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Abstract

A new approach to valuation of bonds under the default risk conditions, based on the concept of the
investors' two-factor utility function is proposed. The first factor describes the expected average return
from the risky investments, while the second - the worst case return. As a class of risky securities the so
called catastrophe bonds are considered. It is assumed that depending on the structure of the security
contraet, the investor who buys the bond issued by a local authority governing the risky region - will lose
his interest payments and/or the principal value, if a catastrophic event occurs. For the purpose of the
valuation procedure, the new notions of the security safety level, the safety index, as welI as a two-rule
decision model are successively introduced. The subjective scale as a measure of the degree of
individuals' risk aversion is proposed. The idea of objective and subjective risk components is
investigated. The methodology proposed is ilIustrated by a computational example.

Keywords: pricing procedure, catastrophe bonds, two-factor utility, expected return, worst case return,
risk aversion, subjective scale, safety level.

1. Introduction

The problems of evaluation of risky investments, such as industrial projects, investments in

securities, insurance contracts etc., require application of a new methodology including utility

and risk assessment. This general class of problems can be illustrated by evaluation of risky

bonds. Unlike the Treasury bonds, the municipal and corporate bonds involve a risk that the

agreement on the coupons and/or the principal value payments will not be met. Such a situation

can happen e.g. due to a random catastrophic event, like flood, hurricane, earthquake, drought,

forest fire etc.; which may damage the municipal/corporate budget and make impossible meeting

the financial obligations.

Such risky securities are called catastrophe bonds and belong to a more general class of the

Insurance-Linked Securities (ILS); see Stripple (1998). The idea of insurance-linked securities is

related to the notion of securitizing of catastrophe risk. During the second part of last decade, an

intensive development of these new types of financial instruments for handling various kinds of

catastrophic risks took place. These new instruments entail the absorption of the risks directly on

the capital market and have twa forms: options and catastrophe bonds.
As it was pointed out by Stripple (1998), the securitization of catastrophic risk means that

"the risk is packaged into a standarized form (e.g. as a bond) and sold on the capital market".

,.. In: The Journal oj Banking and Finance. The Special Issue on: Advances in asset pricing and portfolio
management, F. Paris, J. Sprong (Eds.), 2005 (to be published).



Hence, the 11Sk 'is "secured" on the market. Depending on the structure of the security contract,

the investor who buys the bond issued by the insurer will lose his interest payments and/or the

principal value, if there is a catastrophe of a defined magnitude of loss. On the other hand, if

there is no catastrophe, the investor will get the money back along with an attractive rate of

interest. For example, in 1997 the U.S. Treasury 30-year bonds paid about 6% of interest, while

the average catastrophe bond paid 10 to 12 percent. The first example of such a governmental

catastrophe security is the bond issued by the California Earthquake Authority; see Cholnoky,

Zief, et al. (1998).

In generał, there are two main reasons for the investors' interest in catastrophe bonds. Pirst,

they pay an additional yield as compared to other types of bonds, although at a greater risk of

loss. Further, the performance of a catastrophe bond market is not significantly Iinked to the

performance of the other financial markets. Therefore, the risk attached to the catastrophe bonds

is for the most part uncorrelated with traditional market risks and these bonds can serve as means

of diversifying an investor' sportfolio. 50, from the investors perspective, the risk premium

attached to a catastrophe bond may increase their return without adding to the investment

portfolio additional variance or risk; see Stripple (1998), Doherty (1997). The above conclusion

follows directly from the classical Markowitz portfolio theory; Elton, Gruber (1995).

The securitization of catastrophic risk can be advantageous not only for the investors buying

the 11Sky financial instruments. It is generally believed that by issuing the catastrophe bonds (or

more generally - the insurance-linked securities), the government or a local authority can utilize

securitization in order to more efficiently and equitably cope with the financial cost of natural

disasters. One main advantage for governments is that the financial uncertainty to the public

budget is reduced, which enhances the governmental management and control over the risks. The

possible future costs of a catastrophe are transformed into a predictable budgetary item, related to

fixed expenses on the bond coupon and principal payments. If a catastrophe occurred, the bond

issuer would stop the payments and would have in such a way the financial means for covering

(at least - to some extent) the potential losses. Also, the issue of a catastrophe bond (being a

source of a long-term credit) provides the financial means, which can be allocated to the regional

infrastructure improvement and to all other ex ante preparations against the future possible

losses, caused by a catastrophic event.

Further on, as it was mentioned by Stripple (1998), the catastrophe securities transactions on

international capital markets can substantially increase the geographical spread of the cost of a

catastrophe. Up to present, in most cases, " ... the natural disasters are borne by the country and

people affected. International catastrophe aid amounts only to a small part of the financial relief

". For instance, from this point of view, the securitizing of flood risk in Poland can be an

attractive mean of risk management in this area. It can provide a useful and desirable instrument

for the govemment in preparing for natural catastrophes. The case study of the Polish Flood

1997, undertook by nASA and described by Stripple (1998), has confirmed this conclusion.
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The results given in this paper are an extension of ones presented by the author (et al.) in

recent years; see Kulikowski, Jakubowski (1999,2000), Jakubowski (2002 a,b).

2. The rate of return and risk of catastrophe bond

We will define the catastrophe bond as the multi-coupon bond with the default risk attached.

The above means that depending on whether the catastrophe occurs or not, the agreements

related to the coupon and the principal value payments will or will not be met. In other words,

the investor who bought the bond is receiving the coupon payments in successive years up to the

date when the possible catastrophe takes place. If no catastrophe occurs during the bond maturity

peli od, all the obligations from the side of the bond issuer will be fulfilled, Le. the investor will

receive all the coupon payments as well as the principal payment at the end of matuli ty term. It is

of course assumed that the term "catastrophe" as well as the magnitude of potential losses is

strictly determined in the bond contract.

Obviously, if the catastrophe bond is subscribed, the expected rate of return will have to be

attractive, i.e. it has to be much more higher than the Treasury bond rate. How much higher is an

open question depending on the risk of the catastrophe, the volume of anticipated damage and

other factors; see Stripple (1998). In assessing risk, investors mus t have a good idea of the

probabili ty of the catastrophe occurrence.

In the present paper, we will consider as an example of a catastrophe a flood which can occur

in a region. We will also assume that the flood OCCUITences or non-occurrences in the successive

years are statistically independent random events with the prescribed probabilities, estimated per

one year. Let lIS denote: a - the probability of flood occurrence in a given year.

We assume that for the considered region the probability a is estimated by a meteorological

institution in the following form:

(p.a.) - the ,,100-year water",

(p.a.) - the ,,20-year water",

a =0.01

a =0.05

a = 0.002 (p.a.) - the "SOO-yearwater",

a =0.02 (p.a.) - the "SO-year water" ,

a =0.10 (p.a.) - the ,,10-year water", etc.

We begin our problem description with the example of the 3-year fixed-coupon bond with

coupon periods equal to l year. Thus, considering that the flood events are statistically

independent, we have

P, = a - the probability of flood OCCUITence in the first year;

P2 = (1- a)a - the probability of flood in the second year, conditioned upon the flood

non-occurrence in the first year;

P3 = (1- a)2 a - the probability of flood in the third year, conditioned upon the flood

non-occurrence in the first two years; and

- the probability of no flood occurrence in the whole period of the first

3 years.
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From the above formulae, one can easily verify that we have

P, + Pl + P3 + P4 = a+(1-a)a+(1-a)2 a+(1-a)3= l.

Thus, the considered four discrete random events related to the flood occurrence 01' non­

OCCUITence in the successive years t = 1,2,3, span the whole probability space of events. For

instance: for a = 0.10 (Le. 10-year water), we have

P, =0.1000, P2 = 0.0900, P3 =0.0810, p 4 =0.7290.

For the catastrophe bond we introduce the following notation:

t = 1,2,3 - the coupon periods (in years), C - the coupon payments,

N - the bond principal (face) value, P; - the price of the bond at time t = O.

We shall also adopt the following assumptions conceming the financial market.

(i) The term structure of interest rates is characterized by the flat yield curve, Le.

l~)l =... = l~)f =... = ':)/1 = l~r ' where ':)f - the spot interest rates (p.a.) determined for the years

t =1,... ,11 ; rf - the default risk-free market interest rate determined as yield-to-maturity

(YTM) of the one-year Treasury Bill.

(ii) The only investment risk analysed in this paper is the bond default-risk. Thus, the interest

rate risk, which is also a very important factor concerned with the investment decisions - will

not be taken into account. We will assume that one-year market interest rate lj is given and

it will remain constant over the time horizon analysed. Thus, if the value of rf changed, the

whole bond pricing procedure would have to be repeated.

(iii) The considered bond market is in an equilibrium state, Le. the market price p,) of every

default risk-free coupon bond is equal to its present value PV, called the bond intrinsic

value, Le.

C C C C+N
p =PV=--+---') + ...+ +---. (l)

() (l+lj.) (l+r
f

) - (1+1j.)"-1 (1+r
f

) /I

From the description given above it follows that the price P* of catastrophe bond should be

significantly lower than the present value P; of the risk-free coupon bond having the same cash

flows; Le. P* < p,)' In other words, there should exist a price discount

P* - P;
D* =-P- x 100 [%], (D* < O)

o

in order to compensate for the default risk attached to the catastrophe bond. The value of this

discount will depend upon the probability of flood a , reflecting the risk considered.

It should be pointed out that the catastrophe bond under consideration will be - in general case

- the bond with "the incomplete" cash flows in comparison to the default risk-free bond having

the same coupons C and the principal value N. This fact is illustrated in

Fig. l.
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Let us take the following notation:

R* - the rate of return (over the 3-year horizon) from the investment in catastrophe bond.

We assume that the coupon payments C received from the investment in catastrophe bond are

reinvested up to the end of the 3-year time horizon - using the (annual) risk-free interest rate "r:
Thus, from the cash flow structure presented in Fig. l it follows that the rate of return R* is a

discrete random variable having - with probabilities Pl"'" P4 - the realizations Rl* ,... ,R: given

by the formula

* o-p*R, =--=-1=-100% W.p. PI =a
P*

* C(1+rf)2-p* p2=(1-a)aR = w.p.

R*=
2 P,

(2)
R* = C (l + rf ) 2 + C(1+"r) - P*

w.p. P3 = (1-a)2 a
3 Ą

* C(l + rf )2+C(l + rf ) +C +N - P*
P4=(1-a)3R4 = w.p.

P*

where .w.p." means "with probability" (for shortness).

Equation (2) forms the probability distribution function of the discrete random variable R*.

It should be pointed out that the value of price Ą is "ex ante" not known; this is the subject of

our vałuation modeł we will develop in the successive sections. Having the plice P* determined

(and therefore the values of rates of return Rt, ... ,R; -known), we will say that the scena rio of

possible investment outcomes has been established.

We will transform the equation (2) into the following form: let us denote

N
x=-'

P* '

. C
l=- -

N
the nominał interest rate of the bond;

- the risk-free rates of return over 1, 2 and 3-year investment periods, respectively; and

We assume that all the vałues as given above are known, except for the vałue Ą (and therefore

x). Taking into account the above notation, after some calculations, the formuła (2) can be

expressed as:

R;~ =-1

R* = R; = 9l2 x - 1
R; = 9l3 x - 1

R:=914 x - 1

W.p. p,=a

w.p. P2=(1-a)a

w.p. P3 = (1-a)2 a

w.p. P4=(1-a)3

5
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For further derivations, the most important thing is to determine the expected value and the

variance of the random rate of return R*. Let us denote: Re - the expected value of R*, a - the

standard deviation of R* ((j'2 - the variance), Introducing additional notation
A

a= p/A '2 + P/9\3+ P4~)\'P (4)

A

b=[p\a'2 + P'2(9\']. _a)'2 + P3(9\3 _a)'2 + P4(9\4 _a)'2]l/'2,

from equation (3), after SOlne transformations, we obtain

A 4

Re=L PiRi* =(P29\']. + P39\3+ P49\4)X-1 =ax -1,
i=l

a~[t Pi(Rt -RYJI2
=[P 1a

2 + P2(9\2 -a)2 + P3(9\3 _a)2 + P4(9\4 -a)2]\/2 x=bx.

(5)

(6)

(7)

Thus, the expected return Re from the investment into the catastrophe bon d, as wel1 as the

standard deviation a of this return - have been expressed as linem" functions of the unknown

variable x = N / P*, what will significantly simplify the considerations given in the succeeding

sections. Thanks to this form of Re and a , same analytical solutions to aur valuation problem

wi II also be possible (for same special cases).

From (6)-(7) it also follows that

Re > -1 (as ax > O), and

ba = - (1+ R ).
a e '

Le. the standard deviation a is a linem' function of the expected return Re - in case of the

catastrophe band considered.

A generalization of the results given by (3)-(7) to the case of 11-year coupon-paying band will

be given in Section 9.

3. The safety level as a measure of investment risk

For the purpose of the valuation model considered we will use the concept of the sa called
safety level of a security (or aportfolio of securities). The idea was originated by Kataoka within
his "safety first" portfolio model (Elton, Gruber, 1995) and then modified by Kulikowski
(1998 a.b), who elaborated the "two-factor utility approach" to portfolio optimization problems.

Let us define

RI\._ - the security safety level, i.e. the rat e of return from the investment into the security in

"the worst case";

PA- - the probability of "the worst case" - a fixed smalI positive number, e.g. PK = 0.05.
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The formai definition of the sajety level R/(> is

li

P(R*~RK)=PK' (8)

where P(-) - the probability, R* - the rate of return (a ran dom variable of a given probability

distribution).

In other words, eonaidering that PK is small, we can define the value of RK as the rate of

return that "almost never" be erossed downwards by the real (random) rate return R*. Por

example, for Pll: = 0.05, the probability that R* will be greater or equal to RK is (1- PA» = 0.95.

Prom the definition (8) it follows that for a given security, Le. for a given probability

distribution of the rate of return R*, the value of safety level R
K

is sttictly determined by the

value of the .worst case" probability PK' Thus, it is intuitively obvious that - for a fixed in

advance value of P,C - the greater value of R
K

means the lower level of risk attaehed to the

security, And eonversely - when two different securities are compared, the seeurity with the

lower safety level R
K

is more risky,

Of course, the security safety level RK depends upon the prescribed value of "the worst case"

probability PK' The value PK can be considered as some measure of the investor's degree of risk

aversion and it eould be different for various groups of investors. From the above it follows that

the seeurity sajety level R
K

is some measure of the investment risk but this measure depends

upon not only the distribution characteristics of the seeurity itself but also it is influenced by the

investors' attitude to risk, expressed by the value of PK'

Now, we ean modify the described approach to the investment risk as follows.

Introducing the notation:

K - the investor' s risk attitude coefficient, being a subjective measure of the investor' s

.xlegree of risk aversion"; K:2: O, we define the security sajety level as

(9)

where Re - the expeeted value of the rate of return R*, and a - the standard deviation.

From the definition (9) it follows that the investor' s risk coeffieient K ean be interpreted as

some "cost" of bearing the investment risk represented by a. Moreover, from (8) and (9) we

have

(la)

(11)

Let us assume that all the risky seeurities are charaeterized by the same probability

distribution of their rates of return R*; e.g. let the distribution be Gaussian. Thus, from (la) it

folIows that the investor' s risk coefficient K is strictly determined by the value of .Jhe worst

case" probability P«- To show it more legibly, let us denote

R* -R
X = e - the standardized value of the random variable R*.

a
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Thus, R* = Re +a X , and from (10) we have

P(R* ~ RI! -Ka) = P(RI! + a X ~ Re -Ka) = P(X ~ -K) =F(-K) =Pk' (12)

where F(.) - the distribution function of a random variable, For continuous random variabIes,

F(.) is a strictly increasing, continuous and differentiable function.

We have obtained the following result: the smalI er the value assigned by the investor to the

probability PK of "the worst case", the greater is his value of the risk coefficient K.

ReciprocalIy, the greater value of PK implies the smaller value of K. Thus, a "risk averse"

investor (Le. with a small value of p};) will be characterized by the greater value of his risk

coefficient K than an investor whose attitude to risk is very often called "the risk seeking".

In order to make specific the above conclusion, let us assume that the distributions of all

random rates of return R* are Gaussian. In this case, from (12) - using the statistical tables - we

can determine the values of coefficient K corresponding to some prescribed values of the

probabilities PI':' Le.

PK = 0.309 :;;:: 1/3,

PK = 0.159 :;;:: 1/6,

PK = 0.067 :;;:: 1/ 15,

K = 0.5 (,,!isk seeking"),

K =1.0 (,,!isk tolerance"),

K = 1.5 (,,!isk aversion"),

(13)

(14)

(15)

In the results given above, we have also determined (to some extent arbitrarily) the qualitative

scale of the investor's attitude to risk. Namely, we have assumed that the individual who admits

the level of return R* less than the safety level R
K

not more often than l out of 3 times (Le.

P
A

- :;;:: 1/3 and K = 0.5) - is characterized by "risk seeking", the individual demanding PK :;;:: 1/6

(i.e, K = l.0) - is "lisk tolerant", and the individual calling for PK :;;:: 1/15 (Le. K =1.5) - is .risk

averse".

It should be mentioned that in the real life, the matter of determining the concrete, numerical

values of PK and thus - K , is usually much more complicated. The values of risk coefficients K

may depend on many individual characteristics, such as the age and/ar the wealth level. From the

above it follows that the coefficient K of the investor may not be stable in time. For more

extensive discussion of this problem see Kulikowski (1998 a,b).

3.1. The acceptance rule

We will introduce the notion of acceptance rule. Namely, we assume that an investor can

accept the security for his investment purposes only if the security safety level RK is

nonnegative, Le.

(16)

Thus, from the formula (16) it follows that the expected return Re from the investment should

be .Jarge enough" or the standard deviation a (Le. the risk) should be "sufficiently small" for

this investment to be accepted for further considerations. For instance, if K = l, the acceptance

fule simply states that the inequality Re ~ a has to be satisfied.

8



3.2. The security safety index

Assuming that the acceptance rule is satisfied for a given security, we introduce the notion of

the security safety (Ol' assurance) index S , i.e.

~ R
K

G"
S=-=l-K-; where SE[O,1].

Re Re
(17)

Let us observe that the above definition is well justified only in the case, when the acceptance

rule holds, Le. when Re ~ KG"; otherwise the index S would have a negative value.

From the definition (17) it follows that the safety index S characterizes the degree of

investor's confidence attached to the risky asset. For the risk-free asset (e.g. the Treasury bill) we

have G"=Oand thus S =l. Observe also that the value of index S increases (up to S =1) along

with an increase of the return/risk ratio Re / G"; and conversely - S decreases (down to S = O),

when the security variation coefficient defined by G"/ Re increases.

It should however be pointed out that the value of index S depends not only upon the security

risk measured by the G"/ Re ratio, but also on the investor' s K coefficient, characterizing his

attitude to the risk factor attached to all the investments. Therefore, the same security can have

different safety indices S assigned, depending on the individuals' risk characteristics.

4. Two-factor utility function

We will shortly present and interpret the two-factor utility approach to investment problems.

As it was pointed out by Kulikowski (1998), the approach stems from the belief that in order to

properly describe the investor's behaviour one should take into account at least two factors: the

expected return Re and "the worst case" return RK • It should be noticed that from the formal

point of view, the risk measure, in the single-factor utility investment models, enters into the

constraints. In the two-factor approach it is incorporated - in the form of the security safety level

R
K

- into the structure of the utility function.

For the purpose of further considerations, we will assume that the investor's utility function is

of the Cobb-Douglas form; Le.

u =U(Re,R K ) = rR~-fJR:,

where r > O, f3 E [0,1] - given constants; and RI( = Re - KG" - the security safety level.

(18)

It follows from the above that the utility function (18) is assumed to be homogeneous of

degree one; such functions are called constant return to scale (CRS). The utility function

U = U (Re ,RK ) can be easily transformed into the form U = U (Re ,S), where S - the security

safety index.

Namely, from (18) we have (19)

and from (17), (19), we finally obtain U = U(Rf! ,S) = r Re SP, r > O, f3 E [0,1] . (20)

9



The derived equation (20) for the investors' utility function will have an essential meaning for

our further analysis.

We can now define the elasticity coefficient Es associated with the utility function

U = U(Re,S); i.e.

taking into account ~~ = r {JR,SP-l , after same transformations, we obtain

Ć1 dU dS dU S
E =-/-=--=13.

s U S dS U

Thus, considering (21), we have obtained:

dU dS13 =- /-, which allows for the following interpretation of parameter 13 E [0,1] .
U S

(21)

and

(22)

Parameter 13 is equal to the elasticity Es of the investor' s utility function U with respect to

the utility factor S . This means that the value of 13 can be estimated as the percentage increment

(dU / U) x 100 of the investor' s utility caused by the increment of the security safety index S by

one percent. Of course, in general, the method of estimating the parameter 13, suggested above,

could be extremely difficult for investors. Nevertheless, one important conclusion results from

the interpretation given above. It is that the parameter 13 represents the investor' s sensitivity to

risk, in the meaning that the greater the 13 the more of investor's attention is paid to the safety

factor S . Thus, the greater investor' s parameter 13 means the higher degree of this investor' s

risk aversion.

5. The preference rule for the catastrophe hond case

Assuming that the rule of acceptance (Le. R" ~ O) has been for a given investment verified,

we tum to the preference rule which constitutes the second part of the approach considered.

In the process of valuation of catastrophe bonds, the procedure is as follows. We consider

possible investments into two alternative securities:

(i) The tisk-free Treasury bond with the rate of return Rf (over the whole investment period)

and (J =O; thus S = l and from (20), Uf =U(Rf ,1) =rRf .

(ii) The catastrophe band with the expected rate of return Re and the standard deviation (J given

by equations (6), (7); thus, we can determine
(J

S=l-K R ;
e

The investment (ii) is preferred to the investment (i), when U ~ Uf' i.e. yR e S /3 ~ rs, '
and thus (the preference rule):

RfR >-
e - S/3'

10



According to (22), the investment in the catastrophe band can be preferred, if the expected

rate of return Re resulting from this decision is not less than the risk-free rate of return Rf

divided by S /3. Sa, if the catastrophe band safety index S decreases, it must be compensated (in

order for the band to be preferred) by a large enough increase of the expected return Re'

It should be also noticed that from (22), taking into account that S/3 :::; l, we have

(23)

which forms a necessary condition for preference of the catastrophe band over the risk-free

investment.

5.1. The separatlon curve

By expressing the inequality (22) in the form of equality we will find same limit condition,

when the investments in a catastrophe band and in the risk-free band are equivalent. Thus, from

(22) we have

Sa,

(24)

(25)

Solving the equation (25) with respect to a, and denoting the resulting value by a g' we obtain

R[ (R 'JI//3]ag =a, (R,) = ; l ~ , (26)

where Re 2 Rf (see (23)), and a g (Re) - the threshold value of standard deviation a as a

function of the expected rate of return Re'

Equation (26) defines a separation curve on the pIane (O,Re' a) in the meaning that:

- for every Re and a < a g (Re)' the investment in the catastrophe band is preferred to the

investment in the risk-free band;

- for every Re and a> ag (Re) , the opposite case takes place, Le. the investment in the risk­

free band is more preferred,

- for every Re and a = a g (Re) , the twa investments are equivalent in view of the investor' s

utility function.

It follows from the above that considering the equation (26) and setting the values Re = ax-l

and a = a g = bx defined for a catastrophe band by (6) and (7), we can solve the equation (26)

with respect to the variable x = N / Ą. Thus, we can find same threshold value for the price

(Ą) g of the catastrophe band, having such a property that for every price P* < (P*) g' the

investment in the catastrophe band is more preferred than the risk-free investment.
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(28)

In other words, the resulting threshold value of (P*) g is the solution of the considered

catastrophe bond valuation problem. For a graphical illustration of the separation curves for

~ different values of coefficient fi as well as for the further discussion see Jakubowski (2002b).

6. Proposal of an evaluation of the investors' risk parameters

From the approach presented in the previous sections it follows that we have assumed two

subjective parameters characterizing investors' attitude to the risk factor. These are the K > O

and fi E [0,1] parameters. Recalling the definition (17) of the security safety index S , Le.

a
S = 1- K Re ' (27)

we can observe that index S depends upon a subjective coefficient K characterizing the degree

of the individual's risk aversion and the objective measure a / Re characterizing the security

risk, Assuming that the security volatility (a / Re) is given, we can see that when the coefficient

K increases, the security safety index S decreases what directly follows from the increasing of

the investor's risk aversion.

On the other hand, recalling the preference rule (22), Le.

R ,.
R > .

e -sP'

and noting that S/3 is the decreasing function of fi for a given S E [0,1], we can formulate the

following conclusion. The greater value of fi implies the greater value of the risky security

expected return Re - necessary for this secutity to be more preferred than the risk-free

investment. Thus, the greater parameter fJ means the higher level of the degree of investor' s risk

aversion.

It follows from the above that the parameters fi and K, as influencing in the same direction

the indi vidual' s degree of risk aversion, should be in some way interconnected. Thus, taking in to

account some characteristic values of K =0.5, 1.0 and 1.5, analysed in Section 3 - see formulae

(13) - (15), and considering that the values of fi are changing in the interval [0,1], we can

arbitrarily propose the following relation between fJ and K investors' risk parameters:

K = 0.5+ fi. (29)

Thus, for some prescribed values of fi ranging from Oto 1, we obtain some subjective scale

of the individual's attitude to risk:

0.00; K = 0.50 - risk seeking (PK~I/3)

0.25; K = 0.75 - weak risk seeking

fJ= 0.50; K=l.OO - risk tolerance (PK ~ 1/6) (30)

0.75; K= 1.25 - weak risk aversion

1.00; K = 1.50 - risk aversion (PK ~ 1/15)

12



(31)

The proposed subjective scale as given by (30), implies the specific forms of the security safety

indices, the investors' utility functions as well as the forms of preference rules; given by (22).

7. Deriving the valuation equations

We will present the final derivations concerning the catastrophe band valuation. Let us denote

by
li

Rf = R3 = (1+ rI ) 3 -l - the risk-free rate of return over the period of 1l = 3 years;

and, for the general case of the bond with n coupon periods,
li

RI = R
Il

= (1+ rI )" - 1.

AIso, in order to simplify the notation, when speaking about the threshold values, e.g. a g' (P.) g ,

the index ; g " will be skipped.

7.1. The rule ojacceptance

First, let us specify the rule ofacceptance for the analysed bond; from (16) we have

R
K

= Re - s a ~ O; where K ~ O.

Recalling the equations (6) and (7), for the catastrophe bond, we have

Re =ax - l , a =bx , (32)

where x = N / P*; and coefficients a, b are known and determined by the formulae (4), (5).

Thus, from (31) and (32), the following inequality must hold

(a - Kb)x -l ~ O. (33)

The necessary condition: For (33) to be satisfied, it is necessary that a - tcb > O, sa

a
«<r-: =-,;. (34)

We have obtained that in order for the acceptance rule to be satisfied, the investor' s risk

coefficient K should not be "too large".

Tlie sufficient condition: Assuming that the condition (34) holds, from (33) we have

1 N
x ~ a _ xb ' and setting x = P* '

~ ~ (a-Kb)N. (35)

The above inequality is the sufficient condition for the bond to be accepted for further analysis.

As it follows from (35), the price P. of such a bond should be "sufficiently small",

13



7.2. The rule ofpreference

Now, let lIS consider the preference rule for the analysed case of catastrophe bond.

Tlie necessary condition: In Section 5 we have found out that for the preference rule to be

satisfied it is necessary that

considering
1+ RrRe =ax -l, we obtain x ~ __o , and setting

a

(36)

(37)

(39)

Combining the sufficient condition for the acceptance rule given by (35) with the necessary

condition (37) formulated for the preference rule, we obtain that for the catastrophe bond to be

considered for a possible investment, it is necessary that its price R is constrained by the

following upper bound:

p.~:s;min{(a-Kb)N; _a_N}. (38)
l+Rf

The expression (38) constitutes some introductory condition, which should be checked out

before entering into further analysis.

The sufficient condition: For f3 E (0,1], assuming that the necessary condition (36) holds, the

general form of the equation of separation curve is given by (26), Le.

R[ (R'JII
f1

Jo = ; 1- ~ ; where R,:::': R,. .

From (32) and (39), after some transformations, we obtain

where
N

X=-.
r:

(40)

It is now obvious that solving the equation (40) with respect to the unknown variable x, and

taki ng into account that R = N / x, we will find the threshold value for the price R of the

catastrophe bond. In general, the equation (40) is a nonlinear equation in one variable; so some

numerical procedure (e.g. Newton's scheme) should be applied in this case. Thus, the analysed

valuation problem has been solved.

Assuming some typical values for the elasticity coefficient f3 and "putting all the pieces

together", we will present the equation (40) in the more legible forms; giving in some cases, also

its analytical solutions. The set of solutions will also be completed with the case of f3 = O. Thus,

we have:

14



7.3. The valuation equations

For fJ = O: from (38), we have

P* =min.{(a-Kb)N; _G_I_N}.
1+ Rf

(41)

For j3= 1/4 = 0.25 :

(ax _1)3 [(a - Kb)x -1]= RJ; and Ą = N / x. (42)

For j3= 1/3 = 033 :

(ax-1)2 [(a-Kb)x-1]= R}; and Ą = N/x. (43)

For fJ = 1/ 2 = 0.50 :

(ax -l) [(a - Kb)x -1]= R}; thus (the analytieal solution)

(2a - Kb) + [(Kb)2 +4a(a - Kb)RJ.]lI2
x= Md

2a(a - Kb) ,

P, = N = 2a(a-Kb) N.
x (2a-Kb) + [(Kb) 2 +4a(a-Kb)R.~]l/2

(44)

For fJ =2 / 3 =0.67 :

(ax -1) [(a - Kb)x -u' = R}; and Ą = N / x. (45)

(46)

(47)(a-Kb)x-1=Rf ; andFor fJ = 1:

For fJ = 3/ 4 = 0.75 :

(ax - 1) [(a - Kb) x - l] 3 = RJ ; and Ą =N / x .

N a-Kb
P*=-= --N.

x l+Rf

One ean observe same "symmetry" in the fonu of equations presented above. It should be

pointed out that the equations (41)-(47) have the same form also in the general ease of n-coupon

eatastrophe band. This follows direetly from the faet that the formulae Re = ax -l, O'e =bx , are

linem" funetions of x. One thing will be only different - this is the values of the eoefficients a

and b that will have a more general form; see Jakubowski (2002b).
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8. The examples of catastrophe bond valuation

Let us consider now the series of ilIustrative computational examples related to the valuation

process investigated in the previous sections. For the pUl-pose of analysis, we assume that the

catastrophe security is a 3-year coupon paying bond characterized by the following cash flows

(see Fig. l):

C = 10 PLN (p.a.) - the coupons, N = 100 PLN - the principal payment,

where PLN - denotes Polish zloty.

Let the market (default) risk-free interest rate be rl = 10% (p.a.), and thus - equal to the bond

nominal interest rat e i ; Le.

C
i = - = 10% = rf .

N

In such a case, from the formuła (1) it can be easily shown that the present value P, of the risk­

free bond (with the same cash flows as those assumed for the catastrophe bond) is equal to the

band principal vałue N; Le. p,} = N = 100 PLN.

Taking into account the notation introduced in Section 2, we have:

(48)

Thus, for the value of risk-free rate of return Rf over the whole investment holizon of 3 years,

we have

Rf = R3 = 0.3310 = 31.10% .

We also have

9\2 = (1+ R2)i = 0.1210; 9\3 = (l + RI)i + (1+ R2)i = 0.2310;

9\4 = (l + RI)i + (l + R2)i + (l + i) = 1.3310.

(50)

(51)

(52)

We will consider a few scenarias of the investment outcomes depending on the value of the

estimated (assumed) probability a of a flood occurrence, First, let us consider the ,,20-year

water", Le. a = 0.05 (p.a.). For the values of scenario probabilities P, "",P4' we obtain

Pl = a = 0.0500, P2 = (1- a)a = 0.0475,

P3 = (l-a)2 a=0.0451, P4=(1-a)3 =0.8574.

Thus, from (51), (52) the coefficients a and b given by eqs. (4) and (5), are equal

a = 1.1574, b = 0.4273. (53)

and we can determine the formulae for expected return Re and a; i.e. from (6) and (7)

Re =ax-l=1.1574x-l;

where x= N / P* = 100/ P*.

a =bx =0.4273x;
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According to the conclusions given in Section 6, we will consider three values of the

investors' risk coefficient K , i.e.

K = 0.5 (and j3= 0.0 ) for the risk seeking;

K = 1.0 (and j3= 0.5) for the risk tolerance; (55)

K = 1.5 (and j3= 1.0) for the risk aversion.

The cases K = 0.5 and K = 1.5 are the extreme ones, while the case K = 1.0 (called .risk

tolerance") is some intermediate case related to the degree of investors' risk aversion.

Now, we verify whether the necessary condition of the acceptance rule is satisfied; from (34)

and (53) we obtain

< =!!-= 1.1574 = ? 7086
K - K max b 0.4273"" .

(56)

Thus, for the assumed values of K = 0.5, 1.0, 1.5, the condition (56) holds. It should be at

this point noticed that, although we obtained rather a large value of K max = 2.6996, this value ­

for a given rates of return Rp R2 , R3 - is highly influenced by the value of probability of flood

occurrence a. It can be easily verified that for a = 0.10 (Le. for ,,10-year water"), we would

obtain, from the analogous calculations, Kmax = 1.8337 . So, for the "very risk averse" investor

characterized by e.g. K = 2.0, the catastrophe bond should not be considered as a possible

investment, because its safety level R
K

would have in this case a negative value. Moreover, it

would take place for every value of x = N / P; and thus - for every plice P*; see inequality (33).

The necessary conditions of the rule of preference are in the considered case as follows; from

(38), (50), (53) and (55) we obtain:

For K = 0.5 , Ą ::;; 86.95 PLN,

K= 1.0,

K = 1.5,

P*~ 73.01 PLN,

P* s 51.65 PLN.

(57)

In further calculations we will concentrate on the case of the "risk tolerant" investor,

charactetized by the parameters j3= 0.5 and K = 1.0 .

From the sufficient condition of preference rule represented for this case by eq. (44), taking

into account the values of Rf , a, b given by (50) and (53), we obtain

x = 1.5568, and P*= N =~ =64 PLN . (58)
x 1.5568

Thus, the threshold value of the price P* = 64.23 PLN is the solution of the catastrophe bond

valuation problem, in the case under consideration,

Moreover, using (58) and (54) we obtain that the values of expected return Re and the

standard deviation a are equal to

17



Re = ax-1 =0.8018= 80.18% (per 3 years),

O" = bx = 0.6651 = 66.51 % (per 3 years).

The bond sa/ety level Rh' is equal to

LI

Rh' <R; - KO" = 80.18% -1.0x66.51 % = 13.67% (per 3 years).

The bond safety index S is equal to

S~RK =1_K~=1_1.0X66.51 =0.1705.
Re Re 80.18

(59)

(60)

(61)

(62)

The price discount of the analysed catastrophe bound (as compared to the risk-free bond) is equal

to

D*~ ~, - Po xl00 = 64.23 -100.00 x100 = -35.77%.
r; 100.00

For the catastrophe bond, we will also define some measure of the risk premium; Le.

- The expected risk pretnium:

LI

ll=Re - Rf = 80.18% -33.10% = 47.08% (per 3 years).

(63)

(64)

The expected risk premium n defined by eq. (64) is often called "the expected excess return"; or

"thedefault premium"; see Litzenberger, Beaglehole, et al. (1996), Canabarro, Finkemeier, et al.

(1998).

CIosing our exemplary calculations for (fi= 0.5 ,K = 1.0) case, we will present the scenario of

possible investment outcomes, resulting from the determined bond plice R = 64.23 PLN. From

the general formula (3), considering the values of 9\2' 9\3' 9\4 and x as well as PI' P2'P3'P4'

given by (51), (58) and (52), respectively, we obtain

RI* =-1 -100.0% w.p. PI = 0.0500

R*=
R; =9\2x-l -81.2% w.p. P2 = 0.0475

(65)
R; =9\3x-l -64.0% w.p, P3 = 0.0451

R; = 9\4x-l +107.2% w.p. P4 = 0.8574

From the methodology presented in this paper follows that the scenario (65) of possible

outcomes resulting from the investment in the catastrophe bond is equivalent - in the meaning of

the utility function adopted - to the investment in the risk-free 3-year bond, yielding the return

R, = 33.1% with the probability 1. The results obtained seem to be intuitively reasonable.

On Figure 2 we present the results of analogous calculations carried out for different

assumptions on the probability of flood OCCUITence, Le. for a = 0.01, a = 0.05 and a = 0.10.

The appropriate scenarios of possible investment outcomes are shown and compared to the risk­

free investment.
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9. The generalization of results

The approach presented in the previous sections concerned mainly the 3-year catastrophe bond

valuation, The generalization of results to the case of n -coupon bond is straightforward.

Especially, the basie set of equations (2)-(7) determined in Section 2 for the 3-years investment

horizon, can be easily extended to the general case of the bond with n -years maturity period. The

counterparts of these equations are as follows.

The scenario of possible investment outcomes in the case of the 11-year catastrophe bond is

* o-p*R =--=-1=-1000/0
I P,

* C(1+r
l
,) 1I-1_ p*

R" = '- ~,

* C(l + "r)"-1 + C(1 + rl' r-2
- P;

R -' .
3 - P;

w.p. PI =a

w.p. P2 = (1- a)a

(66)

w.p. PII+1 = (1- ar
t:

* C(l + r
f

)"-I+...+C(1 + rf ) + (C + N) - P;
R':+1 = ----'--------------

* C(l + l~f )11-1 +...+C(l + l~r ) + C - P;R): =--~-----~---

IIH

and LPi = 1.
i=1

All the notations given above as well as considered in the further parts of this section are

analogous to those from the Section 2. In particular, PII+I means the probability of flood non­

OCCUITence in the who le period of 11-years, and R* is the rate of return over 11-years - a discrete

random variable with the realizations given by R;,...,R';+I , under the fixed scenario probabilities

PI"",PII+I'

Moreover, as previously, it is assumed that all the coupon payments C are being reinvested

under the (default) risk-free market interest rate rf - up to the end of investment horizon of

11 years.

Similarly to the derivations given in Section 2, the equation (66) can be transformed into

a more convenient form, As previously, we denote

N
x=-

Ą'

C
i=-. N'

(67)

the risk-free interest rates over the periods of 1,2,3,... ,11 years; in particular,

R
f

= R" = (1+ ~r)1I -l - the risk-free interest rate over the whole investment

period of 11-years. (69)
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Let us also denote:

9\2 = (1+ Rz) i,

9\ 3 = (1+ R I ) i + (1+ Rz) i,

(70)

9\" =(I+RI)i+(1+Rz)i+ +(I+R"_I)i,

9\11+1 =(1+ RI) i + (1+ Rz) i + + (1+ R"_I) i + (1+ i)

Considering the above notation, after some transformations, the formula (66) can be expressed as

s;=-1 w.p. PI =a

R; =9\2x-1 w.p. Pz =(1-a)a

R*=
R; =9\3x-1 w.p. P3 =(l-a)2 a

(71)

R,: =9\lIx-1 w.p. P" =(l-a)"-l a

R;~+! =9\11+1 x-I w.p. PII+I =(1- a) II

The formulae for the expected value Re and the standard deviation a of the random rate of

return R* are as follows.

Let us denote

b = [Pla2 + Pz(9\z - a)2+ ...+Pll(9\11 - a)z + Pn+1 (9\11+1 - a)2]1/2.

Thus, from (71)-(73), after some transformations, we obtain

~ II+!
Re =L P, Ri* =ax - 1,

;=1

(72)

(73)

(74)

where (75)

Let us observe that the expressions (74), (75) for the expected return Re and a are linear

functions of the variable x as it was in the case of 3-year bond; see eqs. (6) and (7). The onły

difference is that the coefficients a and b defined by (72), (73) have some more generał form as

compared with the analogous equations (4), (5), determined in Section 2. Therefore, as it was

already mentioned, all other parts of the valuation model considered in Sections 3-7 for the 3­

year catastrophe bond are - in the case of II -year bond - identical.

Concluding, it should be pointed out that for the practical purposes, it woułd be more

advantageous for the catastrophe bond issuer to consider a rather long-term investment horizon

(i .e. much more longer than 3 years). This follows from the fact that the issue of the łong-term

insurance-linked securities (e.g. 10-15 year bonds) would allow for spreading the catastrophic

risk consequences over a longer time period.
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10. Conclusions

In the paper, we have considered the problem of valuation of catastrophe bonds. In this case,

one main question arises, It is how much of the defauli premium (i.e. a difference between the

expected and the risk-free rates of return) should be paid to an investor in order to compensate

for his risk, attached to the consequences of catastrophe, which can occur with some estimated

probability.

One possible approach refers in such a case to a rating system for bonds established by

Moody's, Standard & Poor's or Fitcli lBCA, for large bond-issuing organizations mainly. In

many cases, e.g. for bonds issued by small municipalities or other institutions, these ratings are

not available. Moreover, even if such arating is provided for a particular bond, this is an

evaluation of this bond's risk expressed in a qualitative scale only (e.g. Moody's ratings Aa, Baa,

Ca, etc.). And it is still not elear how to transform these qualitative ratings into the quantitative

measure of the risk premium that should be assigned to the bond under consideration.

In other words, the methodology of determining the plice discount of a risky bond as compared

to the plice of the (default) risk-free bond with the same financial cash flows - is still poorly

developed. Only some empirical studies have been undertaken for this case; Fabozzi (2000),

BIton, Gruber (1995).

In all such situations, an investor can evaluate a risky bond using the methodology proposed

by the author. In the valuation model worked out, the notion of the bond sajety level is used to

solve the problem of acceptance/rejection of a risky bond by the investor, whose strategy is

characterized by the two-factor utility function. Although, the application of the methodology

considered is still related to some subjective assessments of the parameters of the investors'

attitude to risk, the proposed model of decision support is, in the author's option, a meaningful

tool in comparison with the present solutions in this area.

The need for a systematically developed and theoretically well justified methodology for

valuation of the catastrophe bonds follows also from the fact that the insurance-linked securities

(ILS) market is still in the early stages of its development. The market prices of the catastrophe

bonds have not yet reached equilibrium levels. The major ILS deals indicate a spread over

LIBOR between 367 basis points (Trinity Re bond) and 576 basis points (Res Re bond); see

Cholnoky, Zief, et al. (1998). Thus, there are no well developed market benchmarks for pricing

the catastrophe bonds via comparative means. This additionally justifies the importance of

theoretical investigations on the valuation of risky instruments, such as the approach presented in

this paper.
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The list of Greek Symbols:

a - alpha

fi - beta

y - gamma

(J - sigma

K - kappa

The list of Gothic symbols:
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The list of figures:

Fig. l. The cash flows of the catastrophe bond conditioned upon the flood occurrence 01'

non-occurrence in the successive years; a - the probability of flood per l year;

PI' P» P3 - the probabilities of flood in years t =1,2,3;

P4 - the probability of no flood occurrence in the whole period of 3 years.

Fig. 2. The scenarios of possible outcomes resulting from investments in catastrophe bonds

compared with the equivalent risk-free investments. The case of risk-tolerant investor:

f3 =0.5, K =1.0.
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Notation: P,~ - the price of catastrophe bond; C - the coupon; N - the bond principal value;

Rt - the anticipated rate of return conditioned upon the flood occurrence Ol' non-occurrence;

i = 1,... ,4.

@ =-1=-100% P; =a

o t l

~
2

o

o I
2 t 3

~

P2 = (1- a)a

)

c

2

c

N

~FLOO~

Fig. 1. The cash flows of the catastrophe bond conditioned upon the flood occurrence Ol' non­
occurrence in the successive years; a - the probability of flood per l year;

Pi- P2' P3 - the probabilities of flood in years t = 1,2,3 ;

p4 - the probability of no flood occurrence in the whole period of 3 years.
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THE CATASTRaPHE BaND:
"lOO-year water" (a =O.Ol/p.a.)

(Re = 46.8% , (J" = 23.5% )

THE RISK-FREE BaND:

t=O

-100.0%;

o -86.30/0;

-73.8%;

o +50.9%;

t =3 years

p, =.0100

P2 =.0099

P3 =.0098

P4 =.9703

on •

t=O t =3 years

(w.p. 1.00)

Price ". = 88.18 PLN Price r, = N = 100 PLN

,,20-year water" (a =O.OS/p.a.)

( Re = 80.2% , (J" = 66.5% )

(Pi) :

-100.0%;

o -81.2%;

p, =.0500

P2 =.0475

on •

o

-64.0%;

+107.2%;

P3 =.0451

P4 =.8574

t == O t =3 years t=O t =3 years

Price P = 64.23 PLN
*

"lO-year water" (a =O.IO/p.a.)

(Re = 137.4% , (J" = 129.5% )

(Rt): (Pi):

Price ~) = N = 100 PLN

-100.0%;

o -71.3%;

-45.1%;

o +216.1 %;

t == O t = 3 years
Price P = 42.11 PLN

*

p, =.1000

p: =.0900

P3 =.0810

P4 =.7290

aR: •

t =O t =3 years
Price ~) = N = 100 PLN

Fig. 2. The scenarios of possible outcomes resulting from investments in catastrophe bonds
compared with the equivalent risk-free investments, The case of risk-tolerant investor:
fJ == 0.5, K == 1.0 .
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