

Improved randomized selection

Krzysztof C. Kiwiel*
February 2, 2004

Abstract

We show that several versions of Floyd and Rivest’s improved algorithm SELECT
for finding the kth smallest of n elements require at most n + min{k,n — k} +
O(nY/21n*/? n) comparisons on average and with high probability. This rectifies the
analysis of Floyd and Rivest, and extends it to the case of nondistinct elements.
Encouraging computational results on large median-finding problems are reported.

Key words. Selection, medians, computational complexity.

1 Introduction

The selection problem is defined as follows: Given a set X := {z;}]_; of n elements, a
total order < on X, and an integer 1 < k < n, find the kth smallest element of X, i.e., an
element = of X for which there are at most £ — 1 elements z; < z and at least £ elements
z; < z. The median of X is the [n/2]th smallest element of X.

Selection is one of the fundamental problems in computer science; see, e.g., the refer-
ences in [DHUZ01, DoZ99, DoZ01] and [Knu98, §5.3.3]. Most references concentrate on
the number of comparisons between pairs of elements made in selection algorithms. In the
worst case, selection needs at least (2 +¢)n comparisons [DoZ01], whereas the algorithm of
[BFP*72] makes at most 5.43n, that of [SPP76] needs 3n+o(n), and that in [DoZ99] takes
2.95n + o(n). In the average case, for k < [n/2], at least n + k — O(1) comparisons are
necessary {CuM89)], whereas Knuth’s best upper bound is n + & + O(n/?In*/2 n) [Knu9g,
Eq. (5.3.3.16)]. The classical algorithm FIND of [Hoa61], also known as quickselect, has
an upper bound of 3.39n + o(n) for k = [n/2] in the average case [Knu98, Ex. 5.2.2-32),
which improves to 2.75n + o(n) for median-of-3 pivots [Grii99, KMP97].

The seminal papers [FIR75a, FIR75b] presented three versions of the algorithm SELECT
with very good average case performance, although their analysis had gaps, as noted in
[PRKT83] and [Knu98, Ex. 5.3.3-24]. Our recent papers [Kiw03b, Kiw04] rectified the
analysis of [FIR75b, §2.2] and extended it to the case of nondistinct elements. Specifically,
we showed that several versions of SELECT, close to those in [FIR75b, §2.1] and {FIR75a),
make at most n + k + O(n?3 In%/? n) comparisons on average.

*Systems Research Institute, Newelska 6, 01-447 Warsaw, Poland (kiwiel@ibspan.waw.pl)

1

This paper concentrates on versions of the improved SELECT from [FIR75b, §2.3], again
correcting its analysis and extending it to the case of nondistinct elements. We show that
they make at most n + k + O(n'/2In"2 n) comparisons on average.

Thus, apparently for the first time, Knuth’s best upper bound is attained by an imple-
mentable algorithm without restrictive assumptions. Specifically, Knuth’s scheme [Knu98,
Ex. 5.3.3-24] is not formulated precisely enough to qualify as an algorithm, it requires dis-
tinct elements in random order, and its samples are too large for efficient randomization
(since generating a random sample of size [n/2] takes too much time; cf. §6.3).

We also prove that nonrecursive versions of SELECT, which employ other linear-time
selection routines for small subproblems, require at most n+k+0(n!/? In!/? n) comparisons
with high probability; we couldn’t find such results in the literature. When sorting routines
are used, the bound becomes 7 + k + O(n/21n%?n).

Since our interest is not merely theoretical, a serious effort was made to implement the
various versions efficiently and to test them in practice. Our tests on the median-finding
examples of [Val00] show that the improved SELECT is as fast as the ternary version of
[Kiw04], although a bit slower than the quintary version of [Kiw03b]. All these versions
perform very well in terms of the number of comparisons made on large inputs, the average
numbers being about 1.6n for n = 1M, and as small as 1.53n for n = 16M. Since the lower
bound is 1.5n, little room for improvement remains. Of course, future work should assess
more fully the relative merits of these versions, but clearly the improved SELECT may
compete with other methods in both theory and practice.

The paper is organized as follows. A simplified version of SELECT that ignores some
roundings is introduced in §2, and its basic features are analyzed in §3. The average
performance of SELECT and its practical rounded versions is studied in §4. High probability
bounds for nonrecursive versions are derived in §5. Finally, our computational results are
reported in §6.

Our notation is fairly standard. |A| denotes the cardinality of a set A. In a given
probability space, P is the probability measure, and E is the mean-value operator.

2 The algorithm SELECT

We first recall that the standard version of SELECT proceeds as follows. By solving two
pivot selection subprablems over a random sample S from X, two elements u and v almost
sure to be just below and above the kth are found. The remaining elements are compared
with © and » to derive a reduced selection problem on the elements between u and v
that is solved recursively. In general, the size of the reduced problem (and hence its cost)
diminishes when a larger sample is used, but then the cost of pivot selection grows. To
balance these costs, the standard version employs a relatively small sample. In contrast, the
improved version uses a much larger “final” sample S, but u and v are selected iteratively
by using samples from S. More specifically, let S; C --- C 5 C Sp; = X be a nested
series of random samples from X. For each sample S, two pivots u; and v, are found such
that w; < zj < v with high probability, where z} is the kth element of X. In particular,
w = xf = v when S, = X. For | < I, the positions of 1,y and vy, in Sy, are chosen

so that v < wy; < vy < v with high probability, and hence u; and v can be used to

bound the search for v and vy;.
For clarity, we first describe SELECT in detail without some integer round-ups in sample

sizes, etc.; more practical versions are postponed till §4.2.

Algorithm 2.1.
SELECT(X, k) (Selects the kth smallest element of X, with 1 < &£ < n:=|X]|)

Step 1 (Initiation). If n = 1, return z;. Choose parameters a € (0,1/2}, s, :=n%, r > 1,
=1/r, 8> $(1—x)"?, and I such that n = r¥s,. Set 6 := k/n and | := 1.

Step 2 (Initial sample selection). Draw a random sample .S; of size s; from X. Set

_ [(Bsilan)? it <
gl'—{o =141, 21
iL :=max{[0s;—¢],1} and i =min{[0s+g),s}, (2.2)

uy 1= SELECT(S4,1L) and v; := SELECT(S1,4)) by using SELECT recursively.

Step 3 (Sample selection). Draw a random sample Sy of size s;41 := r%s; from X such
that S; C Sip1. (Here si41 — s; elements of X \ S; are picked randomly.)

Step 4 (Partitioning). By comparing each element = of S;.; \ S; to u := vy and v := v,
partition Sy into L:={z € Siy1 ez <u}l,U={s € Sy:z=u}, M :={z € Sy, :
u<z<vh Vi={z€Sm:zc=v}, Ri={z€ Si41:v <z} Ifd<1/2 zis compared
to v first, and to uw only if z < v. If 8 > 1/2, the order of the comparisons is reversed.

Step 5 (Pivot selection). (a) Set giyy, 4 := it and iF := 42+ via (2.1)-(2.2). (Here we
wish to find u[+1 and vy as the i} th and 7.+th smallest elements of Siyi.)

(b) If |L| < ¢f < |LUU, set w41 := u; else if [LUUUM]| < i} < 8141 —|R|, set uyg = v;
else set u,+1 = SELECT(S‘,,#), where 5, and i} are determmed as follows. If ¢} < |L},
set 5y, := L and &} := i}; else if 5,1 — |R| < zj, set 5, := R and &F := i} — sy + |R|;
else set 5'u =M and i} =1 — [LUU].

(c) Find vy, and possibly 5, and &, as in (b) with ¢} replaced by 2} and w4 by viyy.

Step 6 (Loop). If s;41 = n, return u;yy. Otherwise, increase ! by 1 and go to Step 3.

A few remarks on the algorithm are in order.

Remarks 2.2. (a) The correctness and finiteness of SELECT stem by induction from the
following observations. At Step 2, |S;| < |X|. At Step 5, S, and #} are chosen so that
the i} th smallest element of 5y, is the i} th smallest element of S, and 1S, | < 141 (since
u,v & 8,); similarly for S, and i+. The ﬁnal loop with { =7 has S;11 = X, gi41 = 0 and
iF = 0n =k, s0 wiy; = vy IS the desired element.

(b) After Step 5 the position of each element of Sy relative to u;; and vy is known.
Hence Step 4 need only compare u and v with the elements of S, \ S; (e.g., via one of
the quintary partitioning schemes of [Kiw03b, §6]).

(¢) The following elementary property is needed in §4.1. The maximum number of
comparisons taken by SELECT on any input of size n is finite, for each n (because the
recursive calls of Steps 2 and 5 deal with proper subsets of X).

3 Preliminary analysis

In this section we analyze general features of sampling used by SELECT.

3.1 Sampling deviations and expectation bounds

Our analysis hinges on the following bound on the tail of the hypergeometric distribution
established in [Hoe63] and rederived shortly in {Chv79].

Fact 3.1. Let s balls be chosen uniformly at random from a set of sy balls, of which p
are red, and p' be the random variable representing the number of red balls drawn. Let

p:=p/s;. Then
Pl >ps+g)<e ¥/ vg>o0 (3.1)
We shall also need a simple version of the (left) Chebyshev inequality [Kor78, §2.4.2).

Fact 3.2, Let 1 be a nonnegative random wvariable such that Pln < (] = 1 for some
constant (. Then En <t + (P[n > 1] for all nonnegative real numbers .

3.2 Sample ranks and partitioning efficiency

In this subsection we analyze in detail a fixed iteration [of SELECT.
For simpler notation, we drop ! from the subscripts and superscripts and replace [+ 1
by +. Thus let y7 < ...y; and 2§ < ... 2] denote the sorted elements of the samples 5

and Sy, so that u =y} , v =y}, uy. = 2, and vy = z;, where
i, :=max{[0s—-g],1} and ¢, :=min{[fs+g], s}, (3.2)

@7 r=max{[0s; —g4],1} and i :=min{[fs; + g4, 84} (3.3)

This notation facilitates showing that © < u, < vy < v with high probability. To deduce
that the number of elements between u and v is small enough, let

Ju r=max{[0sy —2gs,/s],1} and j, :=min{[0s; + 2g5,/5],54} (3.4)

be bounding indices; we shall see that zj, < u < v < 2} with high probability. Our
argument is similar to that of [Kiw03b, Lem. 3.3] because 5 may be regarded as a random
sample from Sy ; the key difference is that g4 # 0in (3.3) if | < [, in which case g is replaced
by (1 — x)g in our probability bounds. To this end, note that, since & := 1/r = (s/54)"/?,
(2.1) yields

1-—k)g ifl<li
9= g48/54 = { _c(]) otherwise. (3.5)

Lemma 3.3. (a) Pluy < u] < e 20010 4f 4, = [4s — g].
(b) Plu<z)] < e~
(c) Plv < vy] < e 20=9%"5 4f 4 = [hs + g].
(d) Plzt, <v] < e,
() tus# [0s—g| fff 6< g/s; i # [0s+gl iff 1<b+g/s.

4

Proof. (a) If 2}, <y}, at least s — 4, + 1 samples satisfy y; > 27,; with 7:= max;s—-, J.

In the setting of Fact 3.1, we have p := s, — 7 red elements z; > z},, ps = s — 7s/s4 and
p>s—i,+1 Sincei, =[0s—g] <fs—g+1and 7> i > 08s; — gy by (3.3), we get
s—1i,+1—ps>7Js/s —0s+g>g— gys/sy; thus ¢ > ps + (1 — x)g by (3.5). Hence
Pluy < u] < P[p’ > ps+ (1 — &)y}, and (3.1) yields the conclusion.

(b) If 9}, < 2},, i, samples are at most z;, where p = max,s<se J. Thus we have p
red elements z; < 2}, ps = ps/sy and o > 4. Now, 1 < p < j, — 1 implies 2 < j, =
[6@s, — 2gs+/s] by (3.4) and thus j, < @5, — 2gs+/s+ 1, so —ps/sy > ~0s + 2g. Hence
[, — DS —g>0s—g—ps/sy —g>0,ie, p > ps+g; invoke (3.1) as before.

(c) and (d): Argue symmetrically to (a) and (b}); ¢f. [Kiw03b, Proof of Lem. 3.3].

(e) Follows immediately from the properties of [-] [Knu97, §1.2.4]. [J

We may now estimate the partitioning costs of Step 4.
Lemma 3.4. Let ¢ := ¢; denote the number of comparisons made at Step 4. Then
Ple<g]>1—e 2/ gnd Ec<c+2(sy—s)e™@7° with (3.6a)
¢:=(1+min{8,1-0})(sy —)+ 3gs+/s. (3.6b)

Proof. Consider the event A := {c < &} and its complement A’ := {c > ¢}. If u = v then
¢ =384 — 5 < g, hence P[A'] = P[A' N {u < v}}, and we may assume u < v below.

First, suppose ¢ < 1/2. Then ¢ = sy —s+ |[{z € 5; \ S : z < v}/, since s, ~ s
elements of S, \ § are compared to v first. In particular, ¢ < 2(s; — 5). If v < 2}, then
{z€8 z<v}C{zeSy z<z gives [{z€ S, 1 2< v} < gy — 1 <05, +295,/s
by (3.4), whereas u < v implies [{z € S:z< v} > |{z€e Sz <u}| 21, >0s—3g
by (3.2), so {z € Sy \ S : z < v}| < O(s4 — s) + 2gs4/s + g yields ¢ < & Thus
u < v < 7, implies A Therefore, A’ N {u < v} implies {2}, < v} N {u < v}, so0

PlA' N {u < v}] < Pz}, < v] < e %% (Lem. 3.3(d)). Hence we have (3.6), since

Ec < &+ 2(sy — s)e~27 by Fact 3.2 (with 5 :=¢, 1= 2(s4 — s)).

Next, suppose & > 1/2. Now ¢ = s; —s+ [{z € St \ S : u < 2z}, since sy — s
elements of Sy \ S are compared to u first. If zf, < u, then {z € Sy ru <z} C{z¢€
Sy izl < zpgives [{z € Sy tu <z} £ sy —Ju < 54 — 054 + 295, /s, whereas u < v
impliess {z € Stu<z}2>2|{zeS:v<z} >2s5~i,+12>s—-0s—g+1, s0
{ze S \S:u<z} <(1-80) s+—s)+293+/s+g—1y1eldsc<c Thus A’ N {u < v}
implies {u < 2},} N{u < v}, s0 PlA' N{u < v}] <Plu<z}]<e™® s (Lem. 3.3(b)), and
we get (3.6) as before. [

The following result will imply that the sets 3, ‘and s, selected at Step 5 are “small
enough” with high probability. Let § := & := =18,U8,]; welet S, := P (or 5, := @) if Step
5 doesn’t use S, (or S,), but we don’t consider this case exphcltly

Lemma 3.5. P[5 < 4gsy/s] > 1 — Pry and § < s always, where

Ppait := Pra(n) 1= 267297/ 4 2¢=20=m0%s = 97720 4 9 =21=m0 < 4 ~21-m"6 (3.7)

Proof. First, consider the middle case of 5, = [0#s — ¢g] and 1, = [6s + g|. Let &
denote the event 2, < u < uy < vy < v < 2f. By Lem. 3.3 and the Boole-Benferroni
inequality, its complement &' has P[€’] < Py, 50 P[€] > 1—Pgy. By the rules of Steps 4-5,
u<uy <vp < vlmphesS US C M, whereas z;, <u < v < zj, yields § < j,—Ju+1-2;
since j, < 0s4 + 2gs+/s+ 1 and j, > 05, — 2gs./s by (3.4), we get § < 4gs4/s. Hence
P[5 < 4gs/s]) = P[€]. Then (3.7) follows from (2.1) and the fact x € (0, 1).

Next, consider the left case of i, # [6s—g], i.e., 8 < g/s (Lem. 3.3(¢e)). If i, # [6s+9],
then 1 < 6’+g/s (Lem. 3.3(e)) gives § < s < 2gs+/s For 4, = [fs + g], Pjvy < v <

Z]>1- "me] by Lem. 3.3(c,d). Now, vy < v implies S.u8, c LUM, whereas v < 25
nges 8§ < jy— 1< 0sp 4 2gs,/s < 3gs,/s; hence P[§ < 4gs, /5] > Plo, < v < 2).

Finally, consider the right case of i, # [0s+g], i.e.,, 1 < 8+ g/s. If i, 5 [0s— g] then
0 < g/s gives 3 < s, < 2gs,/s. For i, = [fs~g], we have P[z}, < u < uy) > 1— 4Py by
Lem. 3.3(a,b). Now, u < u, implies S8,U8, © MU R, whereas 25 < uylelds § < 5¢ ~ Ju
with j, > sy — 2gs;/s and thus § < 3gs./s, so P[§ <4gs,/s] > Pz}, <u< uy). O

Corollary 3.6. Plc < and § < 4gs4/s] = 1 — Pgy.

Proof. If 29/s > 1 then ¢ < 2(sy — 5) < € (cf. (3.6b)) and § < s; < 4gs4/s, so assume
2g/s < 1. The conclusion follows from the proofs of Lems. 3.4 and 3.5. We only note that
the left case of § < g/s now has i, = [#s + g] and 6 < 1/2. Similarly, in the right case of
1< 6+ g/s, we have i, = [8s — g] and 8 > 1/2, since g/s < 1/2. O

Remark 3.7, Suppose for [< I, Step 5 resets i} := it if 8 < g1/sp, or &7 =4} if
1 < 8 + g141/8141, finding a single pivot u, = vy in these cases. The preceding results
remain valid for this modification (which corresponds to using u 1= v if 0 <g/s,orv:=u
if 1 < 8+g/s). Similarly, Step 2 may reset il := il if 6 < g;/s), or it := 3L if 1 < 8+g1/51.

4 Average performance of the recursive version

4.1 Analysis of the nonrounded version

In this section we analyze the average performance of SELECT, starting with the “non-
rounded” version of Algorithm 2.1; more practical versions are discussed in §4.2.

Theorem 4.1. Let C,; denote the expected number of comparisons made by SELECT, and
f@) := (¢tInt)*? for t > 1. There ezists a positive constant v such that

Cok <n+min{k,n—k}+vf(n) foralll<k<n. (4.1)

Proof. We need a few preliminary facts. The function ¢(t) := f(t)/t = (Int/t)¥/? de-
creases to 0 on [e, co), whereas f(t) grows to infinity on [2, c0). The key bounding property
is f(t) = ¢(¢)t < p(D)t forall t > ¢ > e. Pick 7 > 2 large enough so that s, > e, 4r2g; > e,
n*+1 < f(n) and n < r2s; for all n > A. Using o € (0,1/2] and the bounding property,
we have

s1 < f(n) and f(s1) < ¢(s1)f(n). (4.2)

6

By (3.7) and our assumption g > 41(1 — k)72, we have nPry(n) = o(f(n)); more precisely,
nPgu(n) < dnl201-R)8 4f(n)n1/2_2(1_”)25 In~Y2p, (4.3)

Using the monotonicity of ¢, we may increase 2 if necessary to get for all n > 7

22 —r 2r? —1 2
B(s1) + 47—1,61/2¢(4r2g1) +d— P(rs)n 2= B =Y < 0475, (4.4)

since each term above goes to 0 as n increases to co. By Rem. 2.2(c), there is v such that
(4.1) holds for all n < 7; increasing ~ if necessary, we have for all n > 7

3+15 ﬁl/z M V2=20-R 1y =12 < 0,05n. (4.5)

Let n' > 7. Assuming (4.1) holds for all n < #/, for induction let n =n' + 1.
Since 81 < n, by our hypothesis the cost of selecting u; and v; at Step 2is a. _ost

Csu’,{ +Caiy < 351+ 27f(51) (46)

11y =

Similarly, the cost of selecting w1 and vy1 at Step 5 is at most 3§; + 2y f(§;), where § <
si+1 and P[§ > 4g;5141/81] < Prau by Lem. 3.5. Hence (cf. Fact 3.2 with n := 38, +27f(§))

E[38 + 2vf(5)] < 125141 /51 + 2vf(Agisiir/s0) + [3see1 + 27f (s141) | Praity 1= 1:1
i 4.7)
For 6 := min{, 1 — 6}, the partitioning cost of Step 4 is estimated by (3.6) as
Eq < (1 + 9) (141 — 80 + 3guseer/ s+ A(see1 — 81)Peat, {= 101 (4.8)

Adding the costs (4.6)—(4.8) and using sz, = n, we get

]

T
Cor < (1 + 0) (n — 81) + {381 +15 lZ;ngz_'_l/S[+ %Pfail(n — 31) + 3Pgaillz:sl+1 (4.9&)
= =1

7 i
+ 2 l:f(sl) + Z f(4glsl+1/sl) + Pfa-,] Z f(51+1) . (49b)
=1 I=1
Since 8 := k/n, the first term on the right side above is at most n + min{%, » — k}. Next,

for d := (Blnn)"/2, (2.1) yields gisi1/s; = ds;+1/sll/2 for | < 1. Since 5 = r*(~Ys, for
1 <1, and n > r2Vs; implies r'~! < (n/s1)?, we obtain

-1 -1 12 L 2Tf—1 -1 r?
S gsua/si =3 drt*tls}? = dr¥si/*———= < BV f(n) —
=1 =1 r—1 r—1
But gpspe1/s; = dn/s)’* = fY2f(n)(n/sp)¥2 and n < r2sp imply grsp, /st < BY2f (n)r, so
7T

2 —
Zglsm/sz < B2 f(n) ('—'1 + T) = ﬁl/zf(")z‘:zfl—' (4.10)

7

Similarly, using s;41 = r%s; for I <1, sz, = n and 7279 < n/s;, we get

r2-1 1 n—s 2r? —1
Zs;+1—512r21+n—r31] +n<T2T2_1+n< T n. (4.11)

Plugging (4.2), (4.3), (4.10) and (4.11) into (4.9a), we see that the bracketed term is at
most 0.05yf(n) thanks to (4.5). Next, for [< [we have 4gsi11/85 > 4r2g1 (cf. (2.1)),
whereas grsp1/s; < Y2 f(n)r with 482 f(n)r > 4r%g, from n > r2s;; therefore, we may
use the bounding property and argue as for (4.10) to get

i -1
Zf(49181+1/31) < p(4rigr)4 (ZglsHl/Sl + ﬁl/gf(")T) < 4 ﬂl/2¢(47‘ @) f(n).
= =1
_ (4.12)
Similarly, s;11 = r?s; > r2s, for | <[and sz, = n > r?s; together with (4.11) imply

J y 2w2—1 .,
Zf(sl-H) < P(resy) ZSHI < 21 $(r*s1)n. (4.13)
=1 =1

Now, plugging (4.2), (4.12) and (4.13) combined with (4.3) into (4.9b), we deduce that
(4.9b) is at most 0.95yf(n) due to (4.4); thus (4.1) holds as required. [J

4.2 Analysis of rounded versions

We now consider more realistic parameter choices for SELECT.
Fixing @ € (0,1/2], 7 > 1 such that 72 is integer, k := 1/r, 8 > %(1 — k)72, suppose
Steps 1 and 3 set

sy:=min{[n*],n —1}, (4.14)
I':= min {l crls) > n} = [ln(n/sl)/lnrﬂ , (4.15)
8141 := min { s, n } = min { r2s,n } . (4.16)

Note that (4.14)—(4.16) yield sy = 125, if [< I, sy = n > r20-Ds). It is easy to see
that the proof of Theorem 4.1 covers this modification.

The final iteration [doesn’t need sampling, since Sp,; = X. Hence, to reduce the
sampling costs, we may wish to ensure that s;, the number of sampled elements, is at most
a fixed fraction 7 € (1/7%, 1] of n when n is large. To this end, suppose that for

n > max { [r¥(7r® ~ 1)]/*,3 }owith e (1/r1], (4.17)
we replace (4.14)-(4.15) by
[:= min {l cr¥ne > n} = [(1 —a)lnn/ln 72] , (4.18)

81 = (n/'rﬂ-’ . (4.19)

