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We exhibit useful properties of ballstep subgradient methods for convex optimization that use level controls for 
estimating the optimal value. Augmented with simple averaging schemes, they asymptotically find objective 
and constraint subgradients involved in optimality conditions. When applied to Lagrangian relaxation of convex 
prograrns, they find both primal and dual solutions, and have practicable stopping criteria. Up till now, similar 
results have only been known for proximal bundle methods, and for subgradient methods with divergent series 
stepsizes, whose convergence can be slow. Encouraging numerical results are presented for large-scale nonlinear 
multicommodity network flow problems. 
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1. Introduction. We consider subgradient methods for the convex minimization problem 

J. := min {/(x) : x E S} (1) 

under the following assumptions. S is a nonempty closed convex set in !Rn, the objective function 
/: !Rn _, lR is convex, for each x E Swe can find the value f(x) and a subgradient 91(x) E af(x) off 
at x, and for each x E !Rn we can find Psx := arg mins lx - ·I, its projection on S in the Euclidean norm 
I • I, Finally, we assume that the optima/ solution set S. := Arg mins f of problem (1) is nonempty. 

This setting covers many applications, but we are mostly interested in Lagrangian relaxation (see, e.g., 
Hiriart-Urruty and Lemarechal [20, Chap. XIII) in the framework given below. 

EXAMPLE 1.1 Consider the following prima/ convex optimization problem: 

'l'o•x := max 'l'o(z) s.t. 'l';(z) 2'. 0, j = 1: n, z EZ, (2) 

where the set 0 ,f. Z c IR"' is compact and convex, and each function 11'; is concave, proper and closed 
(upper semicontinuous) with dom 11'; ::i Z. The Lagrangian of (2) has the form 'l'o(z) + (x, 1(z)), where 
11' := (11 , .. ,,1/'n) and x is a multiplier. Suppose that, at each multiplier x in the dual feasible set 
S := lR'i-, the dual Junction 

f(x) := max{ 'l'o(z) + (x, 1(z)) : z EZ} 

can be evaluated by finding a partia/ Lagrangian solution 

z(x) E Z(x) := Arg max{ 1o(z) + (x, 1(z)) : z E Z}. 

(3) 

(4) 

Thus fis finite convex and has a subgradient mapping 9/(-) := 1(z(·)) on S. For algorithmic purposes, 
suppose that this mapping 9/ is locally bounded on S (e.g., fis the restriction to Sof a convex function 
finite on an open neighborhood of S, or inf z min;'- 1 11'; > -oo, or 11' is continuous on Z) . Finally, assume 

that the dual optima/ set s. := Argmin8 fis nonempty; e.g., if Slater's condition holds (1(z) > O for 
some i E Z), then s. is both nonempty and bounded. For S := S, problem (1) is the standard dual of 
(2). However, if we know strict upper bounds on a dual solution in the form of a point x"P such that 
x"P > x for some x Es., then it may be more efficient to take S := {x: O :5 x :5 x"P}. 
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This paper shows that in the Lagrangian relaxation setting of Example 1.1, the ballstep subgradient 
method of Kiwiel et al. [27] applied to the dual problem (1) can provide a solution of the prima! problem 
(2) at no extra cost. In its simplest form, this method proceeds like standard subgradient methods, except 
for a special choice of stepsizes. At iteration k 2'. 1, for the current iterate xk E S and the target level 
J,:v < f(xk) that estimates the optima! value J. of (1), it uses the subgradient linearization off 

Jk(-) := f(xk) + (gj, · - xk) ~ !(·) with gj := 91(xk) E /JJ(xk) (5) 

and its halfspace 
Hk := {x: fk(x) ~ f1:v} 

as an o u ter approximation to the J,:v -level set of J: 

f:.1U1:v) := {x: f(x) ~ f1:v} C Hk = l:.1,U1:v)-

(6) 

(7) 

Then, as in the algorithm of Polyak [38], successive projections anto Hk and S give the next iterate 

xk+I := Ps(xk + tk[PH,xk - xk]) = Ps(xk - tk[fk(xk) - f,:v]gj/lg}l 2 ), (8) 

where the second equality is due to Jk(xk) = J(xk) > J,:v, and tk is a relaxation factor satisfying 

tk ET:= [ tmin, tmax] for same fixed O < tmin ~ tmax < 2. (9) 

The targets are chosen via a ballstep strategy that works in groups of iterations (because a single subgra
dient iteration does not provide enough information for changing the current target). Within each group, 
the target J,:v is fixed, and the method attempts to minimize f over a certain bali around the best point 
found so far. Two outcomes may arise. Either the objective f decreases sufficiently relative to the target, 
in which case the bali is shifted to the best iterate and the target is lowered, or it is discovered that the 
target is tao low, in which case the bali is shrinked and the target is increased. For discovering whether 
the target is unattainable, we may use the two level schemes ofKiwiel et al. [27, §§2 and 5]; both schemes 
ensure that inh J(xk) = J. and provide efficiency estimates when the optima! set S. is bounded. 

For comparisons with other approaches, we note that although our iteration (8) with the stepsizes 

conforms with the standard subgradient iteration 

xk+I := Ps(xk - vkgj) with Vk > O, 

our stepsizes do not have to obey the popular divergent series condition 
00 

Lllk =oo and 
k=ł 

00 

Lvl < oo, 
k=l 

or other conditions typically required for convergence of subgradient methods; see Kiwiel [25]. 

(10) 

(ll) 

(12) 

In this paper we augment the ballstep method with simple averaging schemes, using the convex weights 

k 

vj := v,/vj for j = k(l): k with vj := L v;, 
j=k(I) 

(13) 

where k(l) is the iteration number at which the current 1th group started. These convex weights lead 
to aggregate versions of various quantities related to aur method. For instance, by combining the aracie 
linearizations of (5), we obtain the aggregate linearization jk := I;~=k(I) vj f,, which is an affine minorant 

of f. We show that its gradient '1 jk can be used for finding asymptotically objective and constraint 
subgradients involved in optimality conditions for problem (1). Similarly, in Lagrangian relaxation, we 
may combine the partia! Lagrangian solutions z(xi) of (4) to produce the aggregate prima/ solution 

zk := I:;=k(I) vjz(xi). We show that these aggregate solutions ik converge subsequentially to the set 
of optima! solutions to the prima! problem (2). Further, we provide practicable stopping criteria, which 
allow the method to terminate w hen ik is an ,-solution of (2) for a given , > O. To sum up, in Lagrangian 
relaxation, our method finds both prima! and dual solutions. Up till now, for subgradient methods similar 
results have only been known for the iteration (ll) with stepsizes obeying (12) and weights given by (lJ) 
with k(l) = 1, whose convergence can be slow; see Zhurbenko [45], Shar [43, §4.4], Anstreicher and Wolsey 
[li, Larsson and Liu [29], Larson et al. [32, 33], and Sherali and Choi [42]. 
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Our results parallel ones given by Feltenmark and Kiwiel [12] for the proximal bundle method of 
Hiriart-Urruty and Lemarechal [20, §XV.3] and Kiwiel [21]. At first sight, this method has little in 
common with our simple subgradient algorithm, since it accumulates many linearizations for its QP 
subproblems, and uses the QP multipliers for averaging. But in fact there are more similarities than 
differences. Our key observation is that, from the convergence viewpoint, a group of iterations of the 
ballstep method is similar to one iteration of the bundle method. Thus, once suitable estimates for a 
group of ballstep iterations are established, the remainder of our convergence analysis is almost identical 
to that of Feltenmark and Kiwiel [12]. Also the ef!iciency analysis of both methods is quite similar; see 
Kiwiel [24] and Kiwiel et al. [27]. Up till now, the literature has only contrasted simple subgradient 
methods with more advanced bundle methods, whereas our paper highlights their similarities. 

Good reviews of the subgradient algorithm may be found in Bertsekas [9], Polyak [39] and Shor [43], 
and more recent variants in Ben-Tal et al. [7], Kiwiel [25), Kiwiel and Lindberg [28], Nedić and Bertsekas 
[35], Nedić et al. [36). It is widely used, mainly due to its simplicity and good performance, especially in 
Lagrangian relaxation. In many applications it solves the dual of an LP relaxation of the original problem; 
then even quite approximate prima! solntions delivered by our averaging schemes could be useful, e.g., 
in prima! heuristics, variable fixing, etc.; see Balas and Cerna [3], Barahona and Chudak [6], Bahiense et 
al. [2], and Ceria et al. [ll) . 

Also the recent volume algorithm of Barahona and Anbil [4) performs well in practice; see Barahona 
and Anbil [5) and Bahiense et al. [2]. lts averaging is similar to that of a version of our method that 
employs past aggregate subgradients to avoid zigzags (cf. (45)). However, in contrast with our method, 
the volume algorithm has no proof of convergence; see Bahiense et al. [2]. We hope, therefore, that 
our results may stimulate research on the development of simple subgradient methods that are both 
theoretically convergent and practically effective. 

As a partia! justification of our hope, we give preliminary numerical results for the traflic assignment 
and message routing problems (see, e.g. , Bertsekas [81) on apparently the largest instances reported in 
the literature. For modest solution accuracy (typical in such applications) our implementation seems to 
be competitive with the methods reviewed in the recent survey of Ouorou et al. [37). 

The paper is organized as follows. In §2 we review briefly the simplest ballstep method of Kiwiel et al. 
[27] and its convergence properties. In §3 we show how averaging may produce afline minorants off and 
the indicator function is of S, and a useful optimality estimate. Their uses for indentifying subgradients 
off and is involved in optimality conditions for mins f are discussed in §4. Applications to Lagrangian 
relaxation are studied in §5. Extensions to the accelerations of Kiwiel et al. [27, §7] are discussed in §6. 
Applications to multicommodity network flows are reported in §7. 

Our notation is fairly standard. B(x, r) := {y : [y - x[ ~ r} is the ball with center x and radius r. 
de(·) := infyee I· -yl is the distance function of a set CC IRn (de= oo if C = 0). 

2. The ballstep level algorithm. The simplest version of the ballstep subgradient method of 
Kiwiel et al. [27] stated below employs the following notation. At iteration k, x~ec is the record point 
with the best objective value f:Oc := minj= 1 f(x1 ) obtained so far. The iterations are split into groups 

I<1 := {k(ł): k(l + 1) - l}, ł 2: 1. (14) 

In group ł, starting from the point x~J~l, the method attempts to reach the fr-ozen target level J,:v := 

/,".,~) - 61 within the bal! of a certain mdius R1 centered at x~J~l, where the level gap 61 > O controls the 
stepsizes (10) . If sufficient descent f(xk) ~ f,".,~) - ½61 occurs for some k > k(l) (i.e., at least half of the 
desired objective reduction 61 is achieved), the next group ł + 1 starts with the same gap 61+ 1 := 61 and 
radius R1+1 := R1. Otherwise, the method eventually discovers that the target is infeasible in the sense 
that 

(15) 

Our test for detecting (15) (see (17) below) was derived in Ki wiei et al. [27] via fairly complicated geometrie 
arguments; we only sketch the main idea because a much simpler validation of this test will be given in §3. 
Suppose (15) does not hold: f(x) ~ J,:v for some x E B(x•<1>, R1) n S. Let tk = l. Viewing the iteration 
(8) as a subgradient step xk+ 112 := PH,xk followed by a projection step xk+ 1 := Psxk+ 112 , simple 

estimates show that the sum of squares of these steps Pk+I := I:7=k(I) (lxH1/ 2 - x112 + lxH1 - xH112 12 ) 
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satisfies Pk+I S lxk(I) - xj 2 - lxk+l - xj 2 S Rf, because by (7), the sets on which projections occur have a 
common point x. Thus, the inequality Pk+I > Rf implies (15). Intuitively, if (15) holds, then oscillations 
in successive projections eventually produce Pk+l > Rf; the weaker test (17) below may detect (15) 
even sooner. Then the next group l + 1 starts with a contracted gap 61+1 := ½61 and a shrinked radius 
R1+ 1 := R,/2/J, where /3 E [O, 1) is a parameter (typically /3 = ½)-

We naw state a detailed description of aur method. Further comments on its rules are given below 
and in §3; also see Kiwiel et al. [27] for additional motivations. 

ALGORITHM 2.1 (ballstep level method). 
STEP O (Jnitialization). Select an initial point x 1 E S, a level gap ,51 > O, ballstep parameters 

R > O, /3 E [O, 1), and relaxation bounds tmin, tmax (cf. (9)). Set f~c := oo, p, := O. Set the counters 
k := l := k(l) := 1 (k(ł) is the iteration number of the łth change of J1~vl-

STEP 1 ( Objective evaluation). Calculate f(xk) and 91(xk)_ If f(xk( < f;',;-;; 1 , set f;'.,c := f(x') and 
x~ec := xk, else set fr~c := fr~--;_ 1 and x:ec := X~8~ 1 (so that /(x~ec) = minj=l J(x1)). 

STEP 2 (Stopping criterion). If gj := g1(xk) = O, terminate (xk ES.). 

STEP 3 (Sufficient descent detection). If f(xk) S J,:~> - ½J1, start the next group: set k(l + 1) := k, 
ó1+1 := ó1, Pk := O and increase the group counter l by 1. 

STEP 4 (Projections). Set the level J1~v := f;'.,~) - J,. Choose the relaxation factor tk E T (cf. (9)). 
Set 

xk+I/2 := xk + tk(PH,xk - xk), /Jk := tk(2 - tk)d'JI, (xk), Pk+l/2 := Pk + Pk, (16a) 

xk+l := Psxk+l/2, Pk+l/2 := lxk+l - xk+I/212 , Pk+I := Pk+l/2 + Pk+i/2· (166) 
STEP 5 (Target infeasibility detection). Set the bali radius R1 := R(J,/Ji)/J. If 

(R1 - 1xk+1 - xk(l)l)2 > Rl- Pk+l, (17) 

i.e., the target level is tao low, then go to Step 6; otherwise, increase k by 1 and go to Step 1. 
STEP 6 (Level increase). Start the next group: set k(l + 1) := k, ó1+1 := ½61, Pk := O, replace xk by 

x~ec and gj by g1(x~0 c), increase the group counter l by 1 and go to Step 4. 

Assuming the method doesn't terminate, we naw recall same results of Kiwiel et al. [27, §2-3]. 

REMARKS 2.1 (i) If group l + 1 starts at Step 3, then f,:~+I) S J;'.~> - ½61 and xk(l+l) = x~J~+l) (since 

f(x') > f,:~> - ½Jz for j < k). Thus, by the rules Step 6, at Step 4 we have xk(ł) = x~J2 E S and 
f;'.,~) = J(xk(l)) for all ł. 

(ii) At Step 4, in view of (5) and (6) with fk(xk) = f(xk) > fi~v• we have xk+ 112 = xk - vkgj by (10), 
and dH, (xk) = [fk(x') - f1~vl/lgjl. Hence the Fejer quantities /Jk, Pk+i/2 and Pk+l are positive (because 
Pk is set to zero at Steps O, 3 and 6). The role of these quantities will be explained in §3. 

(iii) At Step 5, the ball radius R1 := R(J1/Ji)/J S R is nonincreasing. Ideally, R1 should be of order 
ds. (xk(I)), and hence shrink as the bal! center xk(I) approaches the optima! set s •. As shown by Kiwiel et 
al. [27, Rem. 3.9(i)], for convergence it suffices to choose R1 so that .St/ R1 --+ O; our results will additionally 
require boundedness of the sequence { Ri}. This makes room for other choi ces of R1. 

(iv) By Kiwiel et al. [27, Lem. 3.l(v)] or Lemma 3.l(iv,v) below, the Fejer test (17) discovers that the 
target is infeasible in the sense of (15). Then the gap 61 is halved at Step 6, the target f1~v is increased at 
Step 4 and the candidate point xk+l is recomputed. Note that the group counter ł increases at Step 6, 
but the iteration counter k does not, so relations like f1~v := f;'.,~) - 61 always involve tbe current values 
of k and ł at Step 4. 

(v) Notice that if lxk+I - xk(I) I > 2R1, then the Fejer test (17) is passed. It follows that at Step 1 we 

have the basie local boundedness property: {xk}:~k(~\ C B(xk(I), 2R1). 

We shall need the following convergence properties of Algorithm 2.1, which follow from the analysis of 
Kiwiel et al. [27, §3] and aur standing assumption that the optima! set S. of problem (1) is nonempty. 

THEOREM 2.1 We have J(xk(I)) L J., ó1 1 O, and each cluster point of the sequence {xk(I)} (if any) lies 
in the optimal set s. of problem (1). Moreover, the sequence {xk(I)} is bounded if the optimal set S. is 
bounded. These results require only finiteness of the objective f and local boundedness of the subgradient 
mapping 9/ on the Jeasible set S ( in which case f is continuous on S). 
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Figure 1: Target infeasibility J,~v < min8 c,•<'l,n,> fs if d;;.(xk(I)) > R,. 

PROOF. The first assertion fol!ows from the results ofKiwiel et al. [27, Lemma 3.6 and Theorem 3.7], 
the second one from [27, Corollary 3.8], and the third one from [27, Remark 3.9(ii)]. O 

3. Dual subgradient interpretations. For theoretical purposes, it is convenient to regard our 
constrained problem J. := mins f of (1) as the unconstrained problem J. = minfs with the essential 
objective 

fs := f +is, (18) 
where is is the indicator Junction of the feasible set S (is(x) = O if x E S, oo if x <f. S). Clearly, the 
objective fs is convex. Let Ns := ais denote the normal cone operator of the feasible set S. 

We now outline our main results. At each iteration, Step 1 delivers the linearization fk (cf. (5)) of the 
objective f, whereas at Step 4, the projection xk+I := Psxk+ 112 gives rise to a subgradient linearization of 
the constraint function is at xk+I. At iteration k, we construct afline minorants Jk and•! of the functions 
f and is by combining their past subgradient linearizations with suitable weights. Then the function 
J~ := Jk + •! is an afline minorant of fs := f + is, and hence its halfspace flk := Cf} U,!v) contains the 

level set C15 (f1~vl· Now, in terms of the minimum bali value J! := min8 c,•<•J,R,) fs, condition (15) reads 

f,~v < J;. It follows that f,~v < f; if B(xk(I), Ri) n flk = 0 (see Figure 1); the latter condition is shown to 
be equivalent to the Fejer test (17) by fairly simple algebra. Next, when this condition holds, we get the 
inclusion 'vf~ E 86,fs(xk(I)) and the bound l'vf~I :5 ó1/R1 as in Figure l; since ó1--+ O and ó1/R1--+ O, 
these relations ensure asymptotic optimality and suggest practical stopping criteria. 

3.1 Aggregate linearizations. We first derive a dual interpretation of the Fejer test (17) by iden
tifying below af!ine minorants Jk, •!, h of the functions f, is, fs, respectively. As mentioned earlier, Jk 
is obtained by combining the subgradient linearizations J; of (5) with the convex weights vj of (13), i.e., 

the stepsizes v; of (10) divided by the cumulative stepsize iij := ~7=k(l) v; so that ~J=k(l) vj = l. For 
aggregating constraint information, we shall use the fact that at Step 4, the vector 

(19) 
is a subgradient of is at xk+I stemming from the construction of xk+ 1 := Psxk+l/2. Accordingly, we 
shall employ the following aggregate linearizations off, is and fs (cf. (18)): 

k k 

- " k fk(·) := L., V; f;(·), ,!(-) := I: (gt. - xi+l)/iij, 
j=k(l) j=k(l) 

and the corresponcting aggregate halfspace flk of J~ and the aggregate level /i!v given by 

with 
k 

f-k ·- " vkfj lev .- ~ j lev· 
j=k(l) 

(20) 

(21) 
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The following technical result lists their basie properties, which are commented upon below. 

LEMMA 3.1 (i) At Step 4, the point xk+1 and the Fejer sum Pk+I satisfy 

k 

xk+1 - xk(I) = - L (v;g} + g}), (22) 
j=k(I) 

Lk := -½I t V;9j + 9il 2 
+ t {v;[f;(xk(I)) - / 1~vl + (gtxk(l) - xi+ 1)} = ½Pk+l· (23) 

j=k(I) j=k(l) 

(ii) The aggregate linearizations satisj,J Jk $ f, i}$ is, h $ fs. Further, vj'v]1 = xk(l) - xk+I, 

(24) 

(iii) We have h(xk(l)) > fi:v, and the distance from the point xk(l) to the hal/space of (21) satisfies 

(25) 

(iv) For the minimum hall value J; := minscx•<•>,R,) fs, we have the following. IJ fi~v ~ J;, then 

dfh(xk(I)) $ R,. Consequently, fi~v < J; if dii,(xk(I)) > R,. 

(v) (R1-lxk+ 1 -xk(l)l)2 > R[-Pk+I (i.e., the Fejertest (17) is true) iff dii,(xk(l)) > R,. 

PROOF. (i) Since xk+ 112-xk = -vkgj by Remark 2.l(ii), and xk+l _xk+l/2 = -gt by (19), summing 

gives (22). Let C:,.Lk := Lk - Lk-l• Since by (22), xk - xk(I) = - :r:;:f(l)(v;g} + gi) in (23), we have 

t:,.Lk = -½lvkgj + YW + (vkgj + 9~, xk - xk(l)) + Vk[fk(xk(I)) - f,~v) + (gt xk(I) - xk+I) 

= -½lvkg}l 2 + vk[fk(xk(I)) + (gj,xk - xk(I)) - f 1~v) + M,xk - xk+I - vkgj - ½Y~) 

= -½h9}l 2 + Vk[fk(xk) - f,:v! + (gtxk+I/ 2 - xk+I - ½Y~) 

= (-½t~ +tk){[/k(xk) -f1!vl/lg}l} 2 

+ (xk+l/2 _ xk+l,xk+l/2 _ xk+I _ ½(xk+l/2 _ xk+I)) 

= ½{tk(2 - tk)dk_ (xk) + lxk+I - xk+l/212} = ½(/lk + /Jk+1/2) = ½(Pk+l - Pk), 

where the first equality follows from expansion of Lk, the third one from the definition (5) of A and the 
fact that xk+l/2 = xk - vkgj, the fourth one from the definitions (10) of Vk and (19) of g~, the fifth one 
from the fact that dH.(xk) = [/k(xk) - / 1~vl/lgjl, and the finał two ones from (16). Consequently, (23) 
can be obtained by induction, starting from Lk(l) - I := Pk(I) := O (cf. Steps O, 3 and 6). 

(ii) Combining the subgradient inequalities /; $ f of (5) in (20) gives A $ f. Next, since gi := 
xi+112 - xi+1 by (19) and xi+1 := Psxi+ 112 by Step 4, using the well-known projection property 

(gi, x - xi+1) = (xi+ 112 - Psxi+112 , x - Psxi+ 112 ) :,; O '<lx E S 

gives i~ $ is in (20) by summing, and hence f1 := Jk + i} $ f + is =: fs. Naw, using the definitions 
(13) and (20) yields vj'v ]1 = I;J=k(li(v;g} + gi) = xk(l) - xk+1 by (22), as well as, by (21), 

k 

vj[]1(xk(l))-fi:v) = L {v;[/;(xk(l)) - ft)+ (gtxk(l) - xi+I)}. 
j=k(l) 

These two expressions allow us to rewrite (23) in the following useful form 

Lk = -½lvj'v JW+ vj[li(xk(I)) - li~vl = ½Pk+I > o, (26) 

where Pk+I > O by Remark 2.l(ii); then (24) follows from (26), where vj'v ]1 = xk(l) - xk+i. 

(iii) By (26), Lk = -½a2 + b = ½c2 with a:= lvj'v f~I, b := vj[]~(xk(l)) - li~v], C := Pt:1 > o. Then 

b = ½(a2 + c2) ~ iacl, so that by the definition of fh in (21), dii, (xk(l)) = b/a ~ c implies (25). 
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(iv) Consider any point x E Arg mins(x•<•>,R,) fs. If /; :,:'. li~ •. then x E Hk by (21), because fs(x) = J; 
and h :,:'. fs by statement (ii). Together with x E B(xk(l), Ri), this implies that dii, (xk(l)) :,:'. R1. 

(v) (R1 - lxk+I -xk(/)1)2 > R[-Pk+I # lxk+l -xk(/)12 +Pk+I > 2R,lxk+l - xk(l)I # 2vj[Ji(xk(l))

li~.] > 2R1iijl"v fil # [fi(xk(t)) - Ji~.]/J"v fil > R1 # dfi, (xk(l)) > R1, where we have used (24), the 
fact that Jxk+I - xk(l)J = iijl"v fil by statement (ii), and (25). O 

REMARKS 3.1 (i) By Lemma 3.l(v), the Fejer test (17) is equivalent to the distance test 
dfi, (xk(t)) > R,. (27) 

The fact that the Fejer test (17) implies /i~v < f; (cf. (15)) was derived in Kiwiel et al. [27, Lem. 3.l(v)] 
from Fejer estimates via analytic arguments, which are qui te difficult to interpret. In contrast, the distance 
test (27) has a straightforward interpretation: with fi!v = /1~. in (21), (27) means that the minimum of 
the linearization fi over the bali B(xk(t), R1), and hence also that of /s (since fi underestimates fs), is 
greater than / 1~., i.e., / 1~. < mins(x•<•>,R,) fi'.':'. mins(x•<•>,R,) fs =: J; (cf. Fig. 1). 

(ii) To cover the modifications of Kiwiel et al. [27, §6], which need not use constant levels J/.. = / 1~. 

for j = k(l): k, note that the proof of Lemma 3.1 holds if at Step 4, for all k, we only have 

f:0~) - Ót '.':'. /1:v <min{/,~~), f(xk)}. (28) 

In generał, since li:. 2: minJ=k(I) Jl •• by (21) and (13), if we have minJ=k(I) !(.. 2: J:0~) - ó1, then (27) 

yields /,~~) - Ót < J;. It follows that Lemma 3.l(iv,v) subsumes the corresponding result of Kiwiel et al. 
[27, Lem. 3.l(v)], and hence that the level condition (28) suffices for aur convergence results. 

(iii) Suppose momentarily that S = llr, so that gi = O. It is instructive to observe that aur algorithm 
acts like a dual coordinate ascent method for the QP subproblem 

min { ½lx - xk(l) J2 : /;(x) = f;(xk(l)) + (g}, x - xk(l)) :,; f(.., j = k(l): k}. (29) 

Indeed, the Lagrangian of (29) with multipliers v; is minimized by the point xk+1 ( cf. (22)) to give 
the dual function value Lk of (23), and vk = tkvk by (10), where iJk := [/k(xk) - / 1~.]/JgjJ2 maximizes 
6.Lk = -½lvkgjJ2+vk[!k(xk)- J1:.J (see the proofofLemma 3.l(i)). Thus aur algorithm may be regarded 
as a poor man's version of the proximal level methods of Kiwiel [22] and Lemarechal et al. [34], which 
employ subproblem (29) with f~. = J1:. for all j. 

3.2 An optimality estimate. We naw derive an optimality estimate from the aggregate lineariza
tions Jk, ,} and fi defined in (20). These linearizations are described by their constant gradients, as well 
as their linearization errors at the current bali center xk(l) (cf. Fig. 1): 

,} := f(xk(l)) - Jk(xk(l)), ,} := -,}(xk(l)), Ek := f(xk(l)) - ii(xk(l)); (30) 

note that is(xk(I)) = O and fs(xk(t)) = f(xk(I)) from xk(t) ES. In view of Remark 3.l(ii), from now on 
we assume only that the level condition (28) holds at Step 4 for all k. 

LEMMA 3.2 The linearization errors of (30) are nonnegative, with Ek = ,} + ,t and we have 

"vik E 8,7/(xk(I)), "v,} E 8,;is(xk(I)), "vii E a,,Js(xk(I)). 

Further, 

where 
'k := f(xk(l)) - fi(xk(l)) < f:0~) - li:.'.':'. Ó1, 

J"v fil= [fi(xk(I)) - fi:.l/dii, (xk(l)) :,:'. ót(dfi, (xk(I)). 

PROOF. By Lemma 3.l(ii), A is an affine minorant of/; thus, by (30), the inequality 
J(-) 2: Jk(·) = A(xk(t)) + ("v Jk,. - xk(t)) = f(xk(t)) - ,} + ("v Jk,. - xk(t)) 

(31) 

(32) 
(33) 

means that "v jk E a,1f(xk(l)) with ,j 2: O. Arguing similarly for,} and fi yields the first assertion and 

(31). The inequalities in (32) stem from the facts that f(xk(I)) = /,~~) by Remark 2.l(i), Ji(xk(l)) > J1:. 

by Lemma 3.l(iii), fi:. 2: min;=k(I) J(.. by (21) and (13), and minJ=k(I) J(.. 2: /,~~) -61 by condition (28) 
used at iterations j = k(l): k. Then the equality in (33) follows from (25), and the inequality from the 
fact that h(xk(l)):,; fs(xk(t)) = J:0~) (by Remark 2.l(i)) and the last inequality of (32). O 
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We naw consider two mare efficient modifications of Ki wiei et al. [27]. 

To detect that minJ-k(I) J/.v < J; more quickly, Step 5 may use the additional test 

(R, - lxk+l / 2 - x•<•> 1) 2 > Rt - Pk+1;2, (34) 

replacing (17) by "(34) or (17)". In view of the results of Kiwiel et al. [27, §3], Step 4 may set x•+ 1 := 
x•+l/2 if condition (34) holds, so that P•+i = Pk+!/2 and (17) holds; then all the preceding and subsequent 
results remain valid. F\Jrther, we may replace xk+112 and Pk+!/2 in (34) by PH,xk and P• + d7I, (x•), as 
if tk = l; see Kiwiel et al. [27, Rem. 3.2(ii)]. 

Similarly, our preceding and subsequent results hold for the "true" ballstep version of Kiwiel et al. [27, 
Lem. 3.10], wh.ich additionally projects the point xk+1 on the bali B(xk(l), R,) to ensure that {x•}:~t(~l C 

B(xk(l), R 1) (instead of {x•} Z~!/,l c B(xk(I), 2R1) as before). Since this only needs more complicated 
notation, we refer the interested readers to Kiwiel et al. [26, Lem. 3.10]. 

4. Optima! objective and constraint subgradients. Our asymptotic convergence results will 
deal exclusively with relations holding at Step 6, using groups and iterations in the sets 

L := { l: 01+1 = ½01} and K := { k(l + 1): ł EL}. (35) 

The set L indexes groups ł terminating at Step 6 when the distance test (27) (=(17) by Remark 3.l(i)) 
holqs at Step 5 for the current iteration k = k(l + 1) in the set of "interesting" iterations K. Of course, 
it would be nice to have results for the remaining iterations as well, but our estimate (33) involves the 
quantity oifdfh (xk(l)), which in generał converges to O only for k = k(l + 1) E K, as will be seen below. 

We naw begin aur study of asymptotic properties of the aggregate linearizations f., ,t h of (20). 
First, we show that their errors ,J, ,}, Ek (cf. (30)), as well as the gradient of ft vanish asymptotically for 

k E K. Our further results will require !ocal boundedness of the gradient off.. Since this gradient V J. 
is a convex combination of the past subgradients {g} }7=k(I) (cf. (20), (13) and (5)), its loca! boundedness 
will follow from the !ocal boundedness of the subgradient mapping 9/· 

LEMMA 4.1 (i) In the notation of (30), (20) and (35), we have 

,, --+ o, 

(ii) Suppose the sequence { xk(l) },EL has a cluster point x 00 • Let L' C L be such that xk(l) ~ x 00 , 

and let K' := {k(l + 1) : ł EL'} (cf. (35)). Then x 00 E S. and f(xk(l)) ! f, = f(x 00 ). Moreover, the 
sequences {x•hEK;,lEL' and {gjhEK;,lEL' are bounded, where K[ := {k(l): k(l + l)}. 

PROOF. (i) We have O:,; ,J, ,}, h :,; 01 by Lemma 3.2 (cf. (32)), where o,! O by Theorem 2.1. Next, 

we have IVf~I:,; oifdfl,(x•<1>) by (33) with dfl,(xk(l)) > R, for k E K (see below (35)), R, := R(oifoi)µ 

by Step 5 and f3 E [O, 1) by Step O; consequently, we obtain that oif R1 --+ O and hence V f~ Ł O. 

(ii) Of course, x 00 ES, by Theorem 2.1, but the estimate (31) combined with statement (i) and the 
fact that the sequence { x•} lies in the closed set S on which f is continuous provide an independent 

verification: fs(·) ~ fs(x 00 ). The finał assertion follows from the inclusion {x•}~~!/,\ C B(xk(l), 2R1) of 

Remark 2.l(v), since gj := 91(x•) for all kand the mapping 9/ is locally bounded on the set S. O 

In the asymptotic setting of Lemma 4.1, Jet x 00 be an arbitrary cluster point of the sequence {xk(l)},EL 
corresponding to groups L' and iterations K' such that (cf. (35)) 

x•<1> ~ x 00 with L' CL:= { l: 61+ 1 =½o,}, K' := {k(l + 1): ł EL'} c K; (36) 

note that x 00 E s. by Theorem 2.1. We now show that the corresponding subsequence of the aggregate 
subgradients V fk converges to the optima! subgmdient set of aur problem mins f: 

g := 8f(x00 ) n -Ns(x00 ). (37) 

This set does not depend on the point x 00 , as long as x 00 ES,: g = 8f(x) n -Ns(x) Vx ES, by Burke 
and Ferris [10, Lem. 2], and it is closed convex (such are the sets 8f(x00 ) and Ns(x00 ) := 8is(x00 )). 



Mathematics of Operations Research xx(x), pp. xxx- xxx, @200x INFORM$ 

THEOREM 4.1 Suppose the sequence {xk(t)}tEL has a cluster point x 00 . Let L' CL be such that xk(t) _!l__. 
x 00 , and let I(':= {k(l + 1): ł EL'} (cf (35)). Then we have the Jollowing statements. 

(i) The sequence {'v fdkEK' is bounded and its cluster points lie in the subdifferential lJJ(x00 ). 

(ii) Every cluster point of the sequence {'v fkheK' lies in the optimal subgmdient set 9 of (37). 

(iii) dg('v fk) ~ O, i.e., the sequence {'v fkhEK' converges to the optimal subgradient set 9. 

PROOF. (i) Since 'v fk E co{g}}J=k(!) by (13) and (20), the sequence {'v fkheK' is bounded by 

Lemma 4.l(ii). Next, since 'v fk E a,7J(xk(t)) by Lemma 3.2, where xk(t) _!i__, x 00 and ej ~ O by 

Lemma 4.l(i), we see that each cluster point of the sequence {VAheK' lies in lJ/(x00 ), since the mapping 
(x, ,) ,_. lJ,f(x) is closed on S x IR+; see, e.g., Hiriart-Urruty and Lemarechal [20, §XI.4.1]. 

(ii) Let I(" C I(' be such that the sequence {VAheK" has a limit 'v J00 • By statement (i), 'v f 00 E 

lJJ(x00 ). Since vf~- vfk = 'vi~ E a,~is(xk(l)) (by (20) and Lemma 3.2) with vf~ _!!_, O and f~----> O 

by Lemma 4.l(i), we see that 'vi} ~ -'v J00 E lJis(x00 ) by the closedness of lJ,is(x) as above. 

(iii) This follows from statements (i), (ii) and the continuity of the distance function dg: pick I(" c I(' 

such that dg('v A)~ limkel<' dg('v fk) and 'v fk ~ 'v J00 E 9 to get dg('v fk) ~ O. • 

COROLLARY 4.1 I/the sequence {xk(t)} is bounded(e.g. , the optimal set S. is bounded), then the sequence 
{'v A}keK is bounded ( cf (35)), its cluster points lie in the optima! subgmdient set 9 defined by (37) (/or 

any point x 00 ES.), and it converges to this set 9, i.e., dg('v fk) Ł O. 

PROOF. This follows from Theorem 2.1 and Theorem 4.1. o 
Concerning Corollary 4.1, note that the sequence {xk(t)} is bounded if such is the feasible set S; 

also having S bounded is useful for stopping criteria; see Kiwiel et al. [26, Rem. 3.8]. As observed in 
Feltenmark and Kiwiel [12, §3], in some applications one wants to find the minimum min8 / for an 
unbounded set S, but one can find a bounded set S that intersects the optima! set Arg min 8 f. Then it 
is natura! to salve, instead of the original problem min5 /, its restricted version mins / with a bounded 

feasible set S = Sn S. Bath problems have the same optima! subgradient set 9 if the "bounding" set S 
is "large enough", as explained in the following result of Feltenmark and Kiwiel [12, Lem. 3.7]. 

FACT 4.1 Suppose mins / is a restriction of the original problem min5 f in the sense that S = Sn Sfor 

two convex sets S and S. Let s. := Arg min5 /. Suppose s. n int S # 0. Then 0 # S. C S„ and we 

have both g = l)J(x) n -Ns(x) for every x in S., and g = lJJ(x) n -N5(x) for every x in S •. 

REMARK 4.1 Under the assumptions ofFact 4.l,N5 may replaceNs in Theorem 4.1; then 9 := lJ/(x00)n 
-N8(x00 ) characterizes "optima!" subgradients for both mins / and min8 /, also in Corollary 4.1. In 
generał, if s. # 0, then it suffices to choose S "large enough" but compact to have S bounded as well. 

Following Feltenmark and Kiwiel [12, §4], the results of this section can be specialized as in Kiwiel et 
al. [26, §5] to the cases where we have explicit representations of / as a finite-max-type function, and of 
S as the solution set of finitely many nonlinear inequalities and linear equalities. The resulting schemes 
for identifying multipliers of objective pieces and constraints work under more generał conditions than 
those in Anstreicher and Wolsey [1] and Larsson et al. (32]; see Kiwiel et al. [26, Rem. 5.15]. 

5. Lagrangian relaxation. For Lagrangian relaxation, in the generał setting of Example 1.1, we 
consider the following two choices of the dual feasible set S: 

S := S := IR'j. or S := {x: O :5 x :5 x"P} with x"P > x for some x ES •. (38) 

For the second choice, our problem mins / is a restricted version of the classical dual problem min5 f in 
the sense of Fact 4.1. 

In this setting, our method employs the partia! Lagrangian solutions and their constraint values 

zk := z(xk) and gj := ,t,(zk) for all k; (39) 
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note that, by (3)-(5), 
!k(·) = ,/,o(zk) + (·, ,J,(zk)). 

Using the convex weights {vj}J=k(l) of (13), we define the kth aggregate primal solution 

k 

zk := L vfzi. 
j=k(l) 

(40) 

( 41) 

This construction is related to the aggregate linearization fk := I:;=k(l) vJ f; of (20). By expressing each 
linearization /; as in (40), we now derive bounds on the prima! function values ,t,0 (zk) and ,J,(zk) that 
are useful for both asymptotic analysis and practical stopping criteria. 

LEMMA 5.1 The kth aggregate primal solution defined by (41) satisfies zk EZ, 

,/,o(zk) 2: i.(O) 2: f(xk(l)) - Ek - ('vftxk(l)) and ,J,(zk) 2: 'vi., 

where 'v fk 2: 'v h if S = R.'.;., and 'v J. = ,J,(zk) if the primal constraint Junction ,t, is affine. 

PROOF. In view of (13) and (41), we have zk E co{zi}J=k(I) c Z, ,J,0 (zk) 2: L; vJ,t,0 (zi) and 

,J,(zk) 2: L; vJ,t,(zi) by convexity of Z and concavity of ,t,0 , ,t,. Next, using (20) and (40), we get 

fk(·) := L- v}J;(-) = L- vJ [,t,o(zi) + (·,,p(zi))] = L -vf,/,o(zi) + ('vf., ·) 
J J J 

with 'v Jk = L; vJ,µ(zi). The above equality combined with the facts that J~ := Jk + •i by (20) and 

•i(O) $ is(O) =Oby Lemma 3.l(ii) and (38), and the representation off~ in (31) imply that 

L. vJ,/,o(zi) = fk(O) = f~(0) - i~(O) 2: J~(0) = f(xk(l)) - lk - ('v J~, xk(l)). 
J 

Finally, if S = R.'.;., then the minorization ii $ is of Lemma 3.l(ii) gives 'vii $ O, and hence that 
'v J. = 'v f~ - 'vii 2: 'v f~- Combining the preceding relations yields the conclusion. O 

Let z. denote the primal solution set of problem (2). We now show in the setting of (36) that the 
aggregate prima! solutions {zk}kEK', generated via (41), converge to the prima! solution set z •. 

THEOREM 5.1 Suppose the sequence {xk(l)}IEL has a cluster point x 00 • Let L' CL be such that xk(l) .!!... 
x 00 , and let K' := {k(l + 1): ł EL'} (cf. (35)). Then we have the following statements. ··••·~ -- -

(i) The sequence { zkhEK' is bov.nded and all its cluster points lie in the set Z. 

(ii) f(xk(l)) ! /. = f(x 00 ), lk + ('vh,xk(l)) E.. O, and limkEK' min~= 1 ('vfk); 2: O. 
(iii) Let z00 be a cluster point of the sequence { zk} kEK'. Then z00 lies in the primal solution set z. 

and in the set Z(x00 ) of (4). Moreover, the optimal primal and dual values satisfy ,J,/J'ax = J. (i.e., there 

is no duality gap). Finally, we have ,J,0 (zk) E. ,t,[I'ax and limkEK' ,/,;(zk) 2: O for j = 1: n. 

(iv) dz.(zk) E., O, i.e., the sequence {zkhEK' converges to the primal solution set z •. 

PROOF. (i) By Lemma 5.1, each ik lies in the set Z, which is compact by our assumption. 

(ii) The first two relations follow from Lemma 4.1. By Theorem 4.l(i,ii), (38) and Remark 4.1, the 
sequence {'v f.hEK' is bounded and its cluster points lie in the set 9 C -Ns(x00 ); since Ns(x00 ) C -JR.'.;. 
(see, e.g., Hiriart-Urruty and Lemarechal [20, Ex. III.5.2.6(b)]), the third relation follows. 

(iii) By statement (i), z00 E Z. Pick K" CK' such that zk ~ z00 • Using statement (ii) in Lemma 
5.1 together with the closedness (upper semicontinuity) of ,t,0 and ,t, on Z gives 

(42a) 

(42b) 

Thus the point z00 is prima! feasible. Since ,J,0 (z00 ) $ ,/,/J'ax $ f(x 00 ) by weak duality, (42a) yields that 
,/,o(z00 ) = ,J,/J'ax = f(x 00 ) and hence z00 E z •. Then the inequalities ,J,(z00 ) 2: O and x 00 2: O (due to 

• 



x00 ES) give ,p0(z00 ) + (x00 , ,p(z00 )) 2: f(x00 ), so that z00 E Z(x00 ) by (3)- (4). Next, since (42a) with 

,/Jo(z00 ) = f(x 00 ) yields ,/Jo(zk) ~ ,p0ax, whereas the sequence {zkheK' is bounded by statement (i), 
the finał assertion may be obtained by considering convergent subsequences and using (42). 

(iv) This follows from statements (i), (iii) and the continuity of the distance funtion dz •. o 

COROLLARY 5.1 Suppose that the sequence {xk(l)} is bounded; e.g., the optima/ dual set S, is bounded 
( see Example 1.1 for a sufficient condition). Then the optima/ primal and dual values satisfy ,p0•x = J,, 
the sequence {zk}keK is bounded and all its cluster points lie in the prima/ solution set Z„ dz. (zk) Ł O, 

f(xk(l)) l 'Poax, ,Po(zk) __I!_, ,pg-•x and limkEK ,p,(zk) 2: O for j = 1: n. 

PROOF. Consider suitable convergent subsequences of {xk(l)}leL and {zkheK in Theorem 5.1. O 

REMARKS 5.1 (i) Given an accuracy tolerance f > O, the method may stop if 

,/J0(zk) 2: f(xk(l)) - < and ,/J1(zk) 2: -<, j = 1: n. 

Then ,/Jo(zk) 2: 'Poax - f from f(xk(l)) 2: 'Poax (weak duality); in other words, the point zk E z is an 
E-solution of the prima] problem (2). By Lemma 5.1 and Theorem 5.l(ii), this stopping criterion will be 
satisfied for some kin at least two cases: if S := IR+ and lxk(l)I f, oo (e.g., if the dual optima] set S, is 
bounded; cf. Theorem 2.1), or if S := {x: OS x S x"P} for the point x"P chosen as in (38). 

(ii) If ,j;(ź) > O for some ź E Z, then for any points x E S, := Arg minw;c f and x 2: O, we have 

x1 S [f(x) - ,/Jo(ź)]N,(z), j = 1: n 

(since ,p0 (ź) + (x, ,p(ź)) S f(x) S f(x) by (3)). Such bounds may be used for choosing x"P > x in (38). 
(iii) Our results may mitigate common critiques of subgradient optimization (see, e.g., Sen and Sherali 

(41]), which claim that such methods need heuristic stepsizes, Jack effective stopping criteria and are not 
dual adequate (cf. (i) above). 

(iv) For the standard subgradient iteration (11)- (12), the results in Larsson et al. (33] and Sherali and 
Choi (42] (where each function ,j,1 is affine and the condition Lk vf < oo is replaced by the assumption 
that xk --, x E S,) correspond to replacing the set K by { 1, 2, ... } in Corollary 5.1, and k( l) by 1 in ( 41). 
Hence our estimates may be expected to converge faster, since information from early steps is explicitly 
discarded. Further, Sherali and Choi (42] give partia! results only for dellected subgradient approaches, 
which are easily handled in our framework; cf. §6. 

We now indicate brielly two useful extensions of the framework of Example 1.1. 

REMARKS 5.2 (i) Consider the equality constrained version of the prima! problem (2): 

,p0ax := max ,/Jo(z) s.t. ,p(z) := Az - b = O, z EZ, (43) 

where AE IRnxm, b E IR.n. Modifying (38), we may take either S := S :=IR.nor S := {x: x10w S x S x"P} 
for bounding vectors that satisfy x10w < x < x"P for some dual solution x E S,. Then Lemma 5.1 holds 

with ,p(zk) = vfk (where vA = vj~ if S = IR.n), and Theorem 5.1 holds with ,j;(zk) = vjk ~ O in 
statement (ii) (using Nr;(x00 ) = {O}), and hence ,p(z00 ) = O in statement (iii). 

(ii) Instead of assuming that the set Z is compact, suppose Z is closed and the mapping z(•) of (4) is 
locally bounded on the dual feasible set S. The preceding results of this section are not affected, since 
statement (i) of Theorem 5.1 follows from (39), (41) and Lemma 4.l(ii). This observation can also be 
exploited in the bundle framework of Feltenmark and Kiwiel [12, §5]. 

6. Accelerations. As shown by Kiwiel et al. [27, §7], we may accelerate Algorithm 2.1 by replacing 
the subgradient linearization A with amore accurate model </>k of fs; this means that Step 4 sets 

xk+l/2 := xk + tk(Pc.,xk - xk), Pk := tk(2 -tk)dl,(xk) with ck:= c~,ul~v)- (44) 

In other words, the halfspace Hk is replaced by the (hopefully tighter) approximation Ck of the objective 
level set I:. Is (f1~vl- The main idea is that the model <Pk should accumulate information from the past 
linearizations in order to prevent zigzags . Even fairly simple models yield faster convergence in practice. 
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Yet, for aggregation, we need to know the weights of past linearizations /; in the current model, and the 
necessary notation becomes quite complex. To save space, we provide below formulas for severa! popular 
models, referring the interested readers to Kiwiel et al. (26, §6) for their justifications. 

For the model choices specified below, 'Pk is an affine minorant of /s such that 'Pk(xk) > / 1:v• Therefore, 
if its gradient g; := 'il</,k is nonzero, then (44) implies that we have dc,(xk) = [ą,k(xk) - / 1:vl/lg;I and 

xk+l/2 = xk - Vkg; for the stepsize Vk := ['Pk(xk) - / 1~vl/lg;[ 2, which replaces Vk in (10) and (13); hence 

the cumulative stepsize iij := I:7-k(I) iJ; is updated by setting iij := iij- 1 + Vk if k > k(l), iij := iJk 

otherwise. When g; = O, we have dc,(xk) = oo, and we may set xk+112 := xk and vj := iJk := l. 

Our implementation tested in §7.5 generates </,, by combining the current linearization /k with a past 
linearization if>k-1 of f; to account for constraints, they are turned into linearizations /, and ~k- I of f s 
by using the subgradient reduction technique of Kiwiel [23, §7). Specifically, we use the following formulas 

'Pk := (1 - o,)/,+ c,k~k-1 with c,k E [0, l], 

/,(-) := J,(xk) + (g\ · - x'), ~k-1(·) := ł,}- 1 (x') + (g;- 1 , · - xk), 

where g• := gj + PNs(x•)(-gj) and !J;- 1 := !J;; 1 + PNs(x•)(-!];; 1) are reduced subgradients, for 

g;; 1 := vł,}-1, updating 

ł,j := (1 - o,)/,+ o,ł,~- 1 , ł>1 := fi. 

The choices of the weight o, above, given by Kiwiel et al. (27, Ex. 7.4(v) and Rem. 7.6), include: 

(i) the ordinary subgradient strategy (OSS): c,k := O; 

(ii) the conjugate subgradient strategy (CSS): 

(iii) the average direction strategy (ADS): 

(iv) the aggregate subgmdient stmtegy (ASS): o, is such that the projection of the point x• on the 
/ 1:v-level set of 'Pk coincides with its projection on the / 1~v-level set of max{!,, ~•-d if the latter 
set is nonempty, otherwise c,k is such that the farmer set is empty; see Kiwiel [23, Rem. 4.1). 

For OSS and ASS, if the Fejer tests (34) and (17) are false and max{/k(x'+l ), ł,j(x•+ 1 )} > J:0~) - ¾61, 

then Step 4 is repeated with xk and ł,~-l replaced by x•+l and ł,j. Such repeated projections are justified 
by Kiwiel et al. (27, Rem. 7.11) (but not for CSS and ADS). They provide an inexact implementation of 
the "best" single projection of xk on the set l:.max{J.,~t'J(/l:vl n S, which may be too expensive. 

For prima! aggregation (cf. (41)), we use the following updates (where z0 := zi := z1): 

(45) 

Here one point should be noted. If we set c,k(J) := O when a group starts, these constructions produce 

(fk,z') E co{(/;,zi)}J-k(l) and (ł,j,z;) E co{(/;,zi)}J-•ci); otherwise 1 replaces k(ł) in these inclusions. 
However, we may allow c,k(l) ,j, O in at least two cases. First, suppose the subgradient mapping 9/ is 
bounded on the set S (e.g., ,;, is continuous in Example 1.1); then the sequence {'il fk} is bounded, as 
required for Theorem 4.l(i). Second, suppose the optima! set S, is bounded. Then, by Theorem 2.1 and 
Remark 2.l(v), the sequences {xk} and {gj} are bounded, so that again the sequence {Vf,} is bounded. 



7. Application to multicommodity network flows. In this section we discuss an application of 
our method to the traffic assignment and message routing problems, which are important instances of 
nonlinear multicommodity network flow problems; see, e.g., Bertsekas [8, Chap. 8] for a textbook intro
duction, Ouorou et al. [37] for a recent survey, Fukushima [13, 14j for the pioneering dual developments, 
and Goffin et al. [17], Goffin et al. [18], Larsson et al. [30], and Larsson et al. [33] for recent comparable 
approaches. In particular, in §7.4 we relax the standard assumption of strictly convex arc costs, because 
our real-life instances include linear costs. Incidentally, our theoretical developments also lay ground for 
the application of the proximal bundle method in Feltenmark and Kiwiel [12, §5] to such problems. 

7.1 The nonlinear multicommodity flow problem. Let (N,A) be a directed graph with N 
nodes and n arcs. Let E E JRNxn be its node-arc incidence matrix. There are m commodities to be 
routed through the network. For each commodity i there is a required flow r, > O from its source node 
o, to its sink node d,. Let s, be the supply N-vector of commodity i, having components sio, = r ;, 
S;d, = -r;, Sil = O if I c/ o,, d,. Our convex separable multicommodity flow problem is stated as follows: 

min ;bo(zo) := L ;bo;(zo;) 
j=l 

s.t. ,p;(z) := zo; - L z,;= O, j = 1: n, 
i=l 

z:= (zo, z1, . . . , Zm) EZ:= Zo X Z1 X· · · X Zm, 

Zo := Rn, zi := {zi: Ezi = Si,o .$ Zi :S zi}, i= l:m, 

(46a) 

(46b) 

(46c) 

(46d) 

where z; is the flow vector of commodity i E {l: m}, zo = I;:'.:, 1 z; is the total flow vector, and z, is 
a fixed positive vector of flow bounds for each i. We assume that each arc cost function ;bo; is closed 
proper strictly convex and increasing on its effective domain that equals [O, 1<;) or [O, 1<;] for a constant 
"i, and either O < 1<; < oo or 1<; = oo and limhoo ;bb; (t) = oo, where ;bb; denotes the right derivative of 

;bo;- (Here and in what follows, we assume basie familiarity with convex univariate functions; see, e.g., 
Bertsekas [8, §9.1], Rockafellar [40, pp. 227- 230J.) Finally, we suppose that 

io E [O, 1,;i) x · · · x [O, l<n) for some i E Z with ,p(i) = O. (47) 

7.2 Dual approach. In the framework of Remarks 5.2, ]etting ,p0 (z) := -;b0 (z0 ) and S :=!Rn, we 
may view problem (46) as an instance of the prima! problem (43). Then, for each multiplier x, the dual 
function value of (3) and the partia! Lagrangian solution of (4) can be written as J(x) = I;:'.:,0 J'(x) and 
z (x) = (zo(x), ... , zm(x)), where J 0 (x) := I:7=! JJ(x;), 

Jj(x;) := max,{x;t-;bo;(t)} = ;b0;(x;), j = l:n, 

zo;(x) := argmin,{ ;bo;(t) - x;t} = 'il;bo;(x;) = \JJJ(x;), j = 1: n, 

and 
J'(x) := max{ -(x, z,): Ez,= s,, O$ z,$ i;}, i= 1: m, 

z,(x) E Argmin{ (x, z,) : Ez,= s;, O$ z, $z,}= -aJ'(x), i= 1: m. 

(48a) 

(48b) 

(49a) 

(49b} 

Concerning (48), note that, since each cost function ;bo; is strictly convex, its conjugate function ;&0; 
is continuously differentiable; hence the mapping zo(·) is locally bounded. In turn, the mappings z, (·) 
produced by (49b) are bounded by O$ z,(·)$ i;. Consequently, the mappings z(•) and g1 (-) := ,t,(z(-)) 
are locally bounded (as stipulated in Example 1.1 and Remark 5.2(ii)). 

As for practical aspects, in typical applications the conjugate functions ;&0; are available in closed form, 
and the computations invo]ved in (48) are easy. In contrast, (49b) involves solving, for each i, a shortest 
path problem with some negative arc lengths if x l O, and side constraints imposed by i;. Suppose 
momentarily that x 2': O. Then this problem becomes much easier to salve. Further, consider the case 
where the required flow r, and the flow bound z, satisfy r, $ i;; for all j. Then, ignoring i; in (49b), we 
may find z,(x) by solving a shortest path problem with nonnegative arc lengths and no side constraints 
(since this solution satisfies z,;(x) $ r, for all j); this problem is easy; see, e.g., Gallo and Pallotino [15j. 
In particular, this means that we can handle problems where the flow bounds i; are omitted in ( 46d) 
and (49b) (as happens in many applications), since the algorithm will proceed as if we bad flow bounds 
satisfying i;; 2': r, for all i and j (i.e., we may pick such bounds for theoretical purposes only). 
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To sum up, the work in solving subproblems ( 49b) would reduce significantly if we took S = IR';. as 
the dual feasible set for our method; a better choice due to Fukushima [13] is validated below. 

THEOREM 7.1 Under the assumptions of §7.1, we have the following statements. 
(i) Problem ( 46) has a solution, and it is equivalent to the following inequality constrained problem: 

,1,0;" := min ,l,o(zo) s.t. ,/J(z) 2'. O, z EZ. (50) 

(ii) The set s. := Arg minw;. f of Lagrange multipliers of problem (50) is nonempty and bounded, and 

it is contained in the set S, := Arg min f of Lagrange multipliers of problem ( 46). 
(iii) For the restricted dual feasible set S and the lower bounding vector x10w defined by 

S := {x: x 2'. x10w} with xr := ,7,b;(O) 2'. O for j = l:n, (51) 

the dual optima! set S, := Argmins f is nonempty and lies in the bounded set S, of statement (ii). 
(iv) The prima! solution set of problem (46) (and of the equivalent problem (50)) has the form 

z.= {zo} X Z! with Z! := { (z1, ... , Zm) E Z1 X ... X Zm: Zo = I::1 z,}, (52) 

where zó is the unique optimal total flow. 
(v) lf each arc cost Junction ,l,o1 is finite and differentiable on the segment (O, oo), then the dual 

Junction f is strictly convex on the set S of (51), and hence the dual optimal set S. is a singleton. 

PROOF. (i) Both problems have solutions: their feasible sets are closed, whereas their objective ,l,o 
is closed, has a finite value at the point ź of (47), and satisfies ,l,0(z0)-> oo if lzol-> oo. The equivalence 
follows from the following observation: if a point z is feasible in (50) and ,l,o(zo) < oo, but ,p1(z) > O for 
some j, then, since the function ,l,01 in (46) is increasing on its effective domain, we can reduce ,l,o(z0 ) by 
decreasing zo1 to zo1 = I:;;:1 z,1, thus obtaining a better feasible point with ,p1(z) = O. 

(ii) Since (47) is equivalent to Slater's condition for (50) (,p(z) > O for some z EZ with zo Edom ,l,o), 
the first assertion follows from Rockafellar's [40, Cors. 28.2.1, 28.4.1 and 29.1.5]; in particular, minw;. f = 
-,1,:J,;". Since {,/J'h' is also the optima! value of (46) by statement (i), and thus -,1',/J';":,; minR• f by weak 
duality, we have -,1,bn;n = mina• f = mina:;. f (no duality gap), and the second assertion follows. 

(iii) Since each ;/Joj is nondecreasing on its domain, we have x}°w ~ O, whereas for O :$ Xj 5 x}0 w, 

JJ(x1) is constant in (48b), and each f'(x) is nonincreasing in (49a), so that f(x) is nonicreasing. Hence 

mina:;. f = mins f, and it follows from the definitions that S, is the projection of S. onto S . 

(iv) This follows from the strict convexity of the objective ,7,0 and the structure of the feasible set. 

(v) Fix j E {l: n}. Since ,l,01 is strictly convex, '1,l,01 is increasing on (O, oo). Then, by (48b), 

'1JJ(x1) = '1,l,ó1(x1) is increasing for x1 > ,l,b1(0) (since '1,l,ó1(x1) = ('v,l,01)- 1(x1)) , and thus JJ(x1) is 

strictly convex for x1 > ,1,b1(0). In effect, / 0 and f are strictly convex on S. D 

7.3 Algorithmic constructions and convergence. We now consider the application of our 
method in the setting of §7.2, using the mappings z(·) and 9t0 := ,p(z(·)) defined via (48)- (49) at 
points in the feasible set S given by (51). Recall that these mappings are locally bounded. The !ocal 
boundedness of 9/ suffices for Theorem 2.1 and the convergence results of §4, with the optima! dual set 
S. being bounded by Theorem 7.l(iii). On the other hand, the !ocal boundedness of the mapping z(·) is 
crucial for extending the results of §5 as follows. 

Here we view the inequality constrained problem (50) as an instance of the generał problem (2) with the 
"flipped" objective ,p0(z) := -,1,o(zo), so that their optima! va]ues satisfy ,1',IJ,;" = - ,/J/J'ax. By Theorem 
7.l(i), these two problems and our original problem (46) have a common solution set z., and {,/J'1" is the 
optima! value of (46) . Now, in view of the !ocal boundedness of z(·) and Remark 5.2(ii), the results of 
§5 would hold if we replaced S by IR';. (cf. (38)); fortunately, this replacement is not needed. Namely, 
Theorem 5.1 is true: in the proof of statement (ii), we have g C -Ns(x00 ) and Ns(x00 ) C -IR';. by (51), 
which also gives x00 2'. O in the proof of statement (iii). We conclude that all the results §5 stili hold. In 
particular, the conclusions of Corollary 5.1 hold, since the optima! dual set S, is bounded. 



It follows that for any tolerance < > O, the stopping criterion of Remark 5.l(i) will be met for some k. 
We now derive an alternative stopping criterion that is more ef!icient in practice. Basically, it involves 
turning the aggregate solution ik into another prima!-feasible point zk E Z such that ,f,(zk) = O. 

To this end, we first note that Remark 2.l(i) and Corollary 5.1 yield /(x~ecl ! 1/J/i'ax = -;/,•tn. Next, 
we observe that although the aggregate ik need not be feasible in the prima! problem (46), it Jies in the 
set Z by Lemma 5.1. Hence we may use its commodity components if, i= 1: m, to produce the aggregate 
total flow 

(53) 

and the prima/ feasible aggregate 

zk := (z~,i;, ... ,i:;.) Ez with ,t,(zk) = o. (54) 

Note that 
OS ;/Jo(z~) - ;/,;1n S ;/Jo(z~) + f(x;.c), (55) 

since ;/J8'1" is the optima! value of problem ( 46), and -;/,/{'1n = 1/J/I'ax S f(x~.cl as sbown above. Therefore, 
the method may stop when ;/,0 (z/I) + f(x~ecl S < for a given tolerance, > O, in which case zk is a feasible 
<-solution of problem (46). Among other things, the following result implies that this stopping criterion 
will be met for some k if the effective domain of each cost function ;/,0; has the form [O, 1<;). 

PROPOSITION 7.1 (i) 1/J/f'ax = -;/,/{'in = f., ;/Jo(zi) _!!_. ;/J/{'ln and ,f,(ik) _!!_. 0. 

(ii) z/I - z/I= ,f,(zk) _!!_. o, lik - zkl =li/I-z/Il_!!_. o, dz.(ik) _!!_. o and dz.(zk) _!!_. o. 
(iii) ii_!!_. Zo, z/I_!!_. zo, and dz1((if, ... ,it;.)) _!!_. O, where Zo is the unique optima/ totalflow, and 

the set z! of optima/ commodity flo".ns is given by (52). 

(iv) IJ the optima/ flow satisfies Zo E I17-1 [O, l<j), then ;/Jo(z/I) _!!_. ;/,/{'1n and ;/Jo(z/I) + f(x~.cl _!!_. O. 

PROOF. (i) The optima! dual set S. is bounded and 1/Jo(z) := - ;/Jo(zo), so the first two relations 
follow from Corollary 5.1, which also yields that all cluster points of the bounded sequence {ik}kEK !ie 

in z.; since z. is the solution set of our equality constrained problem (46), it follows that ,f,(ik) Ł O. 

(ii) We have ,f,(ik) = i/f - z/I and lik - zkl = li/I - z/Il by (46b) and (54); therefore, the first two 

relations follow from statement (i). Next, since dz. (ik) Ł O by Corollary 5.1, the fourth relation is a 
consequence of the second one and the fact that the distance function dz. is Lipschitz continuous. 

(iii) Recalling the form (52) of the prima! solution set z., use the fina! two relations of statement (ii). 

(iv) By statement (iii), z/f _!!_. z0 with z/f?: O by (53), (41), (39) and (49b). Since each function ;/Jo, in 

(46a) is continuous on [O, 1<,), we have ;/Jo(z/I) Ł ;/J8'1n, whereas /(x~ecl ! -;/,/{'1n as shown above. O 

7.4 Extension to linear costs. We now present an extension to the case where some of the cost 
functions are linear. Thus, retaining the remaining assumptions of l7.l, suppose that for a fixed integer 
O S n < n and each index j such that ii < j S n, the cost function 1/Jo, is linear on its effective domain: 

;/Jo (t) = { ;/Jó,(O)t if t?: o_, 
1 oo otherw1se, 

with ;/Jó,(O) > O. Then, by (48) and (51), JJ(x,) = O and z0,(x) = O if x, < x~0w, JJ(x,) = oo and z0,(x) 
is undefined if x; > x~0 w, but for x; = x~0 w, JJ(x,) = O and z0,(x) could be arbitrary in IR+. Exploiting 
this freedom, we may restrict attention to the following subset of the dual feasible set Sof (51): 

8 := {X: Xj ?: x}ow for j '.', n, Xj = x}ow for j > /i}, (56) 

letting 
m 

z0,(x) := L z,,(x) if x ES, j > n. (57) 
i=l 

This gives (g1(x)]; := 1/J;(z(x)) = O if x E S, j > n. Hence, assuming that we choose an initial point 
x 1 E S, by induction on (8) we shall always have xk E Sand [gj]; := 1/J;(zk) = O for j > n. In view of 
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(46b), this implies that ,/;1(zk) =Oby (41) and zg1 = zg1 by (53) for j > ii. In other words, for arcs with 
linear costs, the multipliers are fixed at their optima! values, and the aggregate flows are prima! feasible. 
Clearly, the mappings z(•) and 91(·) := ,/;(z(·)) are locally bounded on the set S (such are z,(·) for i 2: 1 

and zoj(·) for j ~ ii as before, since SC S, and then, by (57), also Zoj(·) for j > ii). 

The above observations suflice for proving the first two parts of Proposition 7 .1 as before. The re
maining two parts are modified as follows. In part (iii), since now the representation (52) of the primal 
solution set z. is replaced by z.= {(zó1, ... , zó11)} x z. for a suitably chosen set z., we have 

z~jŁzQ3, z~jŁzoj forj$Tt, d2.((i~,n+1 1···,z~n1Z~, ... , Z~))Ło. 

As for the proof of part (iv), we have ,f;0 (zk) Ł ,/;/fax by Corollary 5.1 as before; in other words, 

;/,0 (zg) Ł ;/,/j''". Now, since z~1 = zgj for j > ii (see below (57)), we have, by (46a), 

"k "k'\'""""k "k 1/;o(z0 ) = 1/;o(.i0 ) + L..,[1Poj(z0j) -1/;oj(.i0j)], 
j~ii 

where Joj(.igj), Joj(zgj) Ł Joj(zój), since O ~ zi,, zij Ł zój E [O, 1<1) and the functions Joj are 

continuous on [O, Kj) for j ~ ii. Therefore, ;/,0 (zt) Ł ;/,/j'1" yields ;/,0(zi) Ł ;/,/j''", as desired. 

7.5 Numerical results. Our method was programmed in Fortran 77 and run on a notebook PC 
(Pentium 4M 2 GHz, 768 MB RAM). We used the parameters /3 = ½, J1 = ½<>o and R1 := R(Ji/60 )13 
with <>o = R[/j1[ for consistency with Kiwiel et al. [27, §8], tk = 1, the third projection of §3.3 and the 
aggregate subgradient strategy of §6, updating the tata! flows (cf. (45), (53)) 

m m 

z~ = (iik/iiJ)z~ ,O + (1 - iik/iiJ)z;- 1 with z~,o := L z;,, = (1 - <>k) L z:+ C>kZ:~1, 

i=l i=l 

where Z8 := z~.o := L::1 zł. We also computed record flows z~c as follows. Letting Zlec := Z1' every 

tenth iteration or when the loop counter l increased at Steps 3 or 6, we set z~c := zk if ;/,0 (zi) < ;/,0 (z;.0 ,0 ), 

z;.0 := z;.-;; 1 otherwise (we did not update z;.0 at every iteration to save time). In view of the optimality 
estimate (55), we employed the following stopping criterion 

Jo(z~c,ol + f(x;.c) ~ fopt[l + [;/,o(z;.c,ol/1, (58) 

which ensured a relative objective accuracy of <opt; we used <opt = 10-•/2 for i = 4, 5, 6. 

We first give results for the CNET collection of Ouorou et al. [37], which describes message routing 
problems in a real-life te]ecommunication network with 106 nodes and 904 arcs. The instances have 
m = 4452, 6678, 8904 or 11130 commodities, and live load factors (1, 1.5, 2, 2.5, 3) that scale up the 
standard required flows r,. The costs are Kleinrock's avemge delays 

Joj(t) := { ~(Kj - t) if t E [O, Kj), 
otherwise. 

The starting point had components xJ := 1<i 1(1 -p.)-2 for all j, with p. := ¾ estimating the maximum 

traflic intensity maxj zó)Kj as in Goflin [16] (this intensity sometimes exceeded ½), Our results are given 

in Table 1, where Delay := Jo(z;00,0 ) is the best prima! value obtained until the finał iteration k, times 
are given in seconds, and the optima! delays ( communicated to us by A. Ouorou) are rounded to six 
digits. The accuracy attained ~as usually ~igher ~han that guaranteed by our stopping criterion (;58); 
e.g., for <opt = 10-3, we had [,/;o(z;.0 ,0 ) - 1/;8""]/,f;/j''" < 10-4 for the unit load instances, where 1/;/j''" 
is the optima! delay. Since each instance had 106 common sources, most work per iteration went into 
solving 106 shortest path subproblems via subroutine L2QUE of Gallo and Pallotino [15]. Our machine 
is about thirteen times faster than the one employed in Ouorou et al. [37]. Hence Table 1 suggests that 
our method is highly competitive with all the methods tested in Ouorou et al. [37, Tables 2 and 31, at 
least for modest accuracy requirements that are typical for such applications. 

We next give results for live real-life traflic assignment problems described in Table 2. These problems 
have nonlinear BP R delays 

Joj(t) := { ';;,t + 13p1 if t 2: o, 
otherwise, 



Table 1: Results for the CNET instances, with R = 10. 

Eopt = lQ- 2 Eopt = 10- 2 -5 Eopt = 10- l 
m Load Delay k Time Delay k Time Delay k Time 

4452 1.0 12.6131 110 .421 12.5881 180 .601 12.5856 590 1.59 
1.5 19.1949 150 .431 19.1831 350 .932 19.1815 600 1.52 
2.0 25.9955 210 .581 25.9824 267 .721 25.9784 500 1.29 
2.5 33.0326 200 .550 33.0017 330 .881 32.9838 1350 3.35 
3.0 40.2486 230 .631 40.2173 480 1.25 40.2125 1421 3.34 

6678 1.0 19.6691 170 .591 19.6512 370 1.10 19.6494 720 1.94 
1.5 30.2016 240 .671 30.1821 630 1.63 30.1806 900 2.30 
2.0 41.2893 160 .471 41.2149 430 1.14 41.2106 1030 2.52 
2.5 52.9117 220 .601 52.7989 350 .932 52.7842 950 2.31 
3.0 64.9875 540 1.39 64.9573 900 2.23 64.9513 1851 4.42 

8904 1.0 26.4872 230 .741 26.4872 238 .761 26.4746 1050 2.71 
1.5 41.0286 190 .541 40.9820 427 1.13 40.9772 900 2.26 
2.0 56.4689 390 1.07 56.4301 630 1.67 56.4260 2032 4.96 
2.5 73.0758 350 .961 72.9578 526 1.39 72.9454 944 2.37 
3.0 90.7997 418 1.11 90.7069 580 1.51 90.6720 860 2.17 

11130 1.0 33.5348 190 .671 33.4978 440 1.33 33.4955 860 2.38 
1.5 52.4137 200 .591 52.2819 710 1.92 52.2709 1217 3.17 
2.0 72.6894 480 1.31 72.6634 780 2.06 72.6462 1500 3.82 
2.5 95.0557 325 .921 94.9118 710 1.88 94.8916 1490 3.79 
3.0 119.406 1250 3.23 119.321 1580 4.04 119.320 1830 4.65 

Table 2: 'Iraffic assignment problems and their best known prima! values 

Problem Nodes Ares OD pairs Sources Linear costs Best delay 
Barcelona 930 2522 7922 97 565 l.26846e+6 
LinkOping 335 882 12372 118 o 4.05602e+8 
Winnipeg 1040 2836 4344 135 1176 8.85327e+5 
Chicago 2552 7850 137417 445 o 4.03799e+6 
SkAne 7722 18344 712466 1057 2262 7.63642e+7 

with parameters a1 2: O, /31 > O, 11 > 1, as well as linear costs 

V,(t) ·= { C>jt if t 2: o, 
01 · oo otherwise, 

Optimal 
Delay 

12.5847 
19.1799 
25.9755 
32.9809 
40.2072 
19.6481 
30.1776 
41.2066 
52.7790 
64.9460 
26.4730 
40.9742 
56.4233 
72.9392 
90.6620 
33.4931 
52.2677 
72.6434 
94.8838 
119.306 

with a1 > O; column 6 of Table 2 gives their numbers. The first three medium-sized problems were used in 
Larsson et al. [31] . The Chicago problem of Tatineni et al. [44] is much bigger than the largest (random) 
problems considered in Goffin et al. [18) and Ouorou et al. [37). The Skane problem (not reported so 
far) is really huge. We used the starting points x 1 = x 10w and the bali parameters R = 100, except that 
we took R = 104 for the Linkiiping problem. Our results are reported in Table 3. We add that again 
for the tolerance fopt = 10-3 in the stopping criterion (58), the finał accuracy was quite high: l.3e-4 for 
Barcelona, 2.8e-4 for Linkoping, 4.6e-4 for Winnipeg, 3.5e-4 for Chicago, 9.2e-5 for Skane. 
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Table 3: Results for the traffic assignment problems 

Eopt = lQ- 2 Eopt = 10- 2·5 fopt = lQ - J 

Problem Delay k Time Delay k Time Delay k Time 
Barcelona l.27322e+6 120 3.00 l.26937e+6 310 7.58 l.26862e+6 790 19.2 
LinkOping 4.06050e+8 120 1.10 4.05774e+8 150 1.35 4.05716e+8 720 6.27 
Winnipeg 8.8973le+5 56 1.67 8.86426e+5 116 3.31 8.85735e+5 220 6.18 
Chicago 4.06493e+6 80 19.8 4.04446e+6 130 32.3 4.03941e+6 350 87.1 
Skine 7.64631•+7 20 37.9 7.63957e+7 44 82.6 7.63712e+7 80 150 
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