
Raport Badawczy

Research Report
RB/68/2004

On Floyd and Rivest's
SELECT Algorithm

Krzysztof C. Kiwiel

Instytut Badań Systemowych
Polska Akademia Nauk

Systems Research Institute
Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badań Systemowych

ul. Newelska 6

O 1-44 7 Warszawa

tel.: (+48) (22) 8373578

fax: (+48) (22) 8372772

Kierownik Pracowni zgłaszający pracę :

Prof dr hab. inż . Krzysztof C. Kiwiel

Warszawa 2004

On Floyd and Rivest's SELECT algorithm

Krzysztof C. Kiwiel*

August 25, 2004

Abstract

We show that severa! versions of Floyd and Rivest's algorithm SELECT for finding
the kth smallest of n elements require at most n+ min{k, n - k} + o(n) comparisons
on average and with high probability. This rectifies the analysis of Floyd and Rivest,
and extends it to the case of nondistinct elements. Our computational results confirm
that SELECT may be the best algorithm in practice.

Key words. Selection, medians, partitioning, computational complexity.

1 Introduction

The selection problem is defined as follows: Given a set X := {xi}J= 1 of n elements, a
total order < on X, and an integer 1 ś k ś n, find the kth smallest element of X , i.e.,
an element x of X for which there are at most k - 1 elements Xj < x and at least k
elements Xj ś x. The median of X is the r n/2lth smallest element of X. (Since we are
not assuming that the elements are distinct, X may be regarded as a multiset) .

Selection is one of the fundamental problems in computer science. It is used in the
solution of other basie problems such as sorting and finding convex hulls. For good reviews
of its literature, see, e.g., (DHUZ0l, DoZ99, DoZOl] and (Knu98, §5.3.3]. We only stress
that most references employ a comparison model (in which a selection algorithm is charged
only for comparisons between pairs of elements), assuming that the elements are distinct.
Then, in the worst case, selection needs at least (2 + t)n comparisons [DoZ0l], whereas
the pioneering algorithm of (BFP+72] makes at most 5.43n, its first improvement [SPP76)
needs 3n + o(n), and the most recent improvement in (DoZ99) takes 2.95n + o(n). Thus
a gap of almost 50% stil! remains between the best !ower and upper bounds in the worst
case.

The average case is bet ter understood. Specifically, for k ś r n/21, at least n + k - 2
comparisons are necessary (CuM89], (Knu98, Ex. 5.3.3-25], whereas the best upper bound
is n+ k + O(n1l2 In112 n) (Knu98, Eq. (5.3.3.16)). Yet this bound holds for a hardly
implementable theoretical scheme (Knu98, Ex. 5.3 .3- 24], whereas a similar frequently cited
bound for the algorithm SELECT of (FIR75b] doesn't have a full proof, as noted in (Knu98,

*Systems Research Institute, Newelska 6, 01- 447 Warsaw, Poland (kiwiel©ibspan. waw .pl)

Ex. 5.3.3-24] and [PRKT83]. Significantly worse bounds hold for the classical algorithm
FIND of [Hoa61], also known as quickselect, which partitions X by using the median of a
random sample of size s :::: 1. In particular, for k = f n/21, the upper bound is 3.39n+ o(n)
fors= l [Knu98, Ex. 5.2.2-32] and 2.75n + o(n) fors= 3 [Grii99, KMP97], whereas for
finding an element of random rank, the average cost is 3n + o(n) fors= l, 2.5n + o(n) for
s = 3 [KMP97], and 2n + o(n) when s --+ oo, s/n --+ O as n --+ oo [MaR0l]. In practice
FIND is most popular, because the algorithms of [BFP+72, SPP76] are much slower on the
average [Mus97, Va!O0]. For the generał case of nondistinct elements, little is known in
theory about these algorithms, but again FIND performs well in practice [Kiw03a, Va!O0].

Our aim is to rekindle theoretical and practical interest in the algorithm SELECT of
[FIR75b, §2.1] (the versions of [FIR75b, §2.3] and [FIR75a] are addressed in [Kiw04b,
Kiw04a]). We show that SELECT performs very well in both theory and practice, even
when equal elements occur. To outline our contributions in more detail, we recall that
SELECT operates as follows. Using a small random sample, two elements u and v almost
sure to be just below and above the kth are found. The remaining elements are compared
with u and v to create a small selection problem on the elements between u and v that is
ąuickly solved recursively. By taking a random subset as the sample, this approach does
well against any input ordering, both on average and with high probability.

First, we revise SELECT slightly to simplify our analysis. Then, without assuming
that the elements are distinct, we show that SELECT needs at most n+ min{k, n - k} +
O(n213 Jn113 n) comparisons on average; this agrees with the result of [FIR75b, §2.2] which
is based on an unproven assumption [PRKT83, §5]. Similar upper bounds are established
for versions that choose sample sizes as in [FIR75a, Meh00, Rei85] and [MoR95, §3 .3].
Thus the average costs of these versions reach the !ower bounds of 1. 5n + o(n) for median
selection and l.25n+ o(n) for selecting an element of random rank (yet the original sample
size of [FIR75b, §2.2] has the best !ower order term in its cost). We also prove that nonre
cursive versions of SELECT, which employ other selection or sorting algorithms for small
subproblems, require at most n + min { k, n - k} + o(n) comparisons with high probability
(e.g., 1 - 4n-2ll for a user-specified (3 > O); this extends and strengthens the results of
[GeS03, Thm 1], [Meh00, Thm 2] and [MoR95, Thm 3.5].

Since theoretical bounds alone needn't convince practitioners (who may worry about
hidden constants, etc.), a serious effort was made to design a competitive implementation
of SELECT. Here, as with FIND and quicksort [Sed77], the partitioning efficiency is crucial.
In contrast with the observation of [FIR75b, p. 169] that "partitioning X about both u and
v [is] an inherently inefficient operation", we introduce a quintary scheme which performs
well in practice.

Relative to FIND, SELECT requires only small additional stack space for recursion,
because sampling without replacement can be done in place. Stili, it might seem that
random sampling needs too much time for random number generation. (Hence severa!
popular implementations of FIND don't sample randomly, assuming that the input file is
in random order, whereas others [Va!O0] invoke random sampling only when slow progress
occurs.) Yet our computational experience shows that sampling doesn't hurt even on ran
dom inputs, and it helps a lot on more difficult inputs (in fact our interest in SELECT was
sparked by the poor performance of the implementation of [FIR75a] on severa! inputs of

2

[Va!O0]). Most importantly, SELECT beats quite sophisticated implementations of FINO
[Kiw03a, Kiw03b, Va!O0] in both comparison counts and computing times even for exam
ples with relatively low comparison costs. To save space, only selected results are reported
in §7.3 and [Kiw03a, Kiw03b], but our experience on many other inputs was similar. In
particular, empirical estimates of the constants hidden in our bounds were always quite
small. Further, the performance of SELECT is extremely stable across a variety of inputs,
even for small input sizes (cf. §7.3) . A theoretical explanation of these features will be
undertaken elsewhere. For now, our experience supports the claim of [FIR75b, §1] that
"the algorithm presented here is probably the best practical choice".

The paper is organized as follows. A generał version of SELECT is introduced in §2 ,
and its basie features are analyzed in §3. The average performance of SELECT is studied
in §4. High probability bounds for nonrecursive versions are derived in §5. Partitioning
schemes are discussed in §6. Finally, our computational results are reported in §7.

Our notation is fairly standard. IAI denotes the cardinality of a set A. In a given
probability space, P is the probability measure, and E is the mean-value operator.

2 The algorithm SELECT

In this section we describe a generał version of SELECT in terms of two auxiliary functions
s(n) and g(n) (the sample size and rank gap), which will be chosen later. We omit their
arguments in generał, as no confusion can arise.

SELECT picks a small random sample S from X and two pivots u and v from S such that
u ~ x:; ~ v with high probability, where xi, is the kth smallest element of X. Partitioning
X into elements less than u, equal to u , between u and v, equal to v, and greater than v ,
SELECT either detects that u or v equals x:;, or determines a subset X of X and an integer
k such that xi; may be selected recursively as the kth smallest element of X.

Below is a detailed description of the algorithm.

Algorithm 2.1.
SELECT(X, k) (Selects the kth smallest element of X, with 1 ~ k ~n := IXI)

Step 1 (Initiation). If n= l, return X1- Choose the sample size s ~ n - l and gap g > O.

Step 2 (Sample selection). Pick randomly a sample S := {y1 , .. . ,y,} from X.

Step 3 (Pivot selection). Set iu := max{f ks/n - gł, 1 }, iu := min{f ks/n+ gł, s }. Let u
and v be the iuth and iuth smallest elements of S, found by using SELECT recursively.

Step 4 (Partitioning). By comparing each element x of X to u and v, partition X into
L := {x E X : x < u}, U := {x E X : x = u}, M := {x E X : u < x < v} ,
V:= {x EX: x = v}, R := {x EX: v < x} . If k < n/2, x is compared to v first, and to
u only if x < v and u < v . If k 2': n/2, the order of the comparisons is reversed.

Step 5 (Stopping test). If IL! < k ~ IL U Ul, return u; else if IL U U U Ml < k ~ n - IRI,
return v.

Step. 6 (Reduction) . If k ~ ILJ, set X := I:, and k := k; else if n - IRI .< k, set X := R
and k := k-n+ IRI; else set X:= M and k := k- lLUUI. Set n := IXI .

3

Step 7 (Recursion) . Return SELECT(.X, k).

Our revision of the original version of SELECT (FIR75b, §2] has two features . First,
the form of pivot ranks i„ and iv at Step 3 will allow us to handle mare generał choices
of the sample size s and gap g. Second, for distinct keys and u < v, the original version
worked with just three sets: L, U UM U V and R; in contrast, partitioning into five sets at
Step 4 is needed when equal keys occur. Stili, aur revision inherits the following generał
properties, formulated as numbered remarks to ease future references.

Remarks 2.2. (a) The correctness and finiteness of SELECT stem by induction from the
following observations. The returns of Steps 1 and 5 deliver the desired element. At Step
6, X and k are chosen so that the kth smallest element of X is the kth smallest element
of X, and n < n (since u, v ff. X). Also ISI < n for the recursive calls at Step 3.

(b) When Step 5 returns u (or v), SELECT may also return information about the
positions of the elements of X relative to u (or v). For instance, if X is stored as an array,
its k smallest elements may be placed first via interchanges at Step 4 (cf. §6). Hence after
Step 3 finds u, we may remove from S its first i„ smallest elements before extracting v.
Further, Step 4 need only compare u and v with the elements of X\ S.

(c) The following elementary property is needed in §4. Let Cn denote the maximum
number of comparisons taken by SELECT on any input of size n. Since Step 3 makes at
most Cs+ Cs-i. comparisons with s < n, Step 4 needs at most 2(n - s), and Step 7 takes
at most c,; with n < n, by induction c.,, < oo for all n.

3 Preliminary analysis

In this section we analyze generał features of sampling used by SELECT.

3.1 Outline of main proof techniques

Since aur analysis involves many technicalities, we naw outline the main strategy.
We wish to show that for sample sizes and gaps such that s, gn/ s and ne-292

/• are o(n),
SELECT needs on average at most n+min{k, n-k} +o(n) comparisons. For an inductive
proof, because the cost of Step 3 is at most twice 1.5s + o(n) from s < n, we only need to
show that the cost of Step 4 is at most n + min { k, n - k} + o(n) and the cost of Step 7 is
o(n), since adding these three costs yields the desired estimate.

Our bounds on the costs of Steps 4 and 7 stem from bounds on the ranks of u and
v in the input set X. Specifically, denote by xj ~ . . . ~ x~ and Yi ~ . . . ~ y; the
sorted elements of the input set X and the sample set S, respectively. Thus xZ is the kth
smallest element of X, whereas u= y;_ and v = Yłu at Step 3. Hence for i,, ~ ks/n - g
and iv ~ ks/n+ g, the positions of u and v in the sorted input should not deviate much
from k - gn/ s and k + gn/ s, respectively. Indeed, for the bounding indices

ki:= max{ rk- 2gn/sl, 1} and kr := min{ fk + 2gn/sl,n}, (3.1)

each of the unfavorable events u < xZ,, xk < u, v < x;;, xZ, < v has probability at
most e- 292/• (bounded as the taił of the hypergeometric distribution; cf. Fact 3.1 below) .

4

Hence, by the Boole-Benferroni inequality, the favorable event xZ, ś u ś xZ ś v ś xZ, has
probability at least 1-4e-292/•. Our bound for Step 4 stems from the fact that for k < n/2
and v ś xt, at most kr - 2 elements x < v are compared to u, whereas for k ~ n/2 and
xZ, ś u, at most n - k1 - 1 elements x > u are compared to v. Similarly, at Step 7 for
the favorable event, at most kr - k1 - 1 elements xZ, < x < xt comprise X. In each case,
expected values are bounded via the Chebyshev inequality (cf. Fact 3.2) .

Unfortunately technical complications muddle the picture. First, separate treatment
is needed for k ś gn/s ork> n - gn/s (when either u or v becomes redundant; cf. Rem.
3.7). Second, to get sharper estimates for specific choices of s and g, our bounds for Steps
4 and 7 employ s, gn/s and ne-2921• instead of the simpler o(n) notation.

3.2 Sampling deviations and expectation bounds

Our analysis hinges on the following bound on the taił of the hypergeometric distribution
established in [Hoe63] and rederived shortly in [Chv79] .

Fact 3.1. Let s balls be chosen uniformly at random /ram a set of n balls, of which r
are red, and r' be the random variable representing the number of red balls drawn. Let
p := r/n . Then

P [r' ~ ps + g] ś e-292/• \/g ~ O. (3.2)

We shall also need a simple version of the (left) Chebyshev inequality [Kor78, §2.4.2] .

Fact 3.2. Let z be a nonnegative random variable such that P[z ś (] = 1 for same
constant (. Then Ez ś t + (P[z > t] for all nonnegative real numbers t.

3.3 Pivot ranks

By intepreting the unfavorable events described below (3.1) in the setting of Fact 3.1, we
now bound their probabilities via (3.2). Recall that u= y;_ and v = Yl. for Yi ś . . . ś y;.
Lemma 3.3. (a) P[xZ < u] ś e-292!• if iu = r ks/n - g 7.

(b) P[u < xj;,] ś e-292/• .

(c) P[v < xZ] ś e-292!• if iv = fks/n + g 1-
(d) P[xZ, < v] ś e-292!•.
(e) iu # fks/n - gł iff k ś gn/s; iv # fks/n + gł iff n< k + gn/s.

Proof. (a) If x;; < yt_, at least s - iu + 1 sample elements y; satisfy

y; ~ xj+l with J := max{j : xj = xn.

In the setting of Fact 3.1, we have r := n - J red elements Xj ~ xj+1, ps = s - Js/n and
r' ~ s - iu + 1. Since iu = r ks/n - g 7 < ks/n - g + 1 and J ~ k, we get

r' > ps + (J - k)s/n + g ~ ps + g.

Hence P[xZ < u] ś P[r' ~ ps + g] ś e-292!• by (3.2).

5

(b) If y7u < x;;,, at least iu sample elements y, satisfy

y; :S x; with r := max{j: x; < xt:,}.

Thus we have r red elements Xj :S x;, ps = rs/n and r' 2 iu. Now, 1 :S r :S k1 - 1 implies
2 :S r+l :S k1 = rk-2gn/sl by (3.1) and thus k1 < k-2gn/s+l, SO -rs/n > -ks/n+2g.
Hence

iu - ps - g 2 ks/n - g - rs/n - g > O,

i.e., r' > ps + g; invoke (3.2) as before.
(c) If Y7. < xic, at least iv sample elements are at most x;, where r := maxxj<x, j. Thus

we have r red elements Xj :S x;, ps = rs/n and r' 2 iv. But

iv - ps - g 2 ks/n+ g - rs/n - g 2 O

implies r' 2 ps + g, so again (3.2) yields the conclusion.
(d) If x;;, < y;., at least s - iv + 1 sample elements are at least xj+1, where J :=

maxxj=xzr j. Thus we have r := n - J red elements Xj 2 xj+l• ps = s - Js/n and
r' 2 s - iv + 1. Now, iv <ks/n+ g + 1 and J 2 kr 2 k + 2gn/s (cf. (3.1)) yield

s - iv + 1 - ps - g 2 Js/n - ks/n - g - 1 + 1 - g 2 O.

Thus x;;, < v implies r' 2 ps + g; hence P(xt < v] :S P(r' 2 ps + g] :S e-292/• by (3.2).
(e) Follows immediately from the properties of r·l (Knu97, §1.2.4). O

3.4 Partitioning cost

We may now estimate the partitioning cost of Step 4. We assume that only necessary
comparisons are made as in Remark 2.2(b) (but it will be seen that up to s extraneous
comparisons may be accomodated in our analysis; cf. Rem. 5.4(a)).

Lemma 3.4. Let c denote the number of comparisons made at Step 4. Then

P(c :Sc] 2 1 - e-292/• and Ee :Sc+ 2(n - s)e-2921• with (3.3a)

c :=n+ min{ k, n - k} - s + 2gn/ s. (3.3b)

Proof. Consider the event A:= {c :S c} and its complement A':= {c > c}. If u= v,
the elements of X\ S are compared to v (or u) only, so c = n - s :S c; hence P(A'] =

P[A' n {u< v}], and we may assume u< v below.
First, suppose k < n/2. Then each element x in X \ S is compared to v first, and then

to u only if x < v, so
c = n - s + l{x EX\ S: x < v }J.

In particular, c :S 2(n - s) . Since k < n/2, c =n+ k - s + 2gn/s. If v :S xi;,, then

{ X E X \ S : X < V} C { X E X : X '.S V} \ { u, V}

6

yields l{x EX\ S: x < v}I ś kr - 2, soc ś n - s + kr - 2; since kr< k + 2gn/s + 1 by
(3.1), we get

c ś n + k - s + 2gn/ s - 1 ś c.
Thus u< v ś xZ, implies A. Therefore, A' n {u< v} implies {xZ, < v} n {u< v}, so

P(A' n {u< v}] Ś P[xZr < v] Ś e-292/•

{Lem. 3.3{d)) . Hence we have (3.3), since by Fact 3.2 (with z:= c, (:= 2(n - s)),

Ee ś c + 2(n - s)P(c > ej ś c + 2(n - s)e-292!•.

Next, suppose k 2: n/2. Then each element x in X \ S is compared to u first, and to
v only if u < x, so

c = n - s + l{x EX\ S: u< x}I-

If xi., ś u, then
{ X E X \ S : u < X} C { X E X : u Ś X} \ { u, v}

yields l{x EX\ S: u< x}I ś n - k1 - 1; hence k1 2'. k - 2gn/s (cf. (3.1)) gives

c ś n - s + (n - k) + 2gn/s - 1 ś c.

Thus A' n {u< v} implies {u< xZ,} n {u< v}, so P[A' n {u< v }] ś P[u < x);,] ś e-29'!•
(Lem. 3.3(b)), and we get (3.3) as before. O

3.5 Size of the selected set

The following result will imply that, for suitable choices of s and g, the set X selected at
Step 6 will be "small enough" with high probability and in expectation; we Jet X := 0 and
n:= O if Step 5 returns u or v, but we don't consider this case explicitly.

Lemma 3.5. P [n < 4gn/ s] 2'. 1 - 4e-29'/•, and En ś 4gn/ s + 4ne-29'1•.

Proof. The first bound yields the second one by Fact 3.2 (with z := n < n). In each case
below, we define an event E that implies the event 13 := { n < 4gn/ s }.

First, consider the middle case of gn/ s < k ś n - gn/ s, where iu = fks/n - gł and
iv = fks/n +gł (Lem. 3.3(e)). Denote the favorable event by

By Lem. 3.3 and the Boole-Benferroni inequality, its complement E' has P(E'] ś 4e-29'/•,

so P(E] 2'. 1 - 4e-29'1•. By the rules of Steps 4-6, the bracketing property u ś x;; ś v of
E implies X = M, whereas the bound xi., ś u ś v ś xZ, yields n ś kr - k1 + 1 - 2; since
kr < k + 2gn/ s + 1 and k1 2'. k- 2gn/ s by {3.1), we get n < 4gn/ s. Hence E c 13 and thus
P(/3] 2'. P(E].

Next, consider the left case of k ś gn/s, i.e., iu f fks/n - gł (Lem. 3.3(e)). If
iv f fks/n + gł, then n< k + gn/s (Lem. 3.3(e)) gives n< n< k + gn/s ś 2gn/s; take

7

Table 4.1: Sample size f(n) := n213 Jn113 n and relative sample size cp(n) := f(n)/n.

n 103 104 105 105 5 -106 101 5 · 107 10s

f(n) 190.449 972.953 4864.76 23995,0 72287.1 117248 353885 568986
,p(n) .190449 .097295 .048648 .023995 .014557 .011725 .007078 .005690

t: := {n < k + gn/ s }, a certain event. For Żv = fks/n + g l, !et e := {xic ś v ś xkJ; again
P[t:] 2'. 1 - 2e-292/• by Lem. 3.3(c,d). Now, xic ś v implies X CL UM, whereas v ś xt
gives n ś kr - l < k + 2gn/ s ś 3gn/ s; therefore t: C B.

Finally, consider the right case of k > n-gn/s, i.e., Żv f fks/n+gl, Ifiu f fks/n-gl,
the inequality k ś gn/ s gives n < n < 2gn/ s; take t: := {k ś gn/ s }. For iu = fks/n - g l,
the event t: := {xic, ś u ś xj;} has P[e] 2'. 1 - 2e-292/• by Lem. 3.3(a,b). Now, u ś xic
implies X C M U R, whereas xic, ś u yields n ś n - k1 with k1 2'. k - 2gn/ s and thus
n < 3gn/ s. Hence t: c 8. •

The following stronger version of Lemma 3.5 is needed in §5.

Corollary 3.6. P [c ś c and n < 4gn/ s] 2'. 1 - 4e-2Y2/•.

Proof. Check that e implies A in the proofs of Lems. 3.4 and 3.5; note that n ś 2gn/ s
yields c ś 2(n - s) ś c (cf. (3.3b)) in the left and right subcases. D

The proof of Lemma 3.5 reveals that u plays a relatively minor role in the left case;
similarly for v in the right case. This motivates the following modification.

Remark 3.7. Suppose Step 3 resets iu := iv if k ś gn/s, or iv := i„ if k > n - gn/s,
finding a single pivot u = v in these cases. The preceding results remain valid.

4 Analysis of the recursive version

In this section we analyze the average performance of SELECT for various sample sizes.

4.1 Floyd-Rivest's samples

For positive constants a and(], consider choosing s = s(n) and g = g(n) as

s := min{faf(n)l,n-1} and g := (f]slnn) 112 with f(n) := n213 Jn 113 n. (4.1)

This form of g gives a probability bound e-292/• = n-2/3 for Lems. 3.4-3.5. To get more
feeling, suppose a= fJ =land s = f(n). Let cp(n) := f(n)/n. Then s/n = g/s = cp(n)
and n/n is at most 4cp(n) with high probability (at least 1-4/n2), i.e., cp(n) is a contraction
factor; note that cp(n) ;:::! 2.4% for n= 106 (cf. Tab. 4.1).

8

Theorem 4.1. Let Cnk denote the expected number of comparisons made by SELECT Jor
s and g chosen as in (4.1) with {3?: 1/6. There exists a positive constant 'Y such that

Cnk :S n+min{k,n-k} +ryf(n) 'v'l :S k :Sn. (4.2)

Proof. The main idea of our inductive proof is simple: add the costs of Steps 3, 4, 7 and
simplify to get (4.2). To this end, however, we need a few preliminary facts.

The function cp(t) := f(t)/t = (lnt/t) 113 decreases to O on [e, oo), whereas f(t) grows
to infinity on (2, oo) . Let ó := 4({3/a) 112 • Pick ii?: 3 large enough so that e-1 :S af(ii) :S
ii- 1 and e :S 8/(ii) . Let a:= a+ 1/ /(ii). Then, by (4.1) and the monotonicity off and
cp, we have for n ?: ii

s :S af(n) and J(s) :S acp(af(ii))J(n),

/(8/(n)) :S ócp(óf(ii))f(n).

Indeed, for instance, the first inequality of (4.3) yields f(s) :S f(af(n)), whereas

f(af(n)) = acp(af(n))f(n) :S acp(af(ii))f(n) .

(4.3)

(4.4)

Also for n ?: ii, we have s = f a/(n)l = af(n) + E with E E [O, 1) in (4.1) . Writing
s = af(n) with a:= a+ E/ f(n) E [a, a), we deduce from (4.1) that

gn/s = ({3/a) 112J(n) :S (f3/a) 112f(n).

In particular, 4gn/s :S 8/(n), since ó := 4(/3/a) 1/ 2. For {3?: 1/6, (4.1) implies

ne-2g2/s :S nl-2/3 = /(n)nl/3-2/3 ln-1/3 n.

Using the monotonicity of cp and/ on [e, oo), increase ii if necessary to get

2acp(af(ii)) + 8cp(8f(ii)) + 4cp(ii)ii1/3- 213 1n-1/3 ii :S 0.95.

(4.5)

(4.6)

(4.7)

By Rem. 2.2(c), there is 'Y such that (4.2) holds for all n :S ii ; increasing 'Y if necessary, we
have

2a + 28 + 8ii1/ 3- 2/J ln-113 ii :S 0.05ry. (4.8)

Let n'?: ii. Assuming (4.2) holds for all n :Sn', we will inductively prove that it holds
for n= n'+ l.

The cost of Step 3 can be estimated as follows. We may first apply SELECT recursively
to Sto find u= Y7., and then extract v = y;" from the elements Yiu+1• .. . , y; (assuming
iu < iv ; otherwise v = u) . Since s :Sn', the expected number of comparisons is

C,,;. + C,-i. ,iv-iu :S 1.5s + ryf(s) + l.5(s - iu) + ryf(s - iu) :S 3s - 1.5 + 2ryf(s) . (4.9)

The partitioning cost of Step 4 is estimated by (3.3) as

Ee :Sn+ min{ k,n- k} - s + 2gn/s + 2ne-2D2I• . (4.10)

9

The cost of finishing up at Step 7 is at most

c"ic ś 1.5n +-yf(n).

But by Lem. 3.5, P[n 2'. 4gn/ s] ś 4e-292/•, and n < n, SO (cf. Fact 3.2 with z := 1.5n +
-yf(n))

E [1.5n + -yf (n)] ś 1.5 • 4gn/ s + -yf(4gn/ s) + [1.5n + -yf (n)] 4e-2921• .

Since 4gn/s ś 8/(n), fis increasing, and f(n) = qy(n) • n above, we get

EC nic ś 6gn/ s + -yf (8/(n)) + [1.5 + -yrp(n)] 4ne-292/•.

Add the costs (4.9), (4.10) and (4.11) to get

Cnk ś 3s - 1.5 + 2-y/(s) +n+ min{ k, n - k} - s + 2gn/s + 2ne-292!•

+ 6gn/s +-y/(8/(n)) + [1.5 +-yr/J(n)] 4ne-2Y2/•

(4.11)

ś n+ min{ k, n - k} + [2s + 8gn/s + 8ne-292I•] (4.12a)

+ 'Y [2/(s) + f(8f(n)) + 4ne-2921•qy(n)]. (4.12b)

By (4.3)-(4.6), the bracketed term in (4.12a) is at most O.O5-yf(n) due to (4.8), and that
in (4.12b) is at most O.95/(n) from (4.7); thus (4.2) holds as required. D

We naw indicate briefly how to adapt the preceding proof to severa! variations on (4.1);
choices similar to (4.13) and (4.17) are used in [MehOO] and [FIR75a], respectively.

Remarks 4.2. (a) Theorem 4.1 holds for the following modification of (4.1):

s := min {faj (n)l, n - l} and g := (.6s In 0s) 112 with f(n) := n213 Jn113 n, (4.13)

provided that /3 2'. 1/4, where 0 > O. Indeed, the analogue of (4.5) (cf. (4.1), (4.13))

gn/s = (f3/ii) 112 j(n)(ln0s/lnn) 112 ś (f3/a) 112J(n)(ln0s/lnn) 112 (4.14)

works like (4.5) for large n (since limn-oo 'i~';: = 2/3), whereas replacing (4.6) by

ne-292/s = n(0sr2/3 Ś /(n)(a0)-2i3n(l-4/3)/3 Jn-(1+2/3)/3 n, (4.15)

we may replace n1!3- 2/3 by (a0)- 2!3n<1- 4/3)/3 in (4.7)-(4.8).
(b) Theorem 4.1 holds for the following modification of (4.1) :

s := min{fa/(n)l,n-1} and g := (/3sln''n) 1l 2 with f(n) := n213 Jn'd3 n, (4.16)

provided either c1 = 1 and /3 2'. 1/6, or c1 > 1. Indeed, since (4.16)=(4.l) for c1 = 1,
suppose c1 > 1. Clearly, (4.3)-(4.5) hold with qy(t) := f(t)/t . For an arbitrary /3 > O,
choosing iJ 2'. 1/6, for n large enough we have g2/ s = /3 In'' n 2'. iJ ln n; hence, replacing 2/3
by 2[3 and ln-1/ 3 by ln-•,/3 in (4.6)-(4.8), we may use the proof of Thm 4.1.

(c) Theorem 4.1 remains true if we use /3 2'. 1/6,

s := min{fan213l ,n- l}, g := (/3slnn) 112 and f(n) := n213 tn112 n . (4.17)

Again (4.3)-(4.5) hold with qy(t) := f(t)/t, and ln-1/ 2 replaces ln-I/3 in (4.6)- (4.8).
(d) None of these choices gives f(n) better than that in (4.1) for the bound (4.2).

10

4.2 Reischuk's samples

For positive constants a and {3, consider using

s:=min{fan''l,n-1} and g:=(f3sn') 112 with

T/ := max { 1 + (c - cs)/2, Es} < 1 for some fixed O < c < Es-

(4.18a)

(4.18b)

Theorem 4.3. Let Cnk denote the expected number of comparisons made by SELECT for
s and g chosen as in (4.18). There exists a positive constant ,,, such that for all k :S n

Proof. We only show how to modify the proof of Theorem 4.1.
The function f,,(t) := t" grows to oo on (O, oo), whereas </>,,(t) := f,,(t)/t = t"- 1

decreases to O, so f „ and </>" may replace f and </> in the proof of Thm 4.1. Indeed, picking
n 2: 1 such that an'' :Sn - 1, for n 2: n we may use

s = an'' :S ii.fT/(n) with a :S a :S ii. := 1 + 1/n''

to get analogues of (4.3)-(4.4) and the following analogue of (4.5)

gn/s = (/3/a)1/2n1+(,-,,)/2 :S (f3/a)1f2f1/(n). (4.20)

Since g2/s = {3n' by (4.18), and te-2Pt1/t" decreases to O fort 2: t" := (v.)11', we may
replace (4.6) by

(4.21)

Hence, with n1-"e-2f3n' replacing n1/3- 2fJ ln-1/3 n in (4.7)-(4.8), the proof goes through. O

We now compare Floyd and Rivest's choice of (4.1) with Reischuk's choice of (4.18).

Remarks 4.4. (a) For a fixed € E (O, 1), minimizing T/ in (4.18b) yields the optima/ sample
size parameter

Es := (2 + c)/3 with T/ = Es > 2/3 and fT/(n) = n<2+•)!3 ; (4.22)

note that if s = an'• in (4.18a), then g = (af3) 112n'• with c9 := (1 + 2c)/3. To compare the
bounds (4.2) and (4.19) for this optima! choice, Jet 4\(t) := (t'/lnt) 113, so that cl>,(t) =
f,,(t)/ f(t) = </>"(t)/</>(t). Since limn-oo <l>,(n) = oo, the choice (4.1) is asymptotically
superior to (4.18). However, cl>,(n) grows quite slowly, and cl>,(n) < 1 even for fairly large
n when cis small (cf. Tab. 4.2). On the other hand, for small c and {3 = 1, the probability
bound e-29'/s = e-2n• of (4.18) is weak relative to e-29'/s = n-2 ensured by (4.1).

(b) A tightly related variant of (4.18) consists in using

s:=min{ran''l,n-1} and g:=(a{3) 112 n'•

11

Table 4.2: Relative sample sizes <l>,(n) and probability bounds e-2n•.

<I>,(n) := (t'/lnt) 113 exp(-2n')
n 106 106 5 -106 10' 105 106 5. lQ6 10'

1/ 4 1.16 1.32 1.45 1.52 3.6. 10-16 3.4 • 10- 2s 8.4 · 10-•2 1.4 . 10- 49
f 1/6 .840 .898 .946 .969 1.2 . 10-6 2.1 · 10-9 4.4 . 10-12 1.8 . 10-12

1/9 .678 .695 .711 .719 7.6 · 10-4 9.3 • 10-5 1.5 • 10-5 6.2 · 10-6

with O < Eg < Es such that

c := 2cg - Es > O and 7/ := max{l + Eg - Es, Es} < 1.

Theorem 4.3 covers this choice. Indeed, the equality 1 + Eg - Es = 1 + (c - Es) / 2 shows
that (4.18b) remains valid, and we have the following analogues of (4.20) and (4.21)

gn/ s = (a.(3)1/2n1+(,-,,)12; a ::; ((3 / a.)1/2 fry(n),

ne-2g2/s::; n1-rye-2(cx/3/ii)n'Jry(n) Vn 2: fi 2: [(l -71)a/(2a.{3c)]11·,

(4.23)

(4.24)

so compatible modifications of (4. 7)- (4.8) suffice for the rest of the proof. Note that
7/ 2: (2 + c)/3 by (a); for the choice Es=½, E9 = ft of [Rei85], c = i and 7/ = ł¾-

4.3 Handling small subfiles

Since the sampling efficiency decreases when X shrinks, consider the following modifica
tion. For a fixed cut-off parameter ncut 2: 1, Jet sSelect(X, k) be a "small-select" routine
that finds the kth smallest element of X in at most Ccut < oo comparisons when IXI ::; ncut
(even bubble sort will do). Then SELECT is modified to start with the following

Step O (Small file case) . If n:= IXI ::; ncut, return sSelect(X, k).
Our preceding results remain valid for this modification. In fact it suffices if Ccut

bounds the expected number of comparisons of sSelect(X, k) for n ::; ncut· For instance,
(4.2) holds for n::; ncut and 1 2: Ccut, and by induction as in Rem. 2.2(c) we have Cnk < oo
for all n, which suffices for the proof of Thm 4.1.

Another advantage is that even small ncut (1000 say) limits nicely the stack space for
recursion. Specifically, the taił recursion of Step 7 is easily eliminated (set X:= X, k := k
and go to Step O), and the calls of Step 3 deal with subsets whose sizes quickly reach ncut•
For example, for the choice of (4.1) with a. = 1 and ncut = 600, at most four recursive
levels occur for n ::; 231 ~ 2.15 . 109 .

5 Analysis of nonrecursive versions

In this section we prove that nonrecursive versions of SELECT, in which Steps 3 and 7
employ other selection or sorting algorithms with suitable worst-case performance, require

12

at most n + min { k, n - k} + o(n) comparisons with high probability. In this setting our
analysis is simpler than that of §4, because the costs of Step 3 are deterministic, whereas
Corollary 3.6 yields high probability bounds for the outcomes of Steps 4 and 7.

First, consider a nonrecursive version of SELECT in which Steps 3 and 7, instead of
SELECT, employ a linear-time routine (e.g., PICK [BFP+72]) that finds the ith smallest of
m elements in at most -ypm comparisons for some constant 'YP > 2.

Theorem 5.1. Let Cnk denote the number of comparisons made by the nonrecursive ver
sion of SELECT for a given choice of s and g. Suppose s < n - 1.

(a) For the choice of (4.1) with f(n) := n 213 In113 n, we have

P [c,.k::; n+ min{ k,n- k} +i'Pf(n)] 2'. 1- 4n- 213 with

')'P := (4-yp + 2)(/3/a) 112 + (2-yp - 1) [a+ 1/ f(n)],

(5. la)

(5.lb)

also with f(n) in (5.lb) replaced by f(3) > 2 (since n 2'. 3). Moreover, if /3 2'. 1/6, then

Ecnk ::; n+ min{ k, n - k} + (')'p + 4-yp + 2) f (n). (5.2)

(b) For the choice of (4.13), if 0s ::; n, then (5.la) holds with n-213 replaced by
(a0)- 2f3n- 4/3/3 1n-21313 n. Moreover, if /3 2'. 1/4, then (5.2) holds with 4-yp + 2 replaced
by (4-yp + 2)(a0)-2f3.

(c) For the choice of (4.18), (5.1) holds with f(n) replaced by J,,(n) := n'I and n-213

by e-2/3n'. Moreover, if n 1-'le-2f3n' ::; 1, then (5.2) holds with f replaced by f,,.

Proof. We start with some generał estimates. Since Step 3 takes at most 2-yps compar
isons, Step 4 makes c comparisons, and Step 7 takes at most -ypn comparisons, the total
cost satisfies

Cnk ::; 2-yps + C + "(pn.

By Cor. 3.6, the event C := { c ::; c, n < 4gn/ s} has probability P[C] 2'. 1 - 4e-292/• . If the
event C occurs, bounding c by c (cf. (3.3b)) and n by 4gn/ s above gives

Cnk ::; n + min { k, n - k} - s + 2gn/ s + 2-yps + 'YP l 4gn/ s J
::; n+ min{ k,n- k} + (4-yp + 2)gn/s + (2-yp -1)s.

Similarly, the average total cost satisfies

so bounding Ee via Lemma 3.4 and En via Lemma 3.5 yields

(5.3)

Ec,.k::; n+ min{ k,n- k} + (4-yp + 2)gn/s + {2-yp -1)s + (4-yp + 2)ne-292f•. (5.4)

We now spell out consequences of (5.3)-(5.4) for the three cases of our theorem.
(a) Since e-292!• = n-213 , s = raf(n)l::; iif(n) from s < n - land (4.3), and gn/s is

bounded by (4.5), {5.3) implies (5.1). Then (5.2) follows from (4.6) and (5.4).
(b) Proceed as for (a), invoking (4.14)-(4.15) instead of (4.5) and (4.6) .
(c) Argue as for (a), using the proof of Thm 4.3, in particular (4.20)- (4.21). O

13

Corollary 5.2. The nonrecursive version of SELECT requires n+ min{k, n - k} + o(n)
comparisons with probability at least 1 - 4n-2P for the choice of (4.1), at least 1 -
4(a0t2Pn-4P13 for the choice of (4.13), and at least 1 - 4e-2Pn' for the choice of (4.18).

The following remarks sketch extensions of our preceding results to severa! modifica
tions of SELECT, including the use of sorting algorithms at Steps 3 and 7.

Remarks 5.3. (a) Suppose Steps 3 and 7 simply sort S and X by any algorithm that
takes at most -rs(s In s + n In n) comparisons for a constant 'YS· This cost is at most
(s + n)'Ys In n, because s, fi < n, so we may replace 2-yp by 'Ys In n and 4-yp by 4-ys In n in
(5.3)-(5.4), and hence in (5.1)- (5.2). For the choice of (4.1), this yields

P [Cnk:::; n +min{ k,n- k} +is/(n)lnn) 2: 1- 4n-2P with

is:= (4-rs + 2ln-1 n)(/3/a) 112 + ('Ys - ln-1 n) [a+ 1/ f(n)],

Ec,,k:::; n+min{ k,n- k} + (is+ 4-ys + 2ln-1 n) f(n) Inn,

(5.5a)

(5.5b)

(5.6)

where ln-1 n may be replaced by ln-1 3, and (5.6) stili needs /3 2: 1/6; for the choices (4.13)
and (4.18), we may modify (5.5)-(5.6) as in Thm 5.l(b,c) . Corollary 5.2 remains valid.

(b) The bound (5.2) holds if Steps 3 and 7 employ a routine (e.g., FIND [Hoa61),
[AHU74, §3.7)) for which the expected number of comparisons to find the ith smallest of
m elements is at most -ypm (then Ec,,k :::; 2-yps +Ee+ -ypEn is bounded as before).

(c) Suppose Step 6 returns to Step 1 if n 2: 4gn/s. By Cor. 3.6, such loops are finite
with probability 1, and don't occur with high probability, for n large enough.

(d) Our results improve upon [GeS03, Thm 1), which only gives an estimate like (5.la),
but with 4n-2P replaced by O(n1- 2P/3), a much weaker bound. Further, the approach of
[GeS03) is restricted to distinct elements.

We now comment briefly on the possible use of sampling with replacement.

Remarks 5.4. (a) Suppose Step 2 of SELECT employs sampling with replacement. Since
the tai! bound (3.2) remains valid for the binomial distribution [Chv79, Hoe63), Lemma
3.3 is not affected. However, when Step 4 no longer skips comparisons with the elements
of S, -sin (3.3) and (4.10) is replaced by O (cf. the proof of Lem. 3.4), 2s in (4.12a) by
3s and 2a in (4.8) by 3a. Similarly, adding sto the right sides of (5.3)- (5.4) boils down
to omitting -1 in (5.lb) and - ln-1 n in (5.5b) . Hence the preceding results remain valid.

(b) Of course, sampling with replacement needs additional storage for S. This is
inconvenient for the recursive version, but tolerable for the nonrecursive ones because the
sample sizes are relatively small (hence also (3.3) with -s omitted is not too bad).

(c) Our results improve upon [MoR95, Thm 3.5), corresponding to (4.18) with E = 1/4
and /3 = 1, where the probability bound 1 - O(n- 114) is weaker than our 1 - 4e- 2n 114 ,

sampling is done with replacement and the elements are distinct.
(d) Our results subsume [Meh00, Thm 2), which gives an estimate like (5.2) for the

choice (4.13) with /3 = 1, using quickselect (cf. Rem. 5.3(b)) and sampling with replacement
in the case of distinct elements.

14

6 Ternary and quintary partitioning

In this section we discuss ways of implementing SELECT when the input set is given as an
array x[l: n]. We need the following notation to describe its operations in more detail.

Each stage works with a segment x[/: r] of the input array x[l: n], where 1 ::; ł ::; r ::; n
are such that X; < x, for i = 1: ł - 1, x, < x; for i = r + 1: n, and the kth smallest
element of x[l: n] is the (k - l + l)th smallest element of x[ł: r]. The task of SELECT is
extended: given x[ł: r] and ł ::; k ::; r, SELECT(x, l, r, k, k_, k+) permutes x[ł: r] and finds
ł :S k_ ::; k ::; k+ ::; r such that x; < Xk for all ł ::; i < k_, x; = Xk for all k_ ::; i ::; k+,
x; > Xk for all k+ < i ::; r. The initial call is SELECT(x, 1, n, k, k_, k+)-

A vector swap denoted by x[a: b] +-> x[b+l: c] means that the first d := min(b+l-a, c-b)
elements of array x[a: c] are exchanged with its last d elements in arbitrary order if d > O;
e.g., we may exchange Xa+i +-> Xe-i for O::; i < d, or Xa+i +-> Xc-d+l+i for O $ i < d.

6.1 Ternary partitions

For a given pivot v := xk from the array x[ł: r], the following ternary scheme partitions
the array into three blocks, with Xm < v for l ::; m < a, Xm = v for a ::; m ::; d, Xm > v for
d < m::; r. The basie idea is to work with the five inner parts of the array

lx<v/x=v/x<v/ ? /x>v/x=vlx>vl
l l p i j q f r

(6.1)

until the middle part is empty or just contains an element equal to the pivot

jx=vjx<v/x=v/x>v/x=vl
l p j q r

(6.2)

(i.e., j = i - l or j = i - 2), then swap the ends into the middle for the finał arrangement

lx<vjx=vlx>vl
l a d r (6.3)

Al. [Initialize.] Set v := Xk and exchange x, +-> xk. Set i := I:= ł, p := ł + 1, q := r - 1
and j := f := r. If v < x,, set f := q. If v > x„ exchange x1 +-> x, and set I:= p.

A2. [Increase i until x; ~ v.] Increase i by l; then if x; < v, repeat this step.

A3. [Decrease j until Xj ::; v.] Decrease j by 1; then if Xj > v, repeat this step.

A4. [Exchange.] (Here Xj::; v::; X;.) If i< j, exchange x; +-> xi; then if x; = v, exchange
X; +-> Xp and increase p by 1; if Xj = v, exchange Xj +-> x 9 and decrease q by l; return
to A2. If i= j (so that X;= Xj = v), increase i by 1 and decrease j by 1.

A5. [Cleanup.] Set a:= I+ j - p + l and d := f - q + i - l. Exchange x[I: p- l] +-> x[p: j]
and x[i: q] +-> x[q + 1: r].

Step Al ensures that x, ::; v ::; x,, so steps A2 and A3 don't need to test whether i S j;
thus their loops can run faster than those in the schemes of [BeM93, Prog. 6] and [Knu97,
Ex. 5.2.2-41] (which do need such tests, since, e.g., there may be no element x; > v).

15

6.2 Preparing for quintary partitions

At Step 1, r - l + 1 replaces n in finding s and g. At Step 2, it is convenient to place the
sample in the initial part of x[l: r] by exchanging X;<---> X;+rand(r-i) for l ś i śr. := l+s-1,
where rand(r - i) denotes a random integer, uniformly distributed between O and r - i.

Step 3 uses ku:= max{rł-l+is/m-gl,l} and kv := min{rł-l+is/m+ gl,r.} with
i:= k-ł+l and m := r-ł+l for the recursive calls. If SELECT(x, ł, r., ku, k;;, k;;) returns
k;!' 2: kv, we have v :=u:= Xku, so we only set k;; := kv, k;; := k;!' and reset k;!' := kv - 1.
Otherwise the second call SELECT(x, k;; + 1, r„ kv, k;;, k;;) produces v := Xkv·

After u and v have been found, our array looks as follows

/x<uJ x=u Ju <x<vJ x=v Jx>vl?
l k;; k;!' k;; k;; r. r

(6.4)

Setting l := k;;, p := k;!' + 1, f := r - r. + k;;, ij := f - k;; + k;; - 1, we exchange
x[k;; + 1: r.) <---> x[r. + 1: r] and then x[k;;: k;;] <---> x[k;; + 1: f] to get the arrangement

/x<uJx=u/u<x<vl ? /x=v/x>vl
l l p k;; ij f r

(6.5)

The third part above is missing precisely when u = v; in this case (6.5) reduces to (6.1)
with initial p := p, q := ij, i := p - 1 and j := q + 1. Hence the case of u = v is handled
via the ternary partitioning scheme of §6.1, with step Al omitted.

6.3 Quintary partitions

For the case of k < l(r + ł)/2J and u< v, Step 4 may use the following quintary scheme
to partition x[ł : r) into five blocks, with Xm < u for ł ś m < a, Xm = u for a ś m < b,
u < Xm < v for b ś m ś c, Xm = v for c < m ś d, Xm > v for d < m ś r. The basie idea
is to work with the six-part array stemming from (6.5)

/x=uJu<x<vJx<uJ ? Jx>vJx=vl
l P P i j q f

(6.6)

until i and j cross

I x=u I u<x<v I x<u I x>v I x=v I.
;: p pjiq r'

(6.7)

we may then swap the second part with the third one to bring it into the middle

I x=u I x<u I u<x<v J x>v J x=v J

l p b ci q r'
(6.8)

and finally swap the extreme parts with their neighbors to get the desired arrangement

I x<u I x=u I u<x<v J x=v J x>v J

l a b c d f
(6.9)

16

BI. (Initialize.] Set p := k;;, q := ij, i:= p - l and j := q + l.

B2. (Increase i until X; 2'. v.] Increase i by 1. If X; 2'. v, go to B3. If X; < u, repeat this
step. (At this point, u::; x; < v.) If x; > u, exchange x; +-> Xpi otherwise exchange
X ; +-> Xp and Xp +-> x;; and increase fi by 1. Increase p by 1 and repeat this step.

B3. (Decrease j until x; < v.] Decrease j by 1. If xi > v, repeat this step. If Xj = v,
exchange xi +-> Xą, decrease q by 1 and repeat this step.

B4. (Exchange.] If i 2'. j, go to BS. Exchange x; +-> xi . lf x; > u, exchange x; +-> Xp and
increase p by 1; otherwise if x; = u, exchange x; +-> Xp and Xp +-> X;; and increase fi
and p by 1. If x; = v, exchange x; +-> Xą and decrease q by 1. Return to B2.

BS. (Cleanup.] Set a:= l + i - p, b :=a+ fi - l, d := f - q + j and c := d - f + q. Swap
x[fi:p- l] +-> x[p:j], x[Z:fi- l] +-> x[fi: b- l], and finally x(i: ą] +-> x[q + 1: f].

For the case of k 2'. l(r+ł)/2J and u< v, Step 4 may use the following quintary scheme,
which is a symmetric version of the preceding one obtained by replacing (6.6)-(6.8) with

/x=u/x<u/ ? /x>v/u<x<v!x=v!
l p i j ą ą t

(6.10)

I x=u I x<u I x>v / u<x<v I x=v I
l p j i q ij f I

(6.11)

/ x=u I x<u I u<x<v I x>v I x=v I
l p j b C ij f

(6.12)

Cl. (Initialize.] Set p := fi, q := ij - k;; + k;; + l, i := p - l and j := q + l, and swap
x[fi: k;; - 1] +-> x[k;;: ą].

C2. (Increase i until X; > u.] Increase i by 1. If X; < u, repeat this step. If x; = u,
exchange x; +-> Xp, increase p by 1 and repeat this step.

C3. (Decrease j until Xj ::; u .] Decrease j by 1. If x; ::; u, go to C4. If Xj > v, repeat this
step. (At this point, u< xi ::; v.) If xi < v, exchange xi +-> Xąi otherwise exchange
x; +-> Xą and Xą +-> Xą and decrease ij by 1. Decrease q by 1 and repeat this step.

C4. (Exchange.] If i 2'. j, go to CS. Exchange x; +-> xi. lf x; = u, exchange x; +-> Xp

and increase p by 1. If x; < v, exchange x; +-> Xą and decrease q by l; otherwise if
Xj = v, exchange x; +-> Xą and Xą +-> Xą and decrease ij and q by 1. Return to C2.

CS. (Cleanup.] Set a:= l + i - p, b :=a+ p - l, d := f - q + j and c := d - f + ij. Swap
x[l: p - 1] +-> x[p: j], x(i: ą] +-> x[q + 1: ą] and finally x[c + 1: ą] +-> x[q + 1: f] .

To make (6.3) and (6.9) compatible, the ternary scheme may set b := d + 1, c := a - 1.
After partitioning ł and r are updated by setting l := b if a ::; k, then l := d + 1 if c < k;
r := c if k ::; d, then r := a - 1 if k < b. lf l 2'. r, SELECT may return k_ := k+ := k
if ł = r, k_ := r + l and k+ := ł - 1 if ł > r. Otherwise, instead of calling SELECT
recursively, Step 6 may jump back to Step 1, or Step O if sSelect is used (cf. §4.3).

A simple version of sSelect is obtained if Steps 2 and 3 choose u := v := Xk when
r - l + 1 ::; ncut (this choice of (FIR75a] works well in practice, but mare sophisticated
pivots could be tried); then the ternary partitioning code can be used by sSelect as well.

17

7 Experimental results

7.1 Implemented algorithms

An implementation of SELECT was programmed in Fortran 77 and run on a notebook
PC (Pentium M 755 2 GHz, 1.5 GB RAM) under MS Windows XP. The input set X
was specified as a double precision array. For efficiency, the taił recursion was removed
and small arrays with n ~ ncut were handled by Steps 2 and 3 choosing u:= v := xk; the
resulting version of sSelect (cf. §§4.3 and 6.3) typically required less than 3.5n comparisons.
The choice of (4.1) was employed, with the parameters a= 0.5, /3 = 0.25 and ncut = 600
as proposed in [FIR75a]; future work should test other sample sizes and parameters.

For comparisons we employed the implementation of QUICKSELECT from [Kiw03a,
§6.1], with median-of-3 pivots and the binary partitioning scheme of [Kiw03a, §§2.1 and
4]. Apparently our implementation represents the state-of-the-art; see (Kiw03a, §6.3] for
comparisons with other partitioning schemes, and note that the results of (Kiw03b, §7.3]
suggest that the RISELECT algorithm of [Va!O0] tends to be less efficient.

7.2 Testing examples

We used minor modifications of the input sequences of [Va!O0], defined as follows:

random A random permutation of the integers 1 through n.

onezero A random permutation of r n/21 ones and l n/2 j zeros.

sorted The integers 1 through n in increasing order.

rotated A sorted sequence rotated left once; i.e., (2, 3, ... , n, 1).

organpipe The integers (1, 2, .. . , n/2, n/2, ... , 2, 1).

m3killer Musser's "median-of-3 killer" sequence with n = 4j and k = n/2:

(1 2 3 4 . . . k - 2 k - 1 k k + 1 . . . 2k - 2 2k - 1 2k)
1 k + 1 3 k + 3 . . . 2k - 3 k - 1 2 4 . . . 2k - 2 2k - 1 2k .

twofaced Obtained by randomly permuting the elements of an m3killer sequence in po
sitions 4llog2 nj through n/2 - 1 and n/2 + 4llog2 nj - 1 through n - 2.

For each input sequence, its (!ower) median element was selected for k := f n/2l
These input sequences were designed to test the performance of selection algorithms

under a range of conditions. In particular, the onezero sequences represent inputs con
taining many duplicates [Sed77]. The rotated and organpipe sequences are difficult for
many implementations of quickselect. The m3killer and twofaced sequences are hard for
implementations with median-of-3 pivots (their original versions [Mus97] were modified to
become difficult when the middle element comes from position k instead of k + 1) .

18

Table 7.1: Performance of SELECT on randomly generated inputs.

Sequence Size Time [msec) Comparisons [n) 'Yavg Lavg Pavg Navg Pavg Savg

n avg max min avg max min [n) [Inn] [Inn] [%n]
random 50K o o o 1.81 1.85 1.77 5.23 1.22 0.46 1.01 7.62 4.11

lO0K o o o 1.72 1.76 1.65 4.50 1.15 0.45 0.99 8.05 3.20
500K 8 10 o 1.62 1.63 1.60 4.14 1.08 0.59 1.27 7.59 1.86

lM 18 20 10 1.59 1.60 1.57 3.93 1.06 0.64 1.35 8.18 1.47
2M 36 40 30 1.57 1.58 1.56 3.73 1.04 0.76 1.59 7.67 1.16
4M 70 81 60 1.56 1.56 1.55 3.61 1.03 0.94 1.94 7.21 0.91
BM 137 141 130 1.54 1.55 1.54 3.45 1.03 0.98 1.99 7.45 0.72

16M 247 251 240 1.53 1.54 1.53 3.44 1.02 0.99 2.02 7.55 0.57
onezero 50K o o o 1.51 1.52 1.50 0.24 1.02 0.28 0.27 1.17 3.41

lO0K 2 10 o 1.51 1.51 1.50 0.23 1.01 0.26 0.25 1.14 2.72
500K 9 11 o 1.51 1.51 1.51 0.26 1.01 0.23 0.23 1.17 1.61

lM 18 20 10 1.51 1.51 1.51 0.26 1.01 0.22 0.22 1.20 1.29
2M 35 41 30 1.51 1.51 1.50 0.26 1.01 0.28 0.27 1.14 1.03
4M 72 80 70 1.50 1.50 1.50 0.26 1.00 0.33 0.26 1.16 0.83
BM 142 151 140 1.50 1.50 1.50 0.26 1.00 0.38 0.25 1.11 0.66

16M 270 281 260 1.50 1.50 1.50 0.26 1.00 0.36 0.24 1.11 0.53
twofaced 50K 1 10 o 1.80 1.85 1.74 4.99 1.21 0.46 1.01 7.53 4.11

l00K o o o 1.73 1.76 1.69 4.67 1.16 0.43 0.96 8.23 3.20
500K 9 10 o 1.62 1.63 1.61 4.07 1.08 0.61 1.30 7.85 1.87

lM 18 20 10 1.59 1.60 1.58 3.82 1.06 0.67 1.40 7.86 1.47
2M 37 41 30 1.57 1.58 1.56 3.66 1.04 0.75 1.58 7.98 1.16
4M 71 80 70 1.56 1.56 1.55 3.60 1.03 0.95 1.96 7.36 0.92
BM 136 141 130 1.54 1.55 1.54 3.48 1.03 0.96 1.98 7.48 0.72

16M 251 251 241 1.53 1.54 1.53 3.38 1.02 1.00 2.06 7.74 0.57

7.3 Computational results

We varied the input size n from 50,000 to 16,000,000. For the random, onezero and
twofaced sequences, for each input size, 20 instances were randomly generated; for the
deterministic sequences, 20 runs were made to measure the solution time.

The performance of SELECT on randomly generated inputs is summarized in Table 7.1,
where the average, maximum and minimum solution times are in milliseconds, and the
comparison counts are in multiples of n; e.g., column six gives Cavg/n, where Cavg is the
average number of comparisons made over all instances. Thus 'Yavg := (Cavg - l.5n)/ f(n)
estimates the constant I in the bound (4.2); moreover, we have Cavg ~ 1.5Lavg, where Lavg
is the average sum of sizes of partitioned arrays. Further, Pavg is the average number of
SELECT partitions, whereas Navg is the average number of calls to sSelect and Pavg is the
average number of sSelect partitions per call; both Pavg and Navg grow slowly with In n.
Finally, Savg is the average sum of sample sizes; Savg/ f(n) drops from 0.68 for n= 50K to
0.56 for n = 16M on the random and twofaced inputs, and from 0.57 to 0.52 on the onezero
inputs, whereas the initial s/ f (n) ~ a = 0.5. The average solution times grow linearly
with n (except for small inputs whose solution times couldn't be measured accurately),
and the differences between maximum and minimum times are fairly small (and also partly

19

Table 7.2: Performance of SELECT on deterministic inputs.

Sequence Size Time [msec] Comparisons [n] '"Yavg Lavg Pavg Navg Pavg Savg

n avg max min avg max min [n] [Inn) [Inn) [%n)
sorted 50K 1 20 o 1.80 1.88 1.71 4.92 1.21 0.44 0.98 7.80 4.08

lOOK 3 30 o 1.73 1.76 1.71 4.76 1.16 0.44 0.97 7.83 3.21
500K 6 11 o 1.62 1.63 1.61 4.09 1.08 0.60 1.27 7.91 1.86

lM 11 20 10 1.60 1.61 1.58 4.02 1.06 0.63 1.34 8.05 1.46
2M 20 20 10 1.57 1.58 1.57 3.75 1.04 0.77 1.60 7.46 1.16
4M 35 40 30 1.56 1.56 1.55 3.59 1.03 0.95 1.95 7.45 0.91
BM 58 61 50 1.54 1.55 1.53 3.50 1.03 0.99 2.03 7.55 0.72

16M 105 111 100 1.53 1.54 1.53 3.37 1.02 1.00 2.04 7.65 0.57
rotated 50K 4 30 o 1.80 1.91 1.71 4.99 1.21 0.44 0.98 7.90 4.08

lOOK 2 30 o 1.74 1.76 1.70 4.83 1.16 0.44 0.96 7.91 3.21
500K 6 10 o 1.62 1.63 1.61 4.09 1.08 0.60 1.28 8.01 1.86

lM 11 20 10 1.60 1.60 1.59 4.03 1.06 0.64 1.35 8.14 1.47
2M 18 21 10 1.57 1.58 1.56 3.74 1.04 0.76 1.59 7.54 1.16
4M 30 31 30 1.56 1.56 1.55 3.59 1.03 0.94 1.93 7.26 0.91
BM 58 61 50 1.54 1.55 1.53 3.47 1.03 0.99 2.02 7.43 0.72

16M 104 111 100 1.53 1.54 1.53 3.35 1.02 1.00 2.04 7.61 0.57
organpipe 50K 1 10 o 1.80 1.84 1.70 5.04 1.21 0.46 1.01 7.59 4.11

lOOK 5 30 o 1.74 1.76 1.71 4.88 1.16 0.45 0.98 8.03 3.22
500K 5 10 o 1.62 1.63 1.60 4.04 1.08 0.62 1.32 7.75 1.87

lM 14 20 10 1.59 1.60 1.57 3.87 1.06 0.66 1.39 7.72 1.47
2M 27 30 20 1.57 1.58 1.56 3.69 1.04 0.74 1.56 7.66 1.16
4M 50 51 50 1.56 1.56 1.55 3.57 1.03 0.97 1.99 7.22 0.92
BM 97 101 90 1.55 1.55 1.54 3.58 1.03 0.97 1.99 7.38 0.72

16M 169 171 160 1.53 1.54 1.53 3.39 1.02 0.99 2.02 7.68 0.57
m3killer 50K 3 30 o 1.84 2.27 1.76 5.61 1.23 0.47 1.04 7.69 4.21

lOOK 3 10 o 1.74 1.77 1.70 4.83 1.16 0.44 0.97 7.79 3.21
500K 8 20 o 1.63 1.64 1.61 4.24 1.08 0.58 1.23 7.79 1.86

lM 15 20 10 1.59 1.60 1.58 3.92 1.06 0.67 1.40 7.87 1.47
2M 31 40 30 1.57 1.58 1.56 3.67 1.04 0.75 1.57 7.85 1.16
4M 60 61 60 1.56 1.56 1.55 3.64 1.03 0.96 1.96 7.33 0.92
BM 117 120 110 1.54 1.55 1.54 3.51 1.03 0.96 1.97 7.39 0.72

16M 219 221 210 1.53 1.54 1.53 3.37 1.02 0.97 1.98 7.64 0.57

due to the operating system). Except for the smallest inputs, the maximum and minimum
numbers of comparisons are quite close, and Cavg nicely approaches the theoretical !ower
bound of 1.5n; this is reflected in the values of 'Yavg· Note that the results for the random
and twofaced sequences are almost identical, whereas the onezero inputs only highlight
the efficiency of our partitioning.

Table 7.2 exhibits similar features of SELECT on the deterministic inputs. The results
for the sorted and rotated sequences are almost the same, whereas the solution times on the
organpipe and m3killer sequences are between those for the sorted and random sequences.

The performance of QuICKSELECT on the same inputs is described in Tables 7.3 and
7.4. On the random sequences, the expected value of Cavg is 2.75n+o(n) [KMP97]. Twenty
random instances of each size yield fairly accurate estimates, since the values of Cavg in

20

Table 7.3: Performance of QUICKSELECT on randomly generated inputs.

Sequence Size Time [msec] Comparisons [n] Lavg Pa.vg

n avg max min avg max min [n] [Inn]
random SOK 1 10 o 2.60 4.07 1.56 2.60 1.44

lOOK 2 10 o 2.69 3.98 1.63 2.69 1.51
500K 11 20 o 2.61 4.04 1.78 2.61 1.51

lM 32 41 20 2.78 4.04 1.77 2.78 1.56
2M 67 100 50 2.70 3.92 1.91 2.70 1.51
4M 135 180 90 2.56 3.46 1.70 2.56 1.59
BM 283 411 200 2.59 3.96 1.78 2.59 1.64

16M 568 751 431 2.57 3.46 1.93 2.57 1.57
onezero 50K 10 o 2.72 2.85 2.67 2.72 1.77

100K 1 10 o 2.74 2.88 2.68 2.74 1.79
500K 12 20 10 2.70 2.73 2.68 2.70 1.82

lM 30 40 20 2.75 2.88 2.68 2.75 1.84
2M 69 80 60 2.71 2.85 2.68 2.71 1.84
4M 148 171 140 2.73 3.21 2.68 2.73 1.84
BM 307 330 300 2.73 2.92 2.68 2.73 1.86

16M 621 631 610 2.70 2.79 2.68 2.70 1.87
twofaced 50K 3 31 o 2.65 4.43 1.72 2.65 1.50

lOOK o o o 2.62 3.71 1.75 2.62 1.53
500K 12 20 10 2.63 4.18 1.79 2.63 1.51

IM 29 41 20 2.66 4.41 1.76 2.66 1.56
2M 67 90 40 2.67 3.71 1.73 2.67 1.57
4M 144 190 100 2.77 3.83 2.02 2.77 1.57
BM 300 481 190 2.86 4.83 1.68 2.86 1.56

16M 572 921 370 2.60 4.62 1.66 2.60 1.68

Table 7.3 are within 7% of 2.75n; Table 7.5 shows what happens when 1000 instances are
used for each size. The results for the onezero sequences confirm that binary partitioning
may handle equal keys quite efficiently (Sed77]. The results for the remaining inputs are
quite good, since some versions of quickselect may behave poorly on these inputs (Va!O0].

As always, limited testing doesn't warrant firm conclusions, but a comparison of SE
LECT and QuICKSELECT is in order, especially for the random sequences, which are most
frequently used in theory and practice for evaluating sorting and selection algorithms. On
the random inputs, the ratio of the expected numbers of comparisons for QurCKSELECT
and SELECT is asymptotically 2.75/1.5 ~ 1.83, whereas the ratio of their computing times
approaches 2.3 in Figure 7.1. Note that SELECT isn't just asymptotically faster; in fact
QurcKSELECT is about 80% slower even on middle-sized inputs. Similar slow-downs oc
cur on the onezero and twofaced sequences. The slow-downs are less pronounced on the
organpipe and m3killer inputs, but they are stili significant even for the "easiest" sorted
and rotated inputs. Note that, relative to QurcKSELECT, the solution times and compar
ison counts of SELECT are much more stable across all the inputs. This feature may be
important in applications.

Acknowledgment. I would like to thank Olgierd Hryniewicz, Roger Koenker, Ronald
L. Rivest and John D. Valois for useful discussions. Two anonymous referees helped a lot

21

Table 7.4: Performance of QuICKSELECT on deterministic inputs.

Sequence Size Time [msec] Comparisons [n] Lavg Pavg

n avg max min avg max min [n] [Inn]
sorted 50K o o o 2.94 3.68 2.27 2.94 1.55

lOOK o o o 2.89 4.63 2.23 2.89 1.62
500K 8 10 o 2.88 4.56 1.96 2.88 1.63

lM 13 20 o 2.96 4.44 1.82 2.96 1.59
2M 29 41 20 3.02 4.44 2.06 3.02 1.54
4M 44 70 30 2.76 4.10 1.99 2.76 1.56
BM 88 120 60 2.80 3.62 1.89 2.80 1.65

16M 175 241 120 2.75 3.74 1.87 2.75 1.63
rotated 50K o o o 2.82 3.95 1.87 2.82 1.57

lOOK 9 30 o 2.77 3.79 1.84 2.77 1.55
500K 8 20 o 2.80 4.39 1.74 2.80 1.68

lM 13 20 10 2.87 4.68 1.92 2.87 1.62
2M 23 31 20 2.55 3.44 1.75 2.55 1.56
4M 45 70 20 2.72 4.22 1.61 2.72 1.57
BM 92 161 60 2.85 5.16 1.89 2.85 1.59

16M 177 251 110 2.78 3.97 1.65 2.78 1.57
organ pipe SOK 8 30 o 2.60 3.71 1.73 2.60 1.52

lOOK 2 10 o 2.71 3.62 2.03 2.71 1.60
500K 9 10 o 2.76 4.77 1.72 2.76 1.53

lM 21 30 10 2.74 4.77 2.00 2.74 1.49
2M 46 60 30 2.83 4.18 1.85 2.83 1.62
4M 92 110 70 2.74 3.73 2.17 2.74 1.54
BM 181 250 120 2.64 4.10 1.77 2.64 1.53

16M 372 470 270 2.61 3.49 1.94 2.61 1.62
m3killer SOK 1 10 o 2.60 3.47 1.88 2.60 1.60

lOOK 2 10 o 2.89 3.96 1.85 2.89 1.50
500K 10 20 o 2.83 4.90 1.83 2.83 1.59

lM 24 31 10 2.79 3.85 1.90 2.79 1.55
2M 54 70 40 3.06 4.47 1.93 3.06 1.65
4M 102 130 60 2.81 4.06 1.63 2.81 1.60
BM 193 261 150 2.75 4.43 1.87 2.75 1.63

16M 409 480 320 2.87 3.94 1.87 2.87 1.58

in improving our presentation.

References
[AHU74] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer Algorithms,

Addison-Wesley, Reading, MA, 1974.

[BeM93] J. L. Bentley and M. D. Mcilroy, Engineering a sort Junction, Software-Practice and Experi-
ence 23 (1993) 1249-1265.

[BFP+72j M. R. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest and R. E . Tarjan, Time bounds for
selection, J . Comput. System Sci. 7 (1972) 448-461.

[Bro76] T . Brown, Remark on Algorithm 489, ACM Trans. Math. Software 3 (1976) 301-304.

[Chv79] V. Chvatal, The taił of the hypergeometric distribution, Discrete Math. 25 (1979) 285- 287.

22

Table 7.5: Numbers of comparisons per element made on small random inputs.

Size 1000 2500 5000 7500 10000 12500 15000 17500 20000 25000
avg

SELECT max
2.80
4.16
2.05

2.52 2.25
3.34 2.79
1.99 1.91

2.15
2.55
1.86

2.09
2.86
1.79

2.05
2.33
1.83

1.99
2.25
1.77

1.97
2.47
1.77

1.94
2.14
1.79

1.90
2.29
1.76 min

avg
QUICKSELECT max

min

2.75
5.28
1.00

2.72 2.75
5.01 6.00
1.59 1.58

2.71
5.35
1.61

2.73
5.61
1.60

2.72
4.66
1.59

2.73
5.38
1.60

2.76
5.65
1.55

2.75
5.42
1.59

2.72
4.80
1.59

Time [msec) C,vg/n
600

500

400

300

200

100
o o

o o
o o

QUICKSELECT•

o o
o

SELECT
o o

o

3.0 0 QUICKSELECT
- -• - - - - - - - - _ .. _ , _ _ t. _ -

2.5

2.0

1.0

0.5

.
SELECT

8 o
0+-~~~-~~-~~~--~~-.-..n 0+-~~-~~-~~~--~~~..--n

O 2 4 6 8 10 12 14 16 [M) O 2 4 6 8 10 12 14 16 [M)

Figure 7.1: Average running times and comparisons per element on random inputs.

[CuM89) W. Cunto and J. I. Munro, Avemge case selection, J. of the ACM 36 (1989) 270-279.

[DHUZ0l) D. Dor, J. Ha.stad, S. Ulfberg and U. Zwick, On /ower bounds for selecting the median, SIAM
J. Discrete Math. 14 (2001) 299-311.

[DoZ99)

[DoZ0l)

[FIR73]

[FIR75a)

[FIR75h)

[GeS96)

[GeS03)

[Grii99)

[Hoa61)

D. Dor and U. Zwick, Selecting the median, SIAM J. Comput. 28 (1999) 1722-1758.

---, Median selection requires (2 + €)N comparisons, SIAM J. Discrete Math. 14 (2001)
312-325.

R. W. Floyd and R. L. Rivest, Bounds on the expected time for median computations, in
Courant Computer Science Symposium, R. Rustin, ed., vol. 9, Algorithmic Press, New York,
NJ, 1973, pp. 69-76.

---, The algorithm SELECT-for finding the ith smallest ofn elements (Algorithm 489},
Comm. ACM 18 (1975) 173.

---, Expected time bounds for selection, Comm. ACM 18 (1975) 165-172.

A. V. Gerbessiotis and C. J. Siniolakis, Concurrent heaps on the BSP model, Tech. Report
PRG-TR-14-96, Oxford University Computing Lab., Oxford, UK, 1996.

---, Randomized selection in n+ C + o(n) comparisons, Information Proc. Letters 88
(2003) 95-100.

R. Griibel, On the median-of-k version of Hoare 's selection algorithm, Theor. Inform. Appl.
33 (1999) 177-192.

C. A. R. Hoare, Algorithm 65: FIND, Comm. ACM 4 (1961) 321-322.

23

[Hoe63) W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist.
Assoc. 58 {1963) 13-30.

[JoK69) N. L. Johnson and S. Kotz, Distributions in Statistics: Discrete Distributions, Houghton Mif
flin, Boston, 1969.

[Kiw02) K. C. Kiwiel, Randomized selection revisited, Tech. report, Systems Research Institute, War
saw, 2002. Available at the URL http://arxiv.org/abs/cs.DS/0204033.

[Kiw03a) ___ , Partitioning schemes Jor quicksort and quickselect, Tech. report, Systems Research
Institute, Warsaw, 2003. Available at the URL http://arxiv.org/abs/cs.DS/0312054.

[Kiw03b) ___ , Randomized selection with quintary partitions, Tech. report, Systems Research Insti
tute, Warsaw, 2003. Available at the URL http://arxiv.org/abs/cs.DS/0312055.

[Kiw04a) ---, Improved randomized selection, Tech. report, Systems Research Institute, Warsaw,
2004. Available at the URL http://arxiv.org/abs/cs.DS/0402005.

[Kiw04b) ___ , Randomized selection with tripartitiong, Tech. report, Systems Research Institute,
Warsaw, 2004. Available at the URL http://arxiv.org/abs/cs.DS/0401003.

[KMP97) P. Kirschenhofer, C. Martinez and H. Prodinger, Analysis of Hoare's FINO algorithm with
median-of-three partition, Random Stuctures and Algorithms 10 {1997) 143-156.

[Knu97) D. E. Knuth, The Art of Computer Programming. Volume I: Pundamental Algorithms, third
ed., Addison-Wesley, Reading, MA, 1997.

[Knu98) ___ , The Art of Computer Programming. Volume 111: Sorting and Searching, second ed.,
Addison-Wesley, Reading, MA, 1998.

[Kor78) V. S. Koroliuk, ed., Handbook on Probability Theory and Mathematical Statistics, Naukova
Dumka, Kiev, 1978 (Russian).

[MaROl) C. Martinez and S. Roura, Optima! sampling strategies in quicksort and quickselect, SIAM J.
Comput. 31 {2001) 683-705.

[MehOO] K. Mehlhorn, Foundations of Data Structures and Algorithms: Selection, Lecture notes,
Max-Planck-Institut fiir Informatik, Saarbriicken, Germany, 2000. Available at the URL
http://www.mpi-sb.mpg.de/-mehlhorn/Informatik5.html.

[MoR95) R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, Cam
bridge, England, 1995.

[Mus97] D. R. Musser, Introspective sorting and selection algorithms, Software-Practice and Experience
27 {1997) 983-993.

[PRKT83) J. T. Postmus, A. H. G. Rinnooy Kan and G. T. Timmer, An efficient dynamie selection
method, Comm. ACM 26 {1983) 878-881.

[RajOl)

[Rei85)

[Rob55)

[Sed77)

[Sib99)

[SPP76]

[ValOO]

S. Rajasekaran, Selection algorithms for parallel disk systems, J . Parallel Distributed Comp.
61 {2001) 536- 544.

R. Reischuk, Probabilistic parallel algorithms for sorting and selection, SIAM J. Comput. 14
(1985) 396-409.

H. Robbins, A remark on Stirling's formula, Amer. Math. Monthly 62 (1955) 26-29.

R. Sedgewick, Quicksort with equal keys, SIAM J. Comput. 6 (1977) 240-287.

J. F. Sibeyn, External selection, in STACS 99, Proc. of 16th Annual Symposium on Theoretical
Aspects of Computer Science, C. Meinel and S. Tison, eds., Lecture Notes in Computer Science
1563, Springer, Berlin, 1999, pp. 291-301.

A. Sch6nhage, M. Paterson and N. Pippenger, Finding the median, J. Comput. System Sci.
13 {1976) 184-199.

J. D. Valois, Introspective sorting and selection revisited, Software-Practice and Experience
30 (2000) 617-638.

24

