9) 

where óf /óe = f,. - v' · f,v. denotes the first variation with respect to e, 
and S" = vAe(u,) is the viscous stress according to Hooke's-like law. For 
thermodynamical background of the model we refer to [9], [14]. 

We add few remarks on model (1.1), (1.2) and its solvability. Firstly, we 
point out that dyriamics (l.l)i is in accordance with the so-caUed viscosity
capillarity criterion justified by severa! authors, among them Slemrod [15], 
Abeyaratne-Knowles [l] as a proper model for dynamics of phase transitions 
in va.n der Waals fluids and for propaga.ting phase boundaries in solids. By 
this criterion, originally formulated in case of one space dimension, a proper 
constitutive relation for the stress has the form (see e.g. [l], eq. (2.8)) 

S = F,u:r.(ux) - XUxxx + VUxt (UO) 

where u. is the strain, F(u.) is a nonconvex double-well elastic energy, 
and v ~ O and x ~ O are the viscosity and the strain-gradient coeflicient, 
respectively. We can see that equation (1.9) generalizes stress-strain relation 
(1.10) to the case of three space dimensions. 

Secondly, we remark that in case of vanishing viscosity v = O, problem 
(1.1), (1.2) represents a 3-D analog of the well-known Falk model for one
dimensional martensitic phase transitions of the shear type (see [6], (4]). 
Unfortunately,· either our previous theory (10], (11] or the present one do 
not cover the case v = O. The existence proofs in (10], [11] as well as 
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the earlier one in [14] were based on the following condition between the 
viscosity and capillarity coeflicients 

O< 2,/x < li, (1.11) 

Such conditon allows for the decomposition of elasticity system (1.1 )i into 
two second order parabolic problems 

w, -/3Qw = \1 ·F,,(e,0) + b 
wl,=o = u1 - O/Quo 

w=O 

u, - 01Qu = w in IJT, 

U/t=D = UO in n, 
u=O on sr, 

where Ol, /3 are numbers satisfying 

Ol+ /3 = li, Dl/3 = X. 

(1.12) 

(1.13) 

Due to condition (1.11) these numbers are real and positive, Dl, /3 E lR+· 
The decomposition (1.12), (1.13) was the main idea underlying the exis
tence proofs in the above mentioned papers. It is known, however, that in 
structural phase transitions in shape memory alloys strain-gradient effect is 
observable but not the viscous one (see e.g. [41). For that reason condition 
(1. 11) is not appropriate for shape memory models. 

In view of that it is of importance to construct an existence theory with 
relaxed condition (1.11). In the present paper we replace (1.11) by 

x > O and 11 > O, (1.14) 

allowing the viscosity to be arbitra.rily small but positive. In such a case 
system (1.1) is parabolic and the theory of pa.rabolic equa.tions can be 
applied (see [16], [51). 

We mention a similar study due to Yoshikawa [20] which is also con
cerned with the existence of solutions to problem (1.1), (1.2) un<ler assum
tion (1.14). On the contrary to the present paper, however, the result in 
[20] concerns model (1.1), (1.2) with simplified energy equation (1.2)i. 
This simplification consists in neglecting the nonlinear term -OF,88 (e, 0) 
in the specific beat coeflicient co(e, 0) by assuming that co(e, 0) = c0 = 
= const > O. Obviously, such simplifica.tion destroys the thermodynamic 
structure of the model but makes the mathematical ana.lysis much simpler. 
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We add that the same simplification was used in the first result on the 
global in time unique solvability of system (1.1), (1.2) in 2-D and 3-D cases 
obtained in [14). 
The existence result due to Yoshikawa [20] generalizes that in [14] by admit
ting weaker assumptions on the data, in particular (1.14) instead of (1.11), 
and a more generał solutions class. The technique used in [20] is different 
from the classical methods for parabolic systems applied in [14], [10], [11). 
1t is based on the so-called maxima! regularity theory for abstract parabolic 
equations. 

The authors papers [10) and [11] generalize the result of[l4) respectively 
in 2-D and 3-D case by removing the above mentioned simplification of the 
energy equation. We stress that the presence of a non-linearity in the leading 
coefficient of the heat condnction equation introduces essential difficulties 
in the existence proof. 

As it has been already mentioned in case of one-space dimension problem 
(1.1), (1.2) with x > O and v = O is identical with the Falk model. In such 
a case, in contrast to the three-dimensional one, there are severa! results on 
the existence and uniqueness of solutions, in particular due to Sprekels and 
Zheng [17], Aiki [2) and Yoshikawa [19). The latter paper includes up-to
date list of references related to 1-D Falk's model. For a survey of diffused
interface models of shape alloys and the related mathematical results we 
refer to [12). We mention also that problem (1.1), (1.2) without capillarity 
but with the viscosity, i.e. x = O, v > O, with simplified energy equation 
discussed above, has been studied by Zimmer [18]. 

Finally, we add a remark concerning boundary conditions in (1.1)2. In 
[14] and later in [10], [11] the no-displacement boundary condition u = O on 
gr was chosen in order to apply the result due to Necas [7] on the ellipticity 
property of the operator Q whereas the condition Qu = O on gr resulted 
in a compatibility with parabolic decomposition (1.12), (1.13). 
In the present paper, apart from u= O, Qu = O on gr, we admit the other 
type of boundary conditions (1.4),. 

The plan of the paper is as follows. 
In Section 2 we formulate the a.ssumptions and state the existence and 
uniqueness theorems. These theorems generalize the results of [11], Theo
rems 2.1, 2.2, by admitting assumption (1.14) and a broader cla.ss ofbound
ary conditions (1.4). 
In Section 3 we examine the solvability of the initial-boundary-value prob
lem defined by the differentia] operator on the left-hand side of (1.l)i with 
initial conditions (1.1), and boundary conditions (1.4). We show that the 
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differentia] operator is parabolic in the sense of Solonnikov and that the 
initial and boundary conditions satisfy the Sha.piro-Lopatinskij conditions 
( complementarity condition). 
In Section 4 we present auxiliary results on the solvability of para.bolic 
problems of fourth and second order. These result.s play a key role in the 
new existence proof. 
Section 5 presents the outline of the existence proof. 
We use following notations: 

of . df 
f,; = /)x,' I= 1,2,3, ft= di' e = (Eij )i ,j=l ,2,3, 

F ( 0) _ (8F(e,0)) 
,C € I - 8Ei. • • l 

J t,J=l,2,3 

F ( 0)=8F(e,0) 
,8 e, 80 ' 

where space and time <lerivatives are materiał. 
Vectors (tensors of the first order), tensors of the second Ol'der (referred 
simply to as tensors) and tensors ofhigher order are denoted by bold letters. 
Tensors of the second order represent Iinear transformations of vectors into 
vectors; sT, trS, s-1 and detS, respectively, denote the transpose, trace, 
inverse, and determinant of a tensor S. 
A dot designates the inner product, irrespective of the space in question: 
u-vis the inner product ofvectors u= (u;) and v = (v;), S-R = tr(ST R) is 
the inner product of tensors S = (S,j) and R = (R;j), Am. Bm is the inner 
product of the m-th order tensors Am= (A:';' ... ,m) and Bm= (BJ'.' ... ,,J. 
In Cartesian components, 

(Su),= S,jtt;, (ST)ij = Sji, trS = S;;, 
'U. V= UiVi, s. R = Si;R;.;, 
Am .Bm= AI';' .. ,mB:';' .. ,m· 

Here and throughout the summation convention over repeated indices is 
used. By A= (A,jkl) we denote the fourth otder elasticity tensor which rep
resents a symmetric linear transformation of symmetric tensors into sym
metric tensors. We write (Ae),j = A,jklCkl· 
The symbols '7 and '7 · denote the materiał gradient and the divergence. 
For the divergence we use the convention of the contraction over the last 
index, e.g. ('7 · S), = 8S,j/8x;. 
We use the Sobolev spaces notation of (8]. Throughout the paper c and c(T) 
denote generic constants, different in various instances, depending on the 
data of the problem and domain !1. The argument T indica.tes time horizon 
dependence which is always of the form T", a E IH'.+. 
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2. Assumptions and main results 

Problem (1.1), (1.2) is studied under the following assumptions (Al)-(A5) 
(the sa.me as in (11]): 
(Al) Dorna.in n c !lł 3 with the bounda.ry of class C4 . The C4 - regula.rity 
is needed to apply the classical regula.rity result for parabolic systems. 
(A2) The coefficients of the operator Q satisfy 

µ·> o, 3.~ + 2µ > o. 

These conditions assure the following properties: 

(i) Coercivity and boundedness of the operator A 

(2.1) 

where f = min{3A + 2µ, 2µ}, c = ma.x{3A + 2µ, 2µ}; 
(ii) Strong ellipticity of the opera.tor Q (see (14], Sec.7). Thanks to this 

property the following estima.te due to Necas (7] holds true 

cilullwicnJ :':'. IIQullL,(nJ for { u E W~(fl)I ul, = O} ; (2.2) 

(iii) Pa.ra.bolicity in generał (Solonnikov) sense of system defined by the dif-
ferentia.! opera.tor on the left-ha.nd side of (1.1), (see Lemma. 3.1). 

The next assumption concerns the structure of the elastic energy. 
(A3) Function F(,:;,0): 5 2 x [O,oo)-+ lit is of class C3 , where 5 2 denotes 
the set of symmetric second order tensors in llt 3 . We assume the splitting 

where F1 and F 2 a.re subject to the following conditions: 
( A3-l) Conditions on F1 (,:;, 0) 

(i) conca.vity with respect to 0 

-F1,ee(c, 0) 2: O for (,:;, 0) E 5 2 x [O, oo). (2.3) 

(ii) · Nonnegativity 

F1(,:;, 0) 2: O for (,:;, 0) E 5 2 x [O , oo). 

(iii) Boundedness of the norm 
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(iv) Growth conditions. There exist a positive constant c and numbers 
s, K 1 E (O, oo) such that 

18!8)Fil $ c(l+ o•-ijejK,-J), O$ i+ j $ 2, i,j EN, 

and i= 2, j = 1, 
for large values of 8 and E;j, wbere admissible ranges of s and K1 are 
given by 

2 
o< s < 3' 

Moreover, in case K 1 > 1 the numbers s and K 1 are linked by the 
equality 

15s + 4K1 = 15. 

(A3-2) Conditions on F2(<) 

(i) Nonnegativity 

F2(e) :2: 0 for EE 5 2 . 

(ii) Boundedness of the norm 

(iii) Growth conditions 

l&!F2I $ c(l + lelK,-i), O$ i$ 2, i EN, 

for large va.lues of E;j, where 

g 
O< K2 $ 2. 

Before formulating the assumptions on the data we note some conse
quences of assumption (A3-l) which are of importance for the existence 
proof. In view of (A3-l) (i), by definition of co(<, B), 

O< Cv $ co(<, 0) for (<, 0) E 5 2 x (O, oo). (2.4) 

Moreover, (A3-l) (iii) and (iv) imply the bounds 

lco(e,8)1, lco,a(<,0)1 $ c(l + l•IK'), 
jco,.(e, 0)1 $ c(l + lelmax{O,K,-l}) for (e, 0) E 5 2 x (O, oo). 

(2.5) 

From (A3-l)(i) and (ii) it follows that 

Fi(e,0)- 0F1,a(<,8) :2: O for (,,0) E 5 2 x (O,oo), (2.6) 
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and owing to (A3-2) (i), 

(Fi(,,0)- 0F1,e(<,0)) + F2(<) ~ O for (,,0) E S 2 x [0,cx:,), (2.7) 

what means that the elastic part of the interna! energy is nonnegative. 
The later bound is used in derivation of energy estimate. 
(A4) The data satisfy 

b E Lp(f!T), 5 < p < oo, 
g E Lq(f!T), 5 < q < oo, and g ~ O a.e. in f!T, 

uo E w;- 21P(f!), U1 E w;- 21P(f!), 5 < p < oo, 

0o E Wi- 2/q(fł), 5 < q < oo, and 0. = mion 0o > O. 

Moreover the initial data are supposed to satisfy the compatibility condi
tions for the classical solvability of parabolic problems. 
We note that by Sobolev's imbeddings, 

0o E C 1•"0 (f!), <o E C 2•"; with O < ao, °'o < 1. (2.8) 

Similarly as in (11) we introduce an additional technical assumption 
which requires a special separable form of F1(,, 0): 
(A5) Function F1(<, 0) has the form 

N 

F1(,,0) = L,F'1;(0)F'2;(,), 
i=l 

where NE N is a finite number, and in accordance with (A3-1) (i)-(iii), 
(A5-1) 

Fi; E C2((0,oo)), 
F'!i(0) ~ o, 
-Pli,ee(0) ~ o, 

P,; E c 2(s2), 

F',;(,) ~ o, 
i= l, ... ,N1 

i=-1, ... ,N, 
i= 1, ... ,N. 

Moreover 1 functions FHB), i= 1, ... 1 N, are given by 
(A5-2) 

F'i;(0) = { :;(0) 
0'; 

for O$ 0 $ 01 , 

for 01 $ 0 $ 02, 
for 0 ~ 02, 

where numbers s;, i = 1, ... , N, and 01, 02 satisfy the following conditions 

O< s; $ s < 1, for i= l, ... ,N. 
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The requirements in (A5-l) imply that 

\0,(81) = 81, <,0\(81) = 1, <,0\'(01 ) = O, 
\0,(82) = 0;;' <,0\(82) = s;o;;-l, 
0•; :::; \0,(0):::; 0, -<,0;'(8) ~ o, 

<p:'(02 ) = s,(s; - 1)0\;- 2 , 

for 0 E (01, 02) , 

where i = 1, ... , N. We note that functions F'i,(0) in. (A5-2) satisfy the 
growth conditions (A3-l) (iv) which now read as follows 

°' 
lćJiFid $ c(l + 0•-i), 
l~F'ul $ c(l + lelKd), 

where i= 1, ... , N and j = O, 1, 2. 1 

We point out that in [11] the above separable form of F1(e, 0) ha.s been 
used to prove the key L00 -norm estimate for 0. In our present argumenta
tion this part of the proof will remain unchanged. We add also that such 
separable form of F,(e, 0) is conformable with the known Falk-Konopka 
elastic energy model (for more detailed account see [11]). 

The main result of the pre,sent paper is the following existence theorem . 

Theorem 2.1: Let a.ssumptions (Al)-(A5) be satisfied and the coeffic.ients 
x, li fulfil condition (1.14). Then for any T > O there exists a solution (u, 0) 
to problem (1.1), (1.2) with boundary conditions (1.4) in the space 

V(p, q) =a {(u, 0)lu E w;•2(nT), 0 E Wq'-'(nT), 5 < p $ q < oo}, 
(2 9) 

such that 

llullw:·'(W) $ c(T), ll0llw;-'(flT) $ c(T), (2.10) 

with a positive constant C(T) depending on the data of the problem and 
T•, a E llł+· Moreover, there exists a positive finite number w satisfying 

[g + ll(Ae,) · et] exp(wt) + [wc0(e, 0) + F,e.(e, 0) • e,]0, ~ O in nr, 
such that 

0 ~ 0, exp(-wt) in nT. (2.11) 

V-le point out tha.t this theorem generalizes the result in [11], Theorem 
2.1, by admitting a weaker a.ssumption on the coefficients x, li and a broader 
class of boundary conditions. 
We remark also that solutions specified in Theorem 2.1 enjoy, by virtue of 
Sobolev's imbeddings, the following properties: 

(2.12) 
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are Holder continuous in O.T and satisfy the corresponding a priori bounds 
with constant c(T). 

For completeness we recall also the uniqueness result which follows by 
repeating the arguments used in (10] in the study of problem (1.1), (1.2), 
(1.4)! in 2-D case. The proof is based on a direct comparison. of two solu
tions, the use of energy estimates together with the regularity properties 
(2.12). The parabolic decomposition of elasticity system (1.1) is not a.pplied 
in the uniqueness proof. 

Theorem 2.2: Let the assumptions of Theorem 2.1 be satisfied and in 
addition suppose that 

(A6) F(€, 0) : S 2 x [O, oo)--+ JR is of class C4, and g E L00 (!1r). 

Then the solutiou (u, 0) E V(p, q) to problem {1.1), (1.2) is unique. 

3. Parabolicity of the elasticity system with viscosity and 
capillarity 

We consider the following problem 

u., - 11Qu, + xQ2u = f . in nr, 
ul1=0 = tto, utlt=O = u1, 
B(a,)u = O 

in n, 
on s7', 

(3.1) 

where Q is the linear elasticity operator defined by (1.5) ~nd B(a,)u stands 
for one of the following two types of boundary conditions 

u= O, Qu = O on s7', 
or (3.2) 

u=O, (A€(u.))n=0 on :3T_ 

In view of (1.5), (1.7) system (3.l)i can be expressed in the explicit form 

u,.+ 6.(-vµu, + xµ 2ó.u) 
+'v'v · [-v(A +µ)u,+ x(A +µ)(A+ 3µ)6.u] = f 

or, equivalently, in the matrix form 

where 

3 

L l,;(8,, a,)u; = J., k_= 1, 2, 3, 
j=I 

l,j(O,, a,)= Ókj[af + 6.(-11µ8, + xµ2ó.)] 
+a„ 8,;[-v(A +µ)a,+ x(A +µ)(A+ 3µ)6.]. 

(3.3) 

(3.4) 

(3.5) 
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By assumption (A2), µ>O,>,+µ > O. 
We write (3.4) in the short form 

.C(8,, a.)u = f, 

z29 

(3.6) 

where .C(81 , 8.) is the matrix operator with elements {l.;(8,, 8.)h,;=l,2,3· · 
Moreover, !et L = det .C. 

Lemma 3.1: System (3.1)1 is parabolic. 

Proof: By the Fourier-Laplace transform 
00 

u((,p) = J eP1dt J ,i{"'u(x,t)dx, 

O Ił' 

system (3.6) takes the form 

3 

:z=1k;(p,i()u; = Jk, k = 1,2,3. 
J=l 

Then 

where 

d = p2 + µaJe12. a= vp + xµJ(l2. b = llp + x(>, + 3µ)Je1 2 . 

The roots of equation L = O are 

(i) double-root d = O; 
(ii) d + (>, + µ)bl(l 2 = o. 

Solving (i) we get 

SO 

-11±J112-4x 
p = 2 µJe12. 

In case of (ii) we have 

p2 + (>- + 2µ)vpJeJ 2 + x(>- + 2µ) 2 JeJ• = O. 
Hence, 
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In both cases there exists a real positive number 6 such that 

This ends the proof. • 

Now we examine the bounda.ry condit.ions. 

Lemma 3.2: Boundary conditions (3.2), and (3.2)2 satisfy the Shapiro
Lopatinskij conditions for system (9.1} (complementarity condition). 

Proof: We examine system (3.1), with the vanishing right-hand side and 
initial conditions, f = u 0 = u 1 = O. Let us denote this problem by (P). 
First we. examine problem (P) locally in the half-space X3 > O. Looking for 
solutions vanishing at x 3 -+ oo the Shapiro-Lopatinskij condition means 
that we have only a solution identically equal to zero (see [16], Chap. 2, 
§8). Hence, we can replace this condition by the coercivity argument. For 
this purpose we derive an estimate for weak solutions of problem (P). Mul
tiplying (3.1), by u, and integrating over l1 we get 

~fi j ju,1 2 dx - li j Qu, · u,dx + x j Q2u • u,dx = O. 
n n n 

Integrating by parts and then integrating with respect to time yields 

~ j lu,(t)j 2 dx + i j jQu(t)j 2dx + li j(Ac(u,,)) · c(u,, )dxdt' 

n n ~ 

-li J u,,· (Ac(u,,))ndSdt' + x J u,,· (Ac(Qu))ndSdt' (3.7) 

S 1 S1 

-x j Qu · (Ac(u,,))ndSdt' = O, t :$ T. 

s• 

We see that any of the boundary conditions (3.2), or (3.2)2 imply that the 
boundary integrals in (3.7) vanish. Hence, in view of estimates (2.1), (2.2), 
it fellows that 

w hat implies u = O in [lT. This concludes the proof. • 
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4. Auxiliary existence results for parabolic problems of 
fourth and second order 

z29 

Let !1 C Jlł 3 be a bounded domain with a sufficiently smooth boundary S. 
Let us consider the fourth order system 

u., - vQu, + xQ2u = f 
u/,=o = uo, u,/,=o = u1 
B(a,)u = O 

where B(a~) is given by {1.4)i or (1.4)2. 

in f2T, 

in !1, 
Oil sT, 

( 4.1) 

Lemma 4.1: Let f E Lp(f!T), uo E w;- 211'(!1), u1 E wi-z/p(!1), 1 < 
p < oo, S E C 4 . Then there exists a unique solution u E w;• 2(!1T) of 
problem (4- 1} such that 

Proof: Since the complementarity condition is satisfied (see Lemma 3.2) 
we apply the results of [16]. This shows the assertion. • 

Let us consider problem 

ult=O = uo, utłt=O = u1 
B(o,)u = O 

in !1, 
on sT, 

(4.3) 

where u= (u;J);,J=l,2,3, b = (b;);=1,2,3, B(o,) given by (1.4)i or (1.4)2. 

Lemma 4.2: Let u E Lp(f!T), b E Lp(f!T), u0 E w:-z/p(!1), 

UJ E w;- 21"(!1), 1 < p < oo, S E C 3 . Then solutions of problem. (,j.3) 
satisfy the inequality 

1/ullw:·'''(W) :;; c(l/ul/L,(W) 

+1/bl/L,(OT) + 1/uollw:-•1,(n) + 1/ui//w;-•t,(n/ 
( 4.4) 

Proof: Let G = (G;;);,J=J,2,3 be the Green function of problem (4.3) with 
vanishing initial conditions uo = UJ = O on the half-space x3 > O. Then u 
admits the following representation 

u(x, t) = J G(x, t, x', t')(v',,, ·u+ b)dx'dt'. 

a+xB 
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Since Gl,,=O = O we obtain 

u(x,t) = - J '17.,,G(x,t,x',t')<Tdx'dt' + J Gbdx'dt', (4.5) 

aixa aixx 

where ('17.,,G<T); = 'E],k=l 8,;G,;";1. In view of (4.5), by (16] it follows 
that 

llullw;·"'c•ixB) S c(ll<TIIL,(ll!ixl!) + llbllL,(ltixB))· 

Next, by using the regularizer technique and the extension of the initial 
data the assertion can be concluded. • 

Now Jet us consider the parabolic problem 

a(x, t)0, - !'>0 = f 
01,=o = 0o 
n· '170 = O 

in or, 
in n, 
on S7'. 

( 4.6) 

Lemma 4.3: Let f E Lp(OT), 0o E w;- 21P(O), 1 < p < oo, SE C 2 and 
the coefficient a E C"'•"'l 2(0T), c, E (O, 1) satisfies a' 2'. a 2'. a,> O, a,, a' 
- constants, a, E L2(0, T; L2(0)). Then there exists a unique solution 
0 E W;• 1(0T) of problem (4. 6) such that 

and 

ll0llw:·'(nT) S 'P (m,~ a, max a, 11°1łc-,•/'(W), lla,IIL,(W), T) 
·(11/IIL,(nr) + ll0ollw:-'''cn) + 110llv,ocnr)l 

( 4.7) 

ll0llv,o(nr) := ess sup ll0(t)IIL,(n) + IIV0IIL,(W) S A(T), (4.8) 
tE(O,T) 

where <p is an increasing positive Junction of its arguments, and A(T) is 

a positive Junction depending on the data f, 0o and a, 11•,IIL,(nT)-

Proof: First we obtain energy inequality ( 4.8). N ext by applying a. parti
tion of unity and using energy inequality (4.8) we obtain (4.7). O 

5. Outline of the proof of Theorem 2.1 

The idea of the proof is the same as in (11]. It is based on the Lera.y
Schauder fixed point theorem. In the present proof the essential role play 
the auxiliary results in Lemmas 4.1 - 4.3. Here we present the main steps, 
the details a.re given in (11). 
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Step 1. The solution map. We use the Leray-Schauder theorem in the 
following formulation: 

Theorem 5.1: Let B be a Banach space. Assume that T: [O, l] x B _, B 
is a map with the following properties: 

(i) For any fixed TE [O, l] the map T(r, ·): B _,Bis completely continu
ous. 

(ii) For every bounded subset C of B, the family of maps T(·, x): [O, l] _, 
B,x EC, is uniformly equicontinuous. 

(iii) There is a bounded subset C of B such that any fixed point in B of 
_T( r, -), O :::; T s; 1, is contained in C. 

(iv) T(O, •) has precisely one fixed point in B. 
Then T(l, ·) has at least one fixed point in B. 

In order to define the corresponding solution map we extend the def
inition of F1(e, 0) to all 0 Elit in such a way that it is of class C3, and 
that 

F1,ee(e, 0) 2: O for all (e, 0) E 5 2 x (-oo, O). 

With such extension the !ower bound (2.4) on co(e, 0) remains valid for all 
(e,0) E 5 2 X lit. 
The solution space is V(p, q) defined by (2.9). The solution map 

T(r, ·): (ii, 0) E V(p, q)-, (u, 0) E V(p, q), TE [O, 1), (5.1) 

is defined by means of the following initial-boundary value problems: 

u.,~ vQu, + xQ 2u = r(V · F,.(i', 0) + b] 
uit=O = ruo, Ut lt=O = ru1 
B(ći.)u = O 

in flT, 

in n, 
on sr, 

co(e, 0, r)0, - kol!,.0 = r[0F,e.(e, 0) · e, + v(Ae,) · e, + g] 
0/,=o = r0o 

1ll 

in 
n. V0 = o on 

where 

co(e, 0, r) = Cv - r0F,ee(e, 0), i:= e(ii). 

(5.2) 

fłT' 
n, 
sr, 

(5.3) 

Clearly, any fixed point ofT(l, ·) in V(p, q) is equivalent to a solution (u, 0) 
of problem (1.1), (1.2) in V(p, q). Therefore, the proof resolves itself into 
checking properties (i)-(iv) of the solution map T(r, •). 
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Step 2. Properties (i), (ii) and (iv) of the solution map. 
Property (i) follows by showing that for any fixed r E [O, 1). T(r, ·) maps 

the bounded subsets into precompact subsets in V(p,q). Let (un,0n) be 
a bounded sequence in V(p, q) such that for n-, oo 

un - u weakly in w;•2(0T), on - 0 weakly in Wi' 1(0T), 5 < p, q < oo. 

By repeating the arguments (11] and using Lemma 4.1 we conclude that 
for the values of T(r,·) given by (un,an) = T(r,un,0n), the following 
convergences hold for n -, oo 

un -, u strongly in w;• 2(0T), 5 < p < CX), 

an -, 0 strongly in Wi''(OT), 5 < q < oo, 

where (u, 0) = T(r, u, 0). This shows (i). 
Property (ii) follows by direct comparison of two solutions (u, 0) and 

(ii, 0) corresponding to parameters rand f, respectively. Applying Lemmas 
4.1 and 4.3 we show that 

Ilu - iilłw:·'(OT)• 110 - Bllwr'(W) s clr - fi, 5 < P, q < 00. 

Property (iv) is obvious in view of Lemmas 4.1, 4.3 and the definition 
of T( r, ·). 

Further steps of the proof concern property (iii) of the solution map. 

Step 3. A priori bounds for a fixed point. Without loss of generality 
we set r= 1 and assume t.hat (u,0) E V(p,q) isafixed point ofT(l,·). We 
begin with proving tha.t temperature is positive. Having this we establish 
energy estimates and then improve them recursively. 

Step 3.1. Positivity of temperature. 

Lemma 5.1: {see /10}, Lemma S.1) Let 

a.=mJn0o>O, g2'.0 in nr, 

and (u, 0) be a solution to (1.1), (1.2) such that e, e, E L 00 (0T), 0 E 
Loo(OT), 0, E L1 (O, T; L 9(0)), 1 < q < oo. 
Then there exists a positive finite number w satisfying 

[g + v(Ae,) · e,] exp(wt) + [wc0(e, 0) + F,e,(e, 0) • e,]0. 2'. O in nT, 

such that 

0 2'. a. exp(-wt) in 07. (54) 
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We point out that the regularity assumptions in Lemma 5.1 are satisfied 
for solutions in the space V(p, q). 

Step 3.2. Energy ·estimates. 

Lemma 5.2: (see {10}, Lemma 9.2). Let 

uo E W~(rl), u, E L2(rl), 0o E L1 (rl), 
(Fi(eo, 0o) - 00F1,s(eo, Bo))+ F2(<0) E L1(rl), 
b E L1 (O, T; L2(rl)), g E L1(QT). 

Assume that 0 :::C: O in QT and the bound (2. 7) ho/ds. Then a solution (u, 0) 
to (1.1), {1.2) satisfies estimate 

1101IL~(o,T;L,(n)) + llu,IIL(o,T;L,(n)) + IIQullL(o,T;L,(n)) 
+ll(F,(e,0)- 0F,,s(e,0)) + F2(e)IIL-(O,T;L,(n)) $ c 

with a constant c depending only on the data. 

(5.5) 

We indicale the implications of estimate (5.5) which are of importance 
in the next step. Firstly, by property (2.2) of the operator Q, 

llullL_(o,T;W~(n)) :5 c, 

consequently 

ll<'IIL-(0,T;Wj(O)) n Loo(O,T;L,(O)) $ C. (5.6) 

Secondly, (5.5) implies the bound 

llullw;:!.,(OT) :5 c, 

so, in view of Sobolev's imbeddings, 

llellw:;~'(nT)nL.,(nT) :5 c. (5.7) 

Our aim is to prove estimates (2.10). This will be accomplished with the 
help of Lemmas 4.1-4.3. We point out that in view of the nonlinearity of the 
coefficient c0(,:, 0) to apply Lemma 4.3 we ha.ve to prove first Holder-norm 
bounds for ,: and 0. To this end we proceed in a number of steps which 
provide the recursive improvement of estimates for 0 and ,: . 

Step 3.3. The first temperature estimate. According to Lemma 4.2 
we have the following estimate for problem (1.1): 

llellw~·•(nT) :5 cilullw:·'''(nT) 
:5 c(IIF,,(e, 0)IIL,(W) + llbllL,(W) (5.8) 

+lluollw:-"'(n) + lludlw~-"'(n0 1 < P < oo. 
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In view of this estirnate, repeating the a.rgurnents of [ll], Lemma. 4.3, which 
rely on multiplying equation (1.2)i by 0, integra.ting over n, a.nd applying 
appropriate imbeddings and interpola.tion inequalities, we get 

Lemma 5.3: (see {11}, Lemma 4.S) Suppose that assumption (AS-1( (iv) is 
satisfied and llellLio (fl) $ c(T). Then there exists a constant c(T) depending 
only on the data and T 0 , a E IR+, such that 

IIBIIL-(o,T;L,(O)) + IIWIIL,(OT) $ c(T). 

We indicate the implications of (5.9). By virtue of the imbedding, 

ll0IIL"1,(nT) $ c(T). 

(5.9) 

(5.10) 

Moreover, using the following estimate derived in the proof of Lemma 5.3 
(see [ll], eq. (52)) 

llellw'·1 ("OT) $ c(T)(ll'v0ll~'1c~T) + 1), 
'J 0/7 ~ 

we have 

ll<llw;;1,(0T) $ c(T). 

Hence, by Sobolev's imbedding,,: is Holder continuous in nT and 

IJ<Jlc•1,•,l' (OT) $ c(T) with O< a, 1 < 1/4. 

(5.ll) 

(5.12) 

Due to (5.12), using the growth condition on F1 ,. in (A3-l) (iv) and estimate 
(5.8), we conclude that 

llt:llw:·•cnT) $ c(T)(ll0llt,.cnT) + 1) $ c(T) for p = 10/(3s) > 5. (5.13) 

Further, thanks to (5.12), bounds (2.5) imply 

Jco(,:,0)1 + Jco,.(e,0)1 + Jco,a(e,0)1 $ c(T) in nr. (5.14) 

Step 3.4. The second temperature estimate. Multiplying equation 
(1.2)i by 0, and integrating over fl' we obtain 

Lemma 5.4: (see {Il}, Lemma 4-4) 
Suppose that 

O < s < 2/3 g E L2(flT), 'v0o E L2(fl), and 

JIBIIL"1,(nT) $ c(T), IJeJJc•• ,•,1, 1w) $ c(T), 
IJe.JIL,(O) $ c(T) for p = 10/(3s). · 

Then there exists a constant c(T) > O such that 

IIB,IIL,(OT) + ll0IIL-(O,T;WJ(n)) $ c(T). (5.15) 
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Step 3.5. The third temperature estimate. Writing equation (1, 2)1 

in the form 

-koD.0 = -co(e, 0)0, + 0F,e.(e, 0) · e, + v(Ae,) · e, + g (5.16) 

and using (5.14), (5.15), the right-hand side of (5.16) can be estimated in 
L2(!1T)-norm. Consequently, by virtue of the classical elliptic theory, 

11011L,(o,T;Wf(O)) :S c(T), so ll01IL,co,T;L~(n)J :S c(T). (5.17) 

-Furthennore, (5.17) and (5.15) imply that 

ll0llwi·'(nT) :S c(T), ll'v0llw;·'i'(nT) :S c(T), 

so, by Sobolev 's imbeddings, 

11011L,.(OT) :S c(T), 11v011L„1,(0T) :S c(T). (5.18) 

Step 3.6. The improvement of strain estimate. Using (5.18)i we 
repeat estimate (5.13) to conchide that 

llellw;•'(nT) :S c(T)(ll0lli,,,(OT) + 1) :S c(T), 
IIVellw;·' i'(nT) :S c(T) 

for p = IO/ s > 15. Consequently, by the imbedding, 

IIV<llo•,.•,i'(OT) :S c(T) with O< et2 < 1 - s/2. (5.19) 

Now, recalling assumptions (A3-1) (iii), (iv) and (A3-2) (ii), (iii), and using 
(5.12), (5.18), (5.19), we get 

IIV · F,.(e,0)IIL„1,(0T) :S c(T). 

Hence, by virtue of Lemma 4.1, 

llullw:~i,(OT) :S c(T), 

SO 

In view of the imbedding 

w:01fa2(nT) C L 9 (O, T; L00 (fł)) for q < 4, 

(5.20) implies 

(5.20) 

(5.21) 
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This estimate is crucial for obtaining L00 (0T)-norm bound and subse
quently Holder-norm bound on 0. This is clone in the next two steps which 
are the same as in [11). 

Step 3. 7. Pointwise estimate on temperature. Here we have to impose 
assumption (A5) on the separable form of F1(e, 0). Then we have 

Lemma 5.5: (see {11}, Lemma 5.1) Suppose {AS) is satisfied in addition 
to {Al)-(A4)- Moreover, /et 

Bo E L00 (0r), g EL, (O, T; L00 (0)), 

0 2:'. 0,(T) = 0, exp(-wT), 

llel!L~cnTJ :5 c(T), lle,IIL,(o,T;L~(n)) :5 c(T), 

where c(T) is an increasing positive Junction. Then 

IIBIIL~(OT) $ c exp(c(T)T1 l 2 1łe,IIL,(D,T;L=(n)))· 
·(Ile, 111,(o,T;L=(n)) + llullL,(o,T;L=(n)J + IIBIIL=(n)) $ c(T). 

(5.22) 

The proofofthis lemma is based on multiplyingequation (1.2)i by er, r > 1, 
integrating over O and introducing a specially constructed primitive of the 
function -er+! F1,ss(e, 0) wiht respect to 0. We point out that a similar 
idea was used in Lemma 5.3 where (1.2)i has been multiplied by 0 and 
a primitive of -02 F,,ss(e, 0) with respect to 0 has been constructed. As 
a result we obtain an estimate on Bin L00 (0, T; L,.(0))-norm which due to 
bound (5.21) one, allows to pass to the limit with ,. - oo to conclude the 
assertion. 

In view of (5.22), estimate (5.13) yields 

llellw;·'(nTJ $ c(T) for 1 < p < oo. (5.23) 

Step 3.8. Holder continuity of temperature. To prove Holder conti
nuity of 0 we apply DeGiorgi method in a way presented in [8]. N amely, 
we prove that 0 is an element of the space B2(0T, J.,f, 'Y, r, 5, x) where 
J.,f, 'Y, r, 8, x are positive parameters (for definition of this space see [8], 
Chap. II. 7). The essential for the proof is L00 (0T)-norm estimate on 0 
provided by Lemma 5.5 and Lp(OT)-norm estimate (5.23) one,. We have 
the following 



I April 20, 2005 19,56 WSPC /Trim Size: 9in x 6in for Review Volume 

22 I. Pawłow, W. Zajg.czkowaki 

Lemma 5.6: (see [11}, Lemma 6.1) Suppose that 

lei$ c(T) in 07, lle,IIL,(nTJ $ c(T), 1 < p < oo, 

IIOllw:·•cnTJ $ c(T), ll0IIL~(nTJ $ M = c(T), 

lco(e,0)1 + lco,.(e,0)1 + lco,e(e,0)1 $ c(T) in nr, 
g E Lp(OT), 1 < p < oo, 0o E C 00 (0), 1 <<>o< 1. 

Furthermore, /et k be a positive number such that 

Then 

k > sup0o(x) and M- k < 6 ·with some 6 > O. 
n 

0 E B2(nT,M,1,r,6,x), 

where 

r = q = ~. x E (o, D · 1 = c(T). 

z29 

(5.24) 

By virtue of (5.24) we can apply the imbedding result of [8], Theorem 
II. 7 .1, to conclude that 0 is Holder continuous in nT, and 

(5.25) 

with Holder exponent O < <> < 1 depending on M = c(T), -y = c(T), r, 6 
and x. 

Step 3.9. The finał estimates. In view of Holder continuity of e and 0 
as well as bound (5.23) we can apply Lemmas 4.1 and 4.3 to conclude finał 
estimates (2.10) and thereby prove property (iii) of the solution map. We 
have 

Lemma 5.7: {see [11}, Lemma 6.!J). Suppose that e and 0 are Hiilder 
contintW1'S in nT' and 

lei+ 101 $ c(T) in nT, 
IIVellL,(OT) + lle,IIL,(OT) $ c(T) for 1 <u< oo. 

Moreover, suppose that the data satisfy (A4). Then 

llullw;·'(nTJ $ c(T), ll0llw;·'(nTJ $ c(T), 5 < p, q < oo. (5.26) 

Summarizing, we have shown that the solution map (5.1) satisfies as
sumptions (i)-(iv) of the Leray-Schauder theorem. Thus T(l, •) has at least 
one fixed point in V(p, q) which is equivalent to a solution (u, 0) E V(p, q) 
to problem (I.I), (1.2). Together with bounds (5.26) and (5.4) the proof is 
completed. 
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