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Abstract

We give a proximal bundle method for minimizing a convex function f over a con-
vex set C. It requires evaluating f and its subgradients with a fixed but possibly
unknown accuracy € > 0. Each iteration involves solving an unconstrained proximal
subproblem, and projecting a certain point onto C. The method asymptotically
finds points that are e-optimal. In Lagrangian relaxation of convex programs, it al-
lows for e-accurate solutions of Lagrangian subproblems, and finds e-optimal primal
solutions. For semidefinite programming problems, it extends the highly successful
spectral bundle method to the case of inexact eigenvalue computations.

Key words. Nondifferentiable optimization, couvex programming, proximal
bundle methods, Lagrangian relaxation, semidefinite programming.

1 Introduction

We consider the convex constrained minimization problem
for=inf{ flu):ueC}, (1.1)

where C is a nonempty closed convex set in the Euclidean space R"™ with inner product
(-,-) and norm | - |, and f : R® — R is a convex function. We assume that for a fixed
accuracy tolerance €5 > 0, for each u € C' we can find an epprozimate value f, and an
approzimate subgradient g, of f that produce the approzimate linearization of f:

Ful) = fut{gu —u) S F() with fu(u) = fu > f(u) — €. (1.2)

Thus fy, € [f(u) — €, f(u)] estimates f(u), while g, € &, f(u), i.e., g, Is a member of the
es-subdifferential 8, f(u) := {g: f(-) = f(u) — s + (g,- —u)} of f at u.
Our assumption is realistic in many applications. For instance, if f is a max-type
function of the form
fu) =sup{Li(u):z2€ Z}, (1.3)
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where each F, : R®™ — R is convex and Z is an infinite set, then it may be impossible
to compute f(u). However, if for some fixed (and possibly unknown) tolerance e; we can
find an e;-maximizer of (1.3), i.e., an element z, € Z satisfying F;, (u) > f(u) — €y, then
we may set f, := F,, (u) and take g, as any subgradient of F,, at u to satisfy (1.2). An
important special case arises in Lagrangian relazation [[IUL93, Chap. XII], [Lem01], where
problem (1.1) with C := R} is the Lagrangian dual of the primal problem

sup o(2) st. ¢(2) 20, i=1in, z€ Z, (1.4)

with F,(u) = 1bo(2) + (u,(2)) for 1 := (1, ...,%,). Then, for each multiplier u > 0, we
only need to find 2z, € Z such that f, := F, (y) > f(u) — ¢; in (1.3) to use g, := ¥(2.).
For instance, if (1.4) is a semidefinite program (SDP) with each ¥, affine and Z being the
set of symmetric positive semidefinite matrices of order m with a bounded trace, then f(u)
is the maximum eigenvalue of a symmetric matrix M (u) depending affinely on u [Tod01,
§6.3], and z, can be found by computing an approximate eigenvector corresponding to the
maximum eigenvalue of M (u) via the Lanczos method [HeK02, HeR00, Nay05].

The recent paper [Kiw(4] extended the proximal bundle methods of [Kiw90] and
[HUL93, §XV.3] to the inexact setting of (1.2) (see [Hin01, Kiw85, Kiw95, Mil01, So0l03]
for earlier related developments, and [Kiw05a] for numerical tests). Such methods at each
iteration find a trial point that minimizes over C' a polyhedral model of f built from ac-
cumulated linearizations, stabilized by a quadratic proz term centered at the best point
found so far. Solving this subproblem can require much work for large n even when the
set C' is polyhedral, including the simplest case of C = R} used in Lagrangian relaxation.

This paper extends the projection-proximal method of [Kiw99] to the case of inexact
linearizations. For this method, we may regard (1.1) as an unconstrained problem f, =
inf fo with the essential objective

fo = f+ic, (1.5)

where i¢ is the indicator function of C (ic(u) = 0 if u € C, oo otherwise). In its simplest
form, the method generates the trial point in two steps. The first prozimal step minimizes
a polyhedral model f of f, augmented with a quadratic proximal term and a linearization
of i¢c obtained at the previous iteration, to produce a linearization of f. The second
projection step minimizes over C this linearization augmented with the proximal term;
this amounts to projecting a certain point onto C' to produce the trial point and the next
linearization of i¢. Thus the standard bundle subproblem is replaced by two subproblems,
where the first “unconstrained” subproblem is much easier to solve, and the projection
is straightforward if the set C' is “simple”. Our development is related to the alternating
linearization approach of [KRR99], in which the prox subproblem for the sum of two
functions, such as (1.5), is approximated by two subproblems in which the functions are
alternately represented by linear models.

Our extension of [Kiw99] is natural and simple: the original method is run as if the
objective linearizations were exact until a test on predicted descent discovers their inac-
curacy; then the proximity weight is decreased to produce descent or confirm that the
current prox center is e;-optimal. We show that our method asymptotically estimates the
optimal value f, of (1.1) with accuracy €y, and finds ¢;-optimal points. In Lagrangian




relaxation, under standard convexity and compactness assumptions on problem (1.4) (see
§5), it finds e;-optimal primal solutions by combining partial Lagrangian solutions, even
when Lagrange multipliers don’t exist. These features are essentially “inherited” from
the inexact framework of [Kiw04] (although some technical developments are nontrivial).
On the other hand, this paper reorganizes and simplifies the convergence framework of
[Kiw04], and sheds light on several important issues not discussed in [Kiw04] (such as
the “true” impact of inexact evaluations, the possible use of “more inexact” null steps,
primal recovery for Lagrangian relaxation with subgradient aggregation, and Lagrangian
relaxation of equality constraints).

For the important special case where the functions v; of the primal problem (1.4)
are affine, we show how to employ nonpolyhedral models of f. Each model has the form
f(-) == sup, ¢z F.(-) stemming from (1.3), where Z is a closed convex subset of Z. Then the
proximal step can be implemented by solving a dual subproblem of minimizing a convex
quadratic function over z (e.g., via interior-point methods when Zis simple enough), and
the projection on C := R} is trivial. Further, the dual subproblem solutions estimate
€s-optimal primal solutions asymptotically as above. In particular, our framework extends
the highly successful methods of [FGRS05, §3.2] and [ReS03, §3] (see Rems. 5.6).

Finally, for SDP (see below (1.4)) our general framework yields extensions of several
variants of the spectral bundle method [Hel03, Hel04, HeK02, HeR00, Nay99]. This method
employs the nonpolyhedral models discussed above, with Z constructed from accumulated
eigenvectors of the dual objective matrix M(u). The original version of {HeR00] could
handle only equality-constrained SDP-s. Its extension [HeK02] to inequality-constrained
SDP-s can be seen as a specialization of the method of [Kiw99]; this helps in distinguishing
its “driving force” from “implementation details” (although the latter are, of course, crucial
for its performance in practice). Hence the primal recovery result of [Hel04, Thm. 3.6] also
follows from our more general results (see Thms. 3.7 and 5.2); in fact, we don’t need the
assumption of [Hel04, Thm. 3.6] that the dual problem has a solution (see Rem. 5.7(i)).
Our extension to the case of approximate eigenvectors (see below (1.4)) is relevant for
both theory and practice. Namely, while the existing version [HeK02] already employs
approximate eigenvectors at so-called null steps (and this saves much work in practice
[Hel03, HeK02, Nay99, Nay05]), it requires exact eigenvalues at the remaining descent
steps. Our theoretical results show what to expect if approximate eigenvectors are used
at descent steps as well, thus opening room for more efficient implementations.

The paper is organized as follows. In §2 we present our method for general objective
models. Its convergence is analyzed in §3. Various modifications and model choices are
given in §4. Applications to Lagrangian relaxation are studied in §5.

Our notation is fairly standard. Pe(u) := arg ming | - —u| is the projector onto C.

2 The proximal-projection bundle method

Our method generates a sequence of trial points {u"},;";1 C C for evaluating the approxi-
mate values f¥ := f,«, subgradients g* := g,» and linearizations fi := fu such that

fe() = fE+ (g% —uf) < f() with  fi(w¥) = f§ > f(u¥) — ¢, (2.1)




as stipulated in (1.2). At iteration k, the current prox (or stability) center i* :=1*" € C
for some k(I) < k has the value ff := f¥0 (usually f¥ = min}_, f7); note that, by (2.1),

f3 € [F(@*) — €5, (@) (22)
For a model fi < f, the next point u*+! solves approximately the prox subproblem
min fi() +ic() + 5| -~ (2.3)

where t;, > 0 is a stepsize that controls the size of Juf*! — @*|. To this end, two partial
hnearlzatxons of (2.3) are employed. First, replacing ic by its past linearization 75! < ic

n (2.3), we find its solution u’“+1 and a hnearxzatxon fi < fi such that @*t! solves (2.3)
with fx, ic replaced by fi, 75 757!, Next, replacing fi by fi in (2.3), we find its solution
uF*! and a linearization 7% < ic such that u**! solves (2.3) with fi, ic replaced by fi, 7.
Due to evaluation errors, we may have f¥ < fi(a*), in which case the predicted descent
v = f¥ — fi(u**1) may be nonpositive; then ¢, is increased and u**! is recomputed to
decrease fi(u**!) until v, > 0. A descent step to 4F+! := u**1 is taken if fF+! < f5 — ko,
for a fixed k € (0,1). Otherwise, a null step 2**! := ¥ occurs; then f. and the new

linearization firy, are used to produce a better model fi ., > max{ fi, fra1} (e-g., frea1 =

max{fk, fk+1})-

Specific rules of our method will be discussed after its formal statement below.

Algorithm 2.1.

Step 0 (Initiation). Select u' € C, a descent pammeter k € (0,1), a stepsize bound
toin > O and a stepsize t; > > tmine Set fo:= fi (cf (2.1)), 1% = (p2, — ul) with p2 ;= 0,
Wt =l fli=fli= fa, g = ga (cf (2.1), 80 =0,k —k( Vi=1,1:=0 (k(I) — 1 will
denote the iteration of the Ith descent step).

Step 1 (Model selection). Choose fi, : R™ — R closed convex and such that

max{fe1, fi} < f < fo (2.4)

Step 2 (Prozimal point finding). Set
"1 .= arg min { #5() = Fl) +T7) + 52 th —akf? } ) (2.5)
Fe() = fu@™) + (of,- — 0" with ph o= (@4 — @)/t —pE. (26)

Step 3 (Projection). Set

uft = argmin { $&() = fi(-) +ic() + ) - —0*? } = Po(@* —tup}),  (27)
() = {ph, — v with pk = (@F —u* )/t — pf, (2.8)
Vg = f: - fk(uk“), p* = (0F - WP/t and e o= v — it (2.9)

Step 4 (Stopping criterion). If max{|p*|,ex} = 0, stop (f¥ < f.).
Step 5 (Stepsize correction). If vy < —¢y, set ty := 10ty, i¥ := k and go back to Step 2.
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Step 6 (Descent test). Evaluate f5+1 and g**! (cf. (2.1)). If the descent test holds:

P < fy = R, (2.10)
set 4ft! o= of L fRRL L phtL kL g E(2 4 1) := k + 1 and increase | by 1 (descent
step); otherwise, set @Ft! = 4 fEtl.= fF and ift! =i (null step).

Step 7 (Stepsize updating). If k(I) = &k + 1 (i.e., after a descent step), select txy1 > ik,
otherwise, either set tgy1 := tx, or choose tyy1 € [tmin, L] if it =,
Step 8 (Loop). Increase k by 1 and go to Step 1.

Several comments on the method are in prder. _

Step 1 may choose the simplest model f, = max{fx_1, fx}; more efficient choices are
given in 84.4. For a polyhedral model fi, subproblem (2.5) can be handled via simple
QP solvers [Kiw86]; in contrast, the more difficult subproblem (2.3) employed in [Kiw04]
requires more sophisticated solvers even for a polyhedral set C' [Kiw94]. The projection of
(2.7) is easily found if the set C is “simple” (e.g., the Cartesian product of boxes, simplices

and ellipsoids).
We now use the relations of Steps 2 and 3 to derive an optimality estimate, which

involves the aggregate linearization f& = fi +7% and the optimality measure

Vi := max{|p*|, e + (p*, @)} (2.11)
Lemma 2.2. (i) The vectors p’} and pk defined in (2.6) and (2.8) are in fact subgradients:
ph € 8fi(a*Y) and pf € Bic(u*t?), (2.12)

and the linearizations f, and 75 defined in (2.6) and (2.8) provide the minorizations
fo<fo & <ic and f&i=f+iE < fo (2.13)
(1i) The aggregate subgradient p* defined in (2.9) and the linearization f& above satisfy
P* =pf +pp = (@ — ") /1, (2.14)
FEC) = Felw™h) + (0F, - — o+, (2.15)
(iii) The predicted descent vy, and the aggregate linearization error ¢, of (2.9) satisfy
ve=tp" P+ e and e = f¥ - fE(0F). (2.16)

(iv) The aggregate linearization f& is expressed in terms of p* and €, as follows
fe e+ (05— af) = FE() < fo (). (2.17)

(v) The optimality measure Vi of (2.11) satisfies Vi < max{[p*|, ex}(1 + |02¥]) and

f2< folw) + V(L +[u|)  for all u. (2.18)

(vi) We have v > —e, & 4]p*|Y2 > —ex & v = t|p*|¥2. Moreover, vy, > a,

—ex < ef and

v > max{te[p*|%2, Jex|} if v > —e, (2.19)
Vi < max{(2ue/te) ", v} +35)  if ik > —e, (2.20)
Vi < (2e5/t)"% (1 4 |ai*)) i ok <~ (2.21)



Proof. (i) By (2.5)-(2.6), the optimality condition (using V75! = p&'; cf. (2.8))

0e 8¢>’°(u"+1) — af ( Ic+1) +pk 1 + (ulc+1 Ak)/tk 6flc( k+1) ;D’}

and the equality fi(a5!) = f(**?) yield p} € 8/ (**) and fi < fi. By (2.7)-(28),
0 € 9L (uM*T) = pf + Bic(wMth) + (M — 0¥) /1y = Bic(u* ) — p¢

(using V fi = p) and #5(uf1) = ic(u*+?) = 0 give pf € Big(u**') and 2§, < ic. Combin-
ing both minorizations, we obtain that fk +5 < fi +ic < fc by (2.4) and (1.5).

(i) Use the linearity of f% := fi + 7%, (2.6), (2. 8) with 75 (u**1) = 0, and (2.9).

(ili) Rewrite (2.9), using the fact that fc(u’“) = filu ’““) + t|p¥|? by (ii).

(iv) We have f¥ — ¢, = f&(4*) by (iil), f& is affine by (ii) and minorizes fo by (i).

(v) Use the Cauchy-Schwarz inequality in the definition (2. 11) and in (iv).

(vi) The equivalences follow from the expression of vy = tklp [2+¢ in (iii); in particular,
vy, > €. Next, by (2.16), (2.13) and (2.2) with fo(@F) = f(2*) (a* € C), we have

~ex = fE(UF) — fE < fo(iF) — fE = f(i*) — f§ < e

Finally, to obtain the bounds (2.19)-(2.21), use the equivalences together with the facts
that v, = t&|p*|? + €x, —ex < €5 and the bound on V4 from assertion (v). O

The optimality estimate (2.18) justifies the stopping criterion of Step 4: Vi = 0 yields
fE <inf fo = f.; thus, the point 4* is e;-optimal, i.e., f(ii*) < fu+e; by (2.2). In the case
of exact evaluations (e = 0}, we have v, > € > 0 by Lemma 2.2(vi}), Step 5 is redundant
and Algorithm 2.1 becomes essentially that of [Kiw99, Alg. 3.1]. When inexactness is
discovered via vy < —¢, the stepsize t; is increased to produce descent or confirm that
¥ is e;-optimal. Namely, when 4* is bounded in (2.21), increasing ¢; drives Vj to 0, so
that f¥ < f. asymptotically. Whenever t, is increased at Step 5, the stepsize indicator
ik # 0 prevents Step 7 from decreasing t after null steps until the next descent step occurs
(cf. Step 6). Otherwise, decreasing t; at Step 7 aims at collecting more local information
about f at null steps.

We now show that an infinite cycle between Steps 2 and 5 means that 4 is e;-optimal.

Lemma 2.3. If an infinite cycle between Steps 2 and 5 occurs, then f& < f, and Vj — 0.

Proof, At Step 5 during the cycle the facts that Vi < (2e7/t:)?(1 + |2*]) by (2.21) and
te 1 0o as the cycle continues give Vi — 0, so that f£ < inf fo = f, by (2.18). O

3 Convergence

In view of Lemma 2.3, we may suppose that the algorithm neither terminates nor cycles
infinitely between Steps 2 and 5 (otherwise #i* is ¢;-optimal). At Step 6, we have u**! € C
and vy, > 0 (by (2.19), since max{|p*|, ex} > 0 at Step 4), so that #*+! € C and fF+! < f&




for all k. We shall show that the asymptotic value f§° := lim, f¥ satisfies f§° < f.. Asin
[Kiw99, §4], we assume that the model subgradients p% € 8fx(u**!) in (2.12) satisfy

{p'}} is bounded if {u*} is bounded. (3.1)

It will be seen in Remark 4.4 that typical models f; satisfy this condition automatically.

We first consider the case where only finitely many descent steps occur. After the last
descent step, only null steps occur and the sequence {#} becomes eventually monotone,
since once Step 5 increases i, Step 7 can’t decrease tg; thus the limit £, := lim, ¢; exists.
We deal with the cases of to, = 0o in Lemma 3.1 and ¢, < co in Lemma 3.2 below.

Lemma 3.1. Suppose there ezists k such that only null steps occur for all k > k, and
oo := limg ty = 0. Let K = {k> k oty >t} Then Vi Lo w Step 5.

Proof. For k € K, before t; is increased at Step 5 on the last loop to Step 2, we have
Vi < (26;/t)Y2(1 + |F]) by (2.21); consequently, £ — oo gives Vi —— 0. O

Lemma 3.2. Suppose there ezists k such that for all k > &, only null steps occur and
Step 5 doesn’t increase ty. Then Vi — 0.

Proof. First, using partial linearizations of subproblems (2.5) and (2.7), we show that
their optimal values ¢f(i#**!) < ¢ (u**!) are nondecreasing and bounded above.

Fix k > k. By the definitions in (2.5)-(2.6), we have fi(@*1) = fi (") and
i+ = arg min { B = Ful) 43N + |- } (3.2)

from V% (i*+!) = 0. Since ¢4 is quadratic and ¢f(u**+') = ¢f(@*+!), by Taylor’s expansion

Gh() = ) + o] - —u (3.3)

Similarly, by the definitions in (2.7)-(2.8), we have 7&(uf*!) = ic(u**1) = 0,
= argmin { $E() = fi() +160) + gl -~ }, (3.4)
FE() = ghutt) 4 | M (35)

Next, to bound the objective values of the linearized subproblems (3.2) and (3.4) from
above, we use the minorizations fi < fo and 757,75 < i¢ of (2.13) with 4% € C:

GEET) + Ut — aFP = B (aF) < F(a5), (3.6a)
GE () Wbt — a4 = g (aF) < F(aY), (3.6b)

where the equalities stem from (3.3) and (3.5). Due to the minorization 75" < ic, the
objectives of subproblems (3.2) and (2.7) satisfy ¢% < ¢&. On the other hand, since
@FTY = 4%, ey <t (cf. Step 7), and fi < fir1 by (2.4), the objectives of (3.4) and the
next subproblem (2.5) satisfy @& < d)’}“. Altogether, by (3.3) and (3.5), we see that

¢I;(ﬂk+l) + 2—11;-|’U.k+1 _ ,alc+1‘2 . (lec_(uk+l) < ¢E~(uk+1), (373.)
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¢é(uk+1) 1 'uk+2 k+1|2 — d“)lc (’D.k+2) S ¢k+l(,ak+2)_ (3.7b)

In particular, the inequalities ¢%(a*+1) < ¢k (ub+!) < ¢! (w**+?) imply that the nonde-
creasmg sequences {¢%(u "“)}k)k and {@f(u**1)}4sz, which are bounded above by (3.6)
with @ = @F for all & > k, must have a common limit, say ¢eo < f(@ ) Moreover, since
the stepsizes satisfy ¢ < tf for all & > k, we deduce from the bounds (3.6)—(3.7) that

S ), P (W) 1 deo, @2 — T 0, (3-8)

and the sequences {#**!} and {u**!} are bounded. Then the sequence {r%} is bounded
by (3.1), and the sequence {g*} is bounded as well, since g* € &, f(u*) by (2.1), whereas
the mapping 0, f is locally bounded [HUL93, §XI.4.1}.

We now show that the approzimation error & := f¥*' — fi(u¥*!) vanishes. Using the
form (2.1) of fy41, the minorization fiy, < fiq1 of (2.4), the Cauchy-Schwarz inequality,
and the optimal values of subproblems (2.5) and (2.7) with @i* = 4 for k > k, we estimate

é — fk+l ]Fk(uk+l) — fk+1(’ak+2) _ fk(uk+1) + <gk+17uk+l —’D.k+2>
< fk 1( Ic+2) fk(uk+1)+lgk+1||uk+l »k+2|
_ ¢k+l(uk+2) ( k+1)+Ak __,Lc( k+2)+ ng+1“uk+1 —Ic+2|7 (3‘9)

where Ay := [ub+! — ik |2/2t, — |52 — @5|2/28,,,. To see that Ay — 0, note that

|«k+2 Aklz k+1 ﬁlélz + 2<ﬂk+2 _ uk+l’uk+l ) + |uk+2 k+1]2,

|u

[ubtt — ﬁ’;|2 is bounded, @*+% — w5+ — 0 by (3.8), and tmin < tiyy <t for k > k by Step
7. These praperties also give 2% (i¥*?) — 0, since by (2.8) and Cauchy-Schwarz, we have
[E(*2)) < Ipklla+? — o5 with |ph| < jutt! — 4|/t + [P,

where {p¥} is bounded. Hence, using (3.8) and the boundedness of {g**1} in (3.9) yields
Timy, &, < 0. On the other hand, for k > k the null step condition f*+! > f& — sy gives

& = [f.iC+1 ] + [~ J@™)] > —kvp o = (1~ k) 20,

where k& < 1 by Step 0; we conclude that & — 0 and v, — 0. Finally, since vy — 0,
e > tmin (cf. Step 7) and 4% = 4* for k > k, we have V, — 0 by (2.20). O

We may now finish the case of infinitely many consecutive null steps.

Lemma 3.3. Suppose there emists k such that only null steps occur for all k > k. Let
Ki={k>k:tiy >t} if tx — 00, K :={k:k >k} otherwise. Then Vi 0.

Proof. Steps 5-7 ensure that the sequence {#,} is monotone for large k. We have V,, 0
from either Lemma 3.1 if ., = 00, or Lemma 3.2 if o, < co. O

Tt remains to analyze the case of infinitely many descent steps.
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Lemma 3.4. Suppose infinitely many descent steps occur and f$° := limyg f¥ > —oo. Let
K= {k: fi*' < fE}. Then limyex Vi = 0. Moreover, if {2*} is bounded, then Vi 0.

Proof. We have 0 < kup < f5 — fi¥lif kb € K, Y = fF otherwise (see Step 6),
$0 Ywex KUk < fl — f2° < 0o gives vy —— 0 and hence e, £|pk2 =5 0 by (2.19) and
Fed X 0, using ¢ > tuin (cf. Step 7). For k € K, a1 — 4F = —¢,p* by (2.9), so

B2 — 817 = el — 200,59},
Suni up and use the facts that 4% = 05 if k ¢ K, Srer te > Ckek tmin = 00 to get

L {telp*]” — 200", 3%)} > 0

k,z_ﬁ,o

(since otherwise |#¥[?> — —oo, which is impossible). Combining this with t|p
gives limycx (¥, @*) < 0. Since also e, |p*| £, 0, we have limgepe Vi = 0 by (2.11).

If {*} is bounded, using €, [p*| = 0 in Lemma 2.2(v) gives Vi —< 0. 0

We may now state and prove our principal result.

Theorem 3.5. (i) We have ff | f&° < f,, and additionally limy Vi = 0 if f. > —oco.

(i) fo < limy f(@%) < Timy f(8%) < f&° +e5.
Proof. The inequalities in (ii) stem from the facts that f, = infe f, {ii¥} C C, and
F(@F) < fF +¢; for all k by (2.2). By (ii), if f& = —oo, then f, = —oo in (i). Hence,
suppose f, > —oo. Then f& > f, — € > —oo by (ii). We have lim, V4 = 0 by Lemma
3.3 in the case of finitely many descent steps, or by Lemma 3.4 otherwise. Finally, using
lim, Vi = 0 in the estimate (2.18) gives f <inf fo = f,. O

It is instructive to examine the assumptions of the preceding results.

Remarks 3.6. (i) Inspection of the preceding proofs reveals that Theorem 3.5 requires
only convexity and finiteness of f on C, and local boundedness of the approximate subgra-
dient mapping g, of f on C. Iu particular, it suffices to assume that f is finite convex on
a neighborhood of C.

(ii) The requirement max{fr1, fi} < fx of (2.4) is only needed after null steps in the
proof of Lemma 3.2. After a descent step (when k = k(I)), Step 1 may take any fi < fo.

We now show that for exact evaluations (¢; = 0), our algorithin has the usual strong
convergence properties of typical bundle methods. Instead of requiring that infx{, >
tmin > O as before, we give more general stepsize conditions in the theorem below.

Theorem 3.7. Suppose e¢; = 0. If only | < oo descent steps occur and ty | too > 0, then
¥ € U, .= Argming f and Vi — 0. Neat, assuming infinitely many descent steps occur,
suppose Ypex te = oo for K = {k : f(@**) < f(@*)}, and let & = f(@F+1)— fi(@F+Y) for
ke K. Then f(i*) | f.. Moreover, if Us # 0 and S pex trée < 00 (€.9., SUPgeg bk < 00),
then 4F — 4> € U,, and Vi Ko if infrere te > 0. Finally, if U, = 0, then |4*| — oo.

Proof. Since €5 = 0, Step 5 is inactive and Algorithm 2.1 fits the framework of {Kiw99,

Alg. 3.1}, For [ /£ oo, the conclusion follows from Lemma 3.2 and Theorem 3.5. For
I — oo, combine [Kiw99, Thm. 4.4} and the proof of Lemnma 3.4. 0



4 Modifications

4.1 Looping between subproblems

To obtain a more accurate solution to the prox subproblem (2.3), we may cycle between
subproblems (2.5) and (2.7), updating their data as if null steps occured without changing
the model fi. Specifically, for a given subproblem accuracy threshold % € (0, 1), suppose
the following step is inserted after Step 5.

Step 5’ (Subproblem accuracy test). If
Fe(uH) > f5 — oy, (4.1)

set 75 1(-) ;== 75 ("), P55 = p§ and go back to Step 2.

The test (4.1) written as & := fi(u**1) — fe(uFt1) > (1 — &) (cf. (2.9)) is motivated
as follows. Since fi < fi (Lem. 2.2(i)) in (2.7), by standard arguments [Kiw99, p. 145],
the distance from u**! to the prox solution of (2.3) is at most /2.

The analysis of this modification is given in the following remarks.

Remarks 4.1. (i) For any k, each execution of Steps 2 through 5’ is called a loop. First,
suppose finitely many loops oceur for each k. By its proof, Lemma 2.2 holds at Step 4 for
the current quantities. This suffices for the proofs of Lemmas 2.3, 3.1 and 3.4, whereas
the proofs of Lemma 3.3 and Theorem 3.5 will go through once Lemma 3.2 is established.
The proof of Lemma 3.2 is modified as follows. For each k > k, (3.6) and (3.7a) hold at
each loop, and (3.7b) holds for the final loop. For any preceding loop, letting %5%! and
@% pexe stand for 451 and ¢4 produced by Step 2 on the next loop, use the minorization

Fi < fi of (2.13) in subproblems (3.4) and (2.7) to get @& < % next. and, by (3.5),
D) + gilifh = uFH? = G (UL < 6 e (i) - (42)

Then, replacing (3.7b) by (4.2) for all non-final loops, we deduce that the optimal values
@5 () < ¢k (u*t!) can’t decrease during the loops or when k grows; hence (3.8) and the
boundedness of {i*+'} and {u**!} follow as before. For the rest of the proof, let @+ in
(3.9) stand for the point produced by Step 2 on the first loop at iteration k+ 1, and argue
as before.

(ii) Next, suppose infinitely many loops occur at iteration k = k, for some k. If Step 5
drives t;, to 0o, f§ < f. and Vi — 0 by the proof of Lemma 2.3. Hence we may assume that
Step 5 doesn't increase #; at all. To show that Vi — 0 (in which case f¥ < f, by (2.18)), we
suppose that the subdifferential 87} is locally bounded, and we use a subgradient mapping
C 3 ur §, € 8fp(u). Consider the following modification of Algorithm 2.1. Starting from
the first loop at iteration k = k, omit Step 5'; at Step 6 set f5+! 1= fi(u**1), GEF = G
and x := K; at Step 7, set tx4y := tx; finally, when Step 1 is reached, set fi = Jfi_,.
This modification only translates loops into additional iterations with a constant model
f = fi; in particular, only null steps occur, because the descent test (2.10) can’t hold with
FEHL= fi(w**) and k := & due to the model test (4.1). Further, the “new” linearization
Feg1 () == AU (g - — Rt satisfies fiy1 < fier. Hence, to get Vi — 0, we may use
the proof of Lemma 3.2, obtaining boundedness of {p%}, {¢**'} from the boundedness of
{@*+1}, {u¥*1} and the local boundedness of 8.
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