
Raport Badawczy

Research Report
RB/64/2004

An Inexact Bundle Approach
to Cutting Stock Problems

Krzysztof C. Kiwiel

Instytut Badań Systemowych
Polska Akademia Nauk

Systems Research Institute
Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badań Systemowych

ul. N ew el ska 6

O 1-44 7 Warszawa

tel.: (+48) (22) 8373578

fax: (+48) (22) 8372772

Kierownik Pracowni zgłaszający pracę :

Prof dr hab. inż. Krzysztof C. Kiwiel

Warszawa 2004

An inexact bundle approach to cutting-stock problems*

Krzysztof C. Kiwielt

December 30, 2004

Abstract

We show that the LP relaxation of the cutting-stock problem can be solved efficiently
by the recently proposed inexact bundle method. This method saves work by allow
ing inaccurate solutions to knapsack subproblems. With sui table rounding heuristics,
our method solves almost all the cutting-stock instances from the literature.

Key words. Nondifferentiable convex optimization, Lagrangian relaxation,
integer programming, bundle methods, knapsack problems, cutting-stock.

1 Introduction

The cutting-stock problem (CSP) is usually solved by LP-based column generation, round
ing heuristics and branch-and-bound; see, e.g., [BeS02, BeS04a, DeP03, DeS99, Van98,
Van99]. Since column generation applied to its LP relaxation may converge slowly, there
is interest in stabilized variants based on LP or QP [BADF04, BAVdC04, BLM+os]. Al
ternatively, the highly efficient hybrid approach of [DeP03] generates additional columns
by applying subgradient optimization to its Lagrangian relaxation.

In this paper we show that its LP relaxation can also be solved efficiently by the inexact
bundle method of [Kiw04]. This QP-based method saves work by allowing inaccurate
solutions to Lagrangian subproblems. For the CSP, each subproblem is a knapsack problem
(KP). We give a simple test for inexact KP solutions that works quite well in practice.
Further, by using relaxed bounds, we avoid the difficulties arising when a bounded KP is
transformed into a 0-1 KP [Van02]. Next, by adapting the ideas of [BeS02, Hol02, Sta90,
Wii.G96] to our inexact framework, we give rounding heuristics that salve almost all the
CSP instances from the literature; in particular, they beat the best heuristics of [Wii.G96].

In effect, our inexact KP solutions, bound relaxation and rounding heuristics should
be of interest also for other column generation approaches to the CSP.

Our work was inspired by [BLM+os], where the CSP's Lagrangian relaxation is solved
by a standard (exact) bundle method. Thanks to inexact KP solutions, our method is
much faster in practice than all the algorithms tested in [BLM+os, §2.2] (see Rem. 5.1).

"Research supported by the State Committee for Scientific Research under Grant 4TllA00622.
!Systems Research Institute, Newelska 6, 01-447 Warsaw, Poland (kiwiel©ibspan. waw. pl)

1

The paper is organized as follows. In §2 we recall the classic CSP model of [GiG61] and
introduce inexact KP solutions for its Lagrangian relaxation. Our rounding heuristics are
given in §3 in a generał form suitable for other approaches. The inexact bundle method is
reviewed in §4. Our computational results are presented in §5.

2 Lagrangian relaxation of the CSP

The one-dimensional cutting-stock problem (CSP) is to minimize the number of stock
pieces of width W used to meet the demands d, for items to be cut at their widths
w, E (O, W], for i = 1, ... , m. The bin-packing problem (BPP) is a special case of the CSP
with unit demands.

2.1 The Gilmore-Gomory model

This classic model [GiG61] is formulated as follows. Denote the set of cutting patterns by

Let Zp be the number of times pattern p is used. The original model has the form

min L Zp s.t.
pEP

"'"' IPI ~ pzp 2: d, z E ~+ .
pEP

For Lagrangian relaxation we augment this model with the redundant constraint

LZP::; N,
pEP

(2.1)

(2.2a)

(2.2b)

where N is an upper bound on the optima! value of (2.2a) (e.g., N= L; d,); this ensures
boundedness of the ground set Z := { z E ~!;1 : Lp zp ::; N}. Relaxing the demand
constraint LpPZp 2: d with a price vector u yields the Lagrangian L(z; u) := Lp Zp + u(d
LpPzp) and the dual Junction

0(u) := min {L(z; u)= ud+ L p(l - up)zp}. ~z ~
(2.3)

The Lagrangian subproblem above may be solved by finding a solution p(u) of the KP

p(u) E Argmax{up: wp ::;'. W,p E ~'.;.'} (2.4)

and taking Zp(u) = N, Zp = O for p c/ p(u) if up(u) > 1, z= O otherwise, thus producing

0(u) =ud+ N [1 - up(u) L, (2 .5)

where [·]- := min{·, O}. Let vcc and vff? denote the optima! values of (2.2) and its LP
relaxation, respectively. It is well known that vff? coincides with the dual optima! value

0. := max{ 0(u): u E JR'.;.'}.

2

(2.6)

Experiments show that u := w/W is a good initial estimate of solutions to the La
grangian dual (2.6) [BAVdC04, §4), [BLM+os, §2] . In fact u minimizes the relaxed dual
function

0LP(u) :=ud+ N [1 - uE(u)]_, (2.7)

where p(u) solves the LP relaxation of (2.4). Indeed, since 0LP(u) = ud ś vGG ś N , we
see that -d = -N(ud/N)(d/ud) is a subgradient of the second term of (2.7) at u.

2.2 Inexact KP solutions

To strengthen our relaxation, we may consider only proper patterns p such that

pśb with b; :=min{d; , LW/w;J}, i=l:m. (2.8)

Indeed, adding the bound p ś b to (2.1) and (2.4) does not change vae, but it may raise
vf}? [NST99]. Then the column generation subproblem (2 .4) becomes a bounded KP,
which can be turned into a 0-1 KP via the transformation of [MaT90, §3.2]. However,
this transformation may duplicate solution representations, thus creating difficulties for
0-1 KP solvers [Van02]. To avoid duplicates, we may use the relaxed bound

p ś b' with b; := i 10g2 (b,+1)l - 1, i = 1: m, (2.9)

which corresponds to replacing d; in (2.8) by the smallest number 2i - 1 2'. d;, j 2'. 1
(2d; - 1 in the worst case); the number of transformed variables is the same. We solve the
transformed KP by a double precision version of procedure MTlR of (MaT90] (because
more recent KP solvers [KPP04] accept integer data only). To reduce its work, we allow
MTlR to find an approximate solution for a given relative accuracy tolerance E, . Namely,
the backtracking step exits if (2'. (1 - E,)(, where (:= up for the incumbent pand (is
MTlR's upper bound on up(u) . Hence, by (2.5), we have the accuracy estimates

ę_(u) :=ud+ N (1 - n_ ś 0(u) ś 0(u) :=ud+ N (1 - ()_,

0(u) - ę_(u) ś N ((- () ś NE,(.

(2.10a)

(2.10b)

For a norma! exit with an optima! p = p(u), we may replace (by (and Er by O in (2.10) .

3 Heuristic rounding of relaxed solutions

Typical rounding heuristics proceed as follows. A solution z of the LP relaxation is rounded
into an integer solution z. A sequential heuristic applied to the residua/ problem (2.2) with
d replaced by d' := d - I:P pzp delivers a residua! solution z. Then the sum z+ z serves as
a possibly inexact solution of (2.2) (which is exact if its value is equal to a !ower bound on
VGG; e.g., r vff?l) , Since for simple rounding down (z= LzJ), the residua] problem may be
too large to be solved optimally by a heuristic, some components of z may be increased
[Hol02, STMBOl]; however, ifthe residua! problem becomes too small to produce a solution
to the original problem, some components of z may be decreased [BeS02] .

3

In §3.1 we give a generał rounding procedure, which augments the ideas of [BeS02,
Hol02] with the oversupply reduction of [Sta90]. As for sequential heuristics, in §3.2
we describe minor (but useful) modifications of the first-fit-decreasing (FFD) of [Chv83]
and the heuristics of [BeS04b, Hol02]. Since it pays to call lighter heuristics first, useful
combinations of rounding and sequential heuristics are detailed in §3.3.

3.1 A generał rounding procedure

Numbering the patterns so that P = {pi}J=I• we may write (2.2a) as

n

min LZi s.t.
j=l

n

Lpizi?. d, z E ?l~.
j=l

(3.1)

Given an incumbent solution z* of (3.1) (e.g., found by FFD) and a point z E IR~ (e.g.,
found by LP relaxation), the following procedure attempts to improve z* by calling a
heuristic on residua! problems derived from rounded variants of z. Lete := (1, ... , 1) E lRn.

Procedure 3.1 (Rounding procedure).
Step 1 (Rounding down). Set z:= lzJ and d' := d - I:,ipizi. Sort the fractional parts
Tj := Zj - Zj so that Tj, ?. ... ?. Tin• and set fi:= l{j: Tj > O}I-

Step 2 (OveTsupply Teduction) . While d' ;2'. O, pick J to maximize

L Wi min { p{, -d: } (3.2)
i:d~<O

over j s.t. Zj > O, set z5 := z5 - l and d' := d' + p1.

Step 3 (Partial TOUnding up). Set I := 0. For i = 1: fi, if pi< :c=; d', set zi, = Zj, + l,
d' := d' - pi<, I:= I U fa}.

Step 4 (Heuristic improvement). Using a heuristic, find a feasible point z for the residua!
problem (3.1) with d replaced by d'. If ez+ ez< ez*, set z*:= z+ z.

Step 5 (Residual problem extension). If I ie 0, remove from I its last entry j, set
Zj := zi - l, d' := d' + pi and return to Step 4.

If z solves the LP relaxation of an equality-constrained CSP, aur procedure reduces to
the one in [BeS02, §2.5]; otherwise Step 2 (due to [Sta90, Fig. 3]) helps. Following [BeS02,
§5.2], aur implementation allows at most ten returns from Step 5.

One of our heuristics uses the following modification of Step 3, based on the ideas in
[Hol02, §3.2].

Step 3' (Partia/ rounding up). Set I := 0, K := {j : pi :c=; d', Tj > O}. While K ie 0,
pick I to maximize L,;JJ; over j E K, set z5 = z5 + l, d' := d' - p1, I := I U {J},
K := {j E K: pi :c=; d',j f J}.

4

3.2 Sequential heuristics

We now describe our heuristics for the residua! problem (2.2a) with d replaced by d' ~ O,
assuming w1 ~ ... ~ Wm .

Our implementation of FFD works as follows. Set z := O, d" := d'. While d" eł O,
generate the next pattern p by setting

(3.3)

set 1,, := min{ld7/p;j : p; > O}, Zp := Zp + "', d" := d" - 1,,p. The version of [Chv83, p. 208]
employs 1,, = 1, and hence is less efficient for large demands.

Our modification of the sequential heuristic procedure (SHP) of [Hol02, §3.2], given a
price vector u E lRm (e.g., an approximate solution of (2.6)) and a price tolerance Utol > O
for rounding errors (we use Uto! = 10-12), sets ii; := max{ u;, Ut0 1} for i = 1: m and replaces
the FFD formula (3.3) by the bounded KP

p E Arg max { iip : wp ::; W, p ::; d", p E a'.';' } . (3.4)

Our implementation of the sequential value correction (SVC) heuristic of [BeS04b, §2]
records the best solution found by calling SHP at most thirty times with ii modified as
follows. Initially ii; := max{l, Wu;}, i= 1: m. If wd" 'i, W, then after solving (3.4) and
updating d", for i such that p; > O, set

u; := [')';U;+ (W/wp)wf-04] / (1'; + 1) with ')'; := rl; (d; + d;') /p;, (3.5)

for !1; picked randomly in [1/n;, n;], where n; is chosen at random in [1, 1.5]. An early
exit occurs if SHP finds z such that ez+ ez = r 0(u) l, in which case z* := z+ z is optima!.

3.3 Combinations of rounding and sequential heuristics

We now give more details on the five heuristics used in our experiments.
Our initial heuristic HO calls FFD with d' = d (i.e., on the original problem) to initialize

the incumbent z* := z and the upper bound N := ez*.
The remaining heuristics use an extension of Procedure 3.1 with a copy of Step 4

inserted after Step 1; the sequential heuristics employed at these steps are listed below.
Our periodic heuristic Hl is called by the bundle method (every twentieth iteration,

starting from iteration k = m + 1) with the current relaxed solution z := zk and the !ower
bound & :::; 0 •. Hl calls FFD, exiting if ez* = rnk l, since then z* is optima!.

Our finał heuristics H2, H3 and H4 are called successively upon termination of the
boundle method, using the finał z := zk, u := uk and &. H2 employs both FFD and
SHP, H3 just SHP and the modified Step 3', whereas H4 uses SVC. Of course, H3 and H4
(or just H4) are not called if H2 (or H3) exits with ez*= r&l, whereas svc exits when
ez+ ez= ręki.

5

4 The inexact proximal bundle method

We now sketch the main features of the inexact bundle method of [Kiw04].
Our method generates trial points uk E IR'.;', k = 1, 2, ... , at which the dual function

0 is evaluated (possibly inexactly) as described in §2.2. Specifically, for each k, set pk to
the (possibly inaccurate) KP solution p satisfying the bounds of (2.10) for u= uk, and !et
(k := (, (k := (. Recalling (2.3), define the associated Lagrangian solution zk by setting
z; := N, z: := O for q =fp if ~ > 1, zk := O otherwise. Thus we have the !ower bound
fl(uk) ::; 0(uk) and L(z\ uk) = 0(u) in (2.10); in particular,

k k k (-) -L(z ;u)-0(u)::;N (k-(k ::;Ncr(k . (4.1)

Further, by (2.3), the following linearization of 0 at uk majorizes 0(u) for all u:

0k(u) := L(z\ u)= ud+ { N (1 - upk) if zk =f_O,
O otherw1se.

(4.2)

Iteration k uses the polyhedral cutting-plane model of 0

(4.3)

for finding
(4.4)

where tk > O is a stepsize that controls the size of luk+1 -ukl and the prox center uk := uk'
has the value 0~ := 0k,(uk') for same k'::; k (usually 0~ = maxJ=10i(ui)). If necessary, the

stepsize tk is increased and uk+I is recomputed until the predicted ascent 0k(uk+l) - 0~ is
sufficiently positive. An ascent step to uk+1 := uk+1 with k' := k + 1 occurs if

(4.5)

for a fixed 1,, E (O, 1) (we use 1,, = 0.1). Otherwise, a null step uk+I := uk improves the
next model 0k+I with the new linearization 0k+I as stipulated in (4.3).

If we omitted the quadratic term in (4.4), the resulting cutting-plane method could
generate uk+1 far from the previous points, and it would require storing all linearizations
(Jk = {l, . .. , k} in (4.3)). In contrast, the quadratic term usually keeps uk+l close enough
to the best point found so far, and it allows limiting the number of stored linearizations.

We salve subproblem (4.4) with the QP routine of [Kiw94], which finds its multipliers
{vJ}iEJ• C IR+, also known as convex weights, such that L-jEJ• vj = l and the set Jk :=
{j E Jk : vj =f O} has at most m + 1 elements. We set Jk+ 1 := Jk U {k + 1} and then, if
necessary, drop from Jk+I an index j E Jk\Jk with the largest 0i(uk+I) to keep IJk+ll:::; M
for a fixed M 2". m + 2.

Combining the accumulated Lagrangian solutions {zi}iEJ" with their weights {vj}iEJ•,
we may estimate solutions to the LP relaxation of (2.2) via the aggregate primal solution

(4.6)

6

In other words, z;; = Nvj for nontrivial patterns pi indexed by J;, := {j E Jk : zi i= O}
(which need not be stored, since they can be recovered from '70i = d - Npi; see (4.2)).
Our heuristics also use the lower bound iJ.Jc := maxi$kfl.(ui) on 0. = vfi (cf. (2.6)).

We now point out some useful consequences of the convergence analysis in [Kiw04, §5] .
The LP relaxation of (2.2) may be written as

vff? := min {;0 (z) := L zp s.t. {;(z) := d - L pzp::; O, z E conv Z. (4.7)
pEP pEP

Lete := supk[0k(uk)-0(uk)] be the maximum evaluation error; by (4.1), we have e::; l :=
Ner supk (k- Consider the set of e-optimal solutions of the LP relaxation (4.7):

Z, := z E conv Z: '1/Jo(z) ś vLP + E, '1/J(z) ś O . { - GG - } (4.8)

The lim i ts 0'f: : = limk 0ż, fl,,, : = limk iJ.Jc satisfy 0'f: E [vf f, vf f + ej, fl,,, E [0'f: - l, vf j], and
there exists Kc {1, 2, ... } such that limkEK {;0(zk) = 0'f: and limkEK maxb1 {;;(zk) ś O;
in particular, the bounded sequence { zk hEK converges to the e-optimal set Z,. The
accuracy observed in practice corresponds to such estimates with e and l determined by
the maximum errors 0k(uk) - 0(uk) and 0(uk) - fl.(uk) that occur for large k; since both
errors are at most N((k - (k), where the KP gap (k - (k is usually tiny for large k, small
values of E and l can be attained if the algorithm runs long enough.

We stop if min{vk, l1rkl + ak} ś Eopt(l + l0ŻI), where Vk is given in (4.5), 1rk := (uk -
uk+1)/tk, ak := Vk - tkl1rkl 2 and Eopt > O is an optimality tolemnce (cf. [Kiw04, §4.2]) . For
Eopt = 10- s, iJ.Jc usually agrees with 0. in at least 8 digits, enough for our purposes.

5 Computational results

5.1 Data sets

In our computational experiments, for the CSP we use the 28 industrial instances of
[Van98], the 10 industrial instances of [Van99], and the 20 industrial instances of [DeS99].
In addition, we use the following randomly generated instances: the 4000 instance of
[WaG96], the 3360 instances of [DeP03] and the 120 instances of [Van99]. For the BPP,
we use the 540 randomly generated instances of [DeP03], and the 160 instances from the
BINPACK collection of the OR-Library [Bea90].

The instances of [WaG96] are constructed by the CUTGENl generator [GaW95], using
the following parameter values: the number of orders m = 10, 20, 30, 40, 50, the width
W = 10,000, the interval fr action c = 0.25, 0.5, O. 75, 1, and the average demand J = 10, 50.
The widths w; are uniformly distributed integers between 1 and cW. For m uniform
random numbers R1 , . .• , R-m E (O, 1), the demands d; := LR,:•.':~,,.J for i < m, and
dm := md - Li<m d; (in fact slightly more complicated formulas are used [GaW95]).
Duplicate widths are aggregated by summing their demands. Combining the different
values for m, c and J results in 40 classes; in each class, 100 instances are generated.

The small-item-size instances of [DeP03] are generated similarly for m = 10, 20, 30, 40,
50, 75,100, c = 0.25, 0.5, 0.75, 1 and J = 10, 50,100, except that R1 , . .. , R-m E (0.1, 0.9)

7

for the demand distribution. In the medium-item-size instances of [DeP03], only ii= 50 is
used and the widths are uniformly distributed on [wmin, cW], where Wmin = 500, 1000, 1500.
Both cases have 84 data classes, and 20 instances are generated in each class.

The instances of [Van99] comprise 6 classes with m = 50, and 20 instances per class.
The first three classes are generated like those of [WiiG96] above with c = 0.25, 0.5, O. 75
and ii= 50, the next two classes have widths in [500, 2500] and [500, 5000] with ii= 50,
and the sixth class has widths in [500, 5000] and ii= 100.

In the BPP instances of [DeP03], m = 500 or 1000 weights are uniformly distributed
in the intervals (1,100], (20,100], (50,100] as in BPPGEN (ScW97], and the capacity
W = 100, 120, 150; identical items are aggregated for the corresponding CSPs. In each
of the 18 resulting classes, 20 instances are generated. The modified BPP instances of
[DeP03] use m = 500, the weight intervals (1, 10000], (2000, 10000], (5000, 10000], and the
capacity W= 10000, 12000, 15000, again with 20 instances per class.

The BINPACK instances from the OR-Library (Bea90] comprise two categories. The
uniform category has the capacity W = 150, m weights uniformly distributed in the
interval [20, 100], and 20 instances generated for each value of m = 120,250,500, 1000.
(The classes with m = 500, 1000 also appear in the BPP category of [DeP03], but with
different instances.) In the triplet category, each bin of capacity W = 1000 is filled
with exactly three items (the first item w' is picked in [380,490], the second item w" in
[250, (W - w')/2), and the third item equals W - w' - w") . There are 20 instances for
each value of m = 60, 120, 249, 501.

5.2 Implemented variants

Our codes were programmed in Fortran 77 and run on a notebook PC (Pentium M 755 2
GHz, 1.5 GB RAM) under MS Windows XP.

For solving the dual problem (2.6), we used a general-purpose bundle code that treats
subgradients as dense vectors in double precision. A faster code could exploit the fact
that each subgradient of 0 has the form '70k = d or '70k = d - Npk (see (4.2)), with a
common integer part d and an integer sparse knapsack solution pk. Ignoring sparsity, our
code requires m x M memory locations for storing up to M 2: m + 3 subgradients, and
additional workspace of order M 2 for solving the QP subproblem (4.4) with the routine of
[Kiw94]. We used M = m + 3 to test how "minimal" bundle performs.

The bounded KPs arising in column generation and SHP were solved by the modified
version of MTlR (cf. §2.2) with the accuracy tolerance Er = 10-s_ For smaller values of
Er, we could not solve even some small instances in reasonable time (e.g., problem 28p0
in Tab. 5.9 took 28.30, 40.99 and 67.13 seconds for Er= 10-13 , 10-14 and O, respectively) .
For column generation, we used the relaxed bounds of (2.9), because the tighter bounds
of (2.8) produced longer computing times. In contrast, SHP employed in (3.4) the natura!
bounds given by (2.8) with d replaced by d".

Our implementation of the rounding procedure of §3.1 is slower than necessary because
the patterns are recovered as pi= (d - '70i)/N, instead of being stored separately.

8

5.3 Results for the cutting-stock problem

To ease comparisons, we follow closely the presentation of [DeP03]. Every data class is
identified by three parameters: the number of items m, the interval in which the widths
are distributed denoted by int, and the average demand d. An indicator "all" for any of
these parameters means that the reported results are aggregated over all relevant values
for that particular parameter. If a parameter is constant for all instances represented in a
table, its value is indicated in the table heading.

Our results for the small-item-size instances of [DeP03] with d = 50 are reported in
Table 5.1. The columns mav and m~v give the average numbers of items and variables
in the associated 0-1 knapsack subproblems. The columns iav and imx report the average
and maximum numbers of iterations of the bundle code. The columns tav and tmx give
the average and maximum running times in wall-clock seconds. The column n. lists the
numbers of "early'' terminations due to discovering that ez* = r~ l for the incumbent
z* delivered by HO or Hl before bundle terminated on its own. Recall that Hl is called
after HO, H2 after Hl, etc., unless ez* = rttk l occurs earlier. The columns labelled Hl
through H4 give the numbers of instances in which the corresponding heuristic found the
best prima! value ez* first (for the remaining instances ez* was found by HO); a zero entry
means that heuristic was not called or did not contribute usefully. The finał column n9

reports the numbers of instances with a nonzero finał gap g := ez* - r ~ l; we stress that
the finał gaps never exceeded one unit in all of our instances.

The averages, maxima and sums in Table 5.1 are taken over 20 instances for each
interval, and thus over 80 instances for each "all" row. In Table 5.2, there are 60 instances
per interval (i.e., 20 instances for each value of the average demand d = 10, 50, 100), and
each "all" row gives statistics over the 240 instances used for each value of m. Finally,
each row in Table 5.3 reports statistics over 80 instances (obtained from the 20 instances
used for each of the four width intervals) .

From the "all" entries for n„ Hl through H4 and n9 in Table 5.2, we see that early
termination occured on between 47% and 69% of problems, HO and Hl solved between
70% and 85% of problems, H2 solved almost all the remaining problems, H3 and H4
helped in solving 2 problems, and just one out of the 1680 problems was not solved. Note
that the best method LR of [DeP03] also could not solve one instance within 15 minutes
(two instances within 6 minutes), and its FFD-based rounding heuristic solved 91.6% of
problems, whereas our "lighter" heuristics HO through H2 solved 99.8% of problems.

Our results for the medium-item-size instances of [DeP03] are presented in Tables 5.4
and 5.5, where each "all" row gives statistics over the 240 instances used for each value
of m. Early termination occured on between 22% and 35% of problems, HO and Hl solved
between 49% and 56% of problems, H2 solved almost all the remaining problems, H3
solved one problem, H4 solved 7 problems, and just two out of the 1680 problems were not
solved. The rounding heuristic of [DeP03] solved 69.9% of problems, whereas HO through
H2 solved 99.4% of problems.

Comparing the "all" rows in Tables 5.1- 5.2 and 5.4- 5.5, we see that the average and
maximum solution times are quite similar in the small- and medium-size-item cases for
problem sizes m up to 50. However, form= 75 and 100, in the medium-size-item case the

9

Table 5.1: Small-item-size instances of Degraeve and Peeters (2003), d = 50

m int ffiav m~v iav imx tav tmx n, Hl H2 H3 H4 ng

10 [1, 2500] 10.00 38.15 7.95 20 0.00 O.Ol 19 13 o o o o
[1, 5000] 10.00 29.45 19.75 31 0.00 O.Ol 5 7 13 o o o
[1, 7500] 9.95 22.35 19.95 29 0.00 O.Ol o o 8 o o o

[1, 10000] 10.00 19.95 18.10 24 0.00 O.Ol 3 o 6 1 o o
all 9.99 27.47 16.44 31 0.00 O.Ol 27 20 27 1 o o

20 [1, 2500] 20.00 78.65 13.00 21 0.00 O.Ol 20 12 o o o o
[1, 5000] 19.95 57.10 42.10 56 O.Ol 0.04 7 7 12 o o o
[1, 7500] 20.00 45.15 42.10 59 0.00 O.Ol 3 2 8 o o o
[1, 10000] 20.00 38.95 36.45 52 0.00 O.Ol 4 1 5 o o o

all 19.99 54.96 33.41 59 O.Ol 0.04 34 22 25 o o o
30 [1, 2500] 29.90 116.85 26.40 51 O.Ol 0.03 20 15 o o o o

(1, 5000] 29.90 87.30 69.25 91 0.04 0.08 9 9 11 o o o
[1, 7500] 30.00 68.50 65.40 91 O.Ol 0.02 5 3 8 o o o
[1, 10000] 29.95 60.25 58.15 69 O.Ol 0.02 4 2 3 o o o

all 29.94 83.22 54.80 91 0.02 0.08 38 29 22 o o o
40 [1, 2500] 39.80 153.20 39.65 76 0.02 0,07 19 17 1 o o o

[1, 5000] 39.85 113.20 92.50 121 0.12 0.21 14 14 6 o o o
[1, 7500] 39.90 89.20 92.35 121 0.03 0.05 6 6 6 o o o

[1, 10000] 39.90 76.15 78.25 108 0.02 0.03 3 1 5 o o o
all 39.86 107.94 75.69 121 0.05 0.21 42 38 18 o o o

50 [1, 2500] 49.60 190.70 35.75 51 0.02 0.04 20 14 o o o o
[1, 5000] 49.70 145.30 116.55 171 0.19 0.42 16 16 4 o o o
[1, 7500] 49.75 113.30 124.85 151 0.07 0.12 5 3 13 o o o

[1 , 10000] 50.00 99.95 105.30 131 0.04 0.06 1 2 3 o o o
all 49.76 137.31 95.61 171 0.08 0.42 42 35 20 o o o

75 [1, 2500] 73.85 285.85 72.10 115 0.07 0.15 19 17 1 o o o
[1, 5000] 74.10 218.00 167.30 256 0.42 1.33 18 18 2 o o o
[1, 7500] 74.80 170.10 196.40 226 0.29 0.61 5 5 7 o o o

[1, 10000] 74.75 145.15 158.75 218 0.12 0.24 3 2 4 o o o
all 74.38 204.78 148.64 256 0.22 1.33 45 42 14 o o o

100 [1, 2500] 98.50 374.00 100.50 120 0.13 0.22 20 20 o o o o
[1, 5000] 99.05 286.45 182.35 261 0.45 1.95 17 17 3 o o o
[1, 7500] 99.30 227.35 272.70 311 0.78 1.27 14 13 5 o o o

[1, 10000] 99.45 194.55 224.65 294 0.31 0.66 5 3 3 o o o
all 99.08 270.59 195.05 311 0.42 1.95 56 53 11 o o o

10

Table 5.2: Small-item-size instances of Degraeve and Peeters (2003), d = all

m int ffia v m~v i av imx lav tmx ne Hl H2 H3 H4 ng

10 [1, 2500) 10.00 36.70 8.02 28 0.00 O.Ol 54 30 5 o o o
[1, 5000) 9.98 28.80 16.13 31 0.00 O.Ol 22 12 33 o o o
[1, 7500) 9.98 22.10 18.17 29 0.00 O.Ol 19 4 18 o o o

[1 , 10000] 10.00 19.48 18.25 31 0.00 O.Ol 18 3 14 o o
all 9.99 26.77 15.14 31 0.00 O.Ol 113 49 70 1 o o

20 [1, 2500) 19.95 74.15 14.92 61 0.00 0.02 58 31 2 o o o
[1 , 5000] 19.90 56.25 37.57 56 O.Ol 0.04 30 25 29 o o o
[1, 7500) 19.97 43.53 41.33 69 0.00 O.Ol 16 6 21 o o o

[1, 10000] 20.00 38.57 36.23 52 0.00 O.Ol 16 2 12 o o o
all 19.95 53.13 32.51 69 O.Ol 0.04 120 64 64 o o o

30 [1 , 2500] 29.85 110.18 22.02 51 O.Ol 0.03 59 36 o o o
[1 , 5000] 29.88 84.18 62.42 91 0.04 0.22 35 33 24 o o 1
[1, 7500] 29.95 66.50 65.53 91 O.Ol 0.03 16 10 19 o o o

[1, 10000] 29.95 58.18 57.65 83 O.Ol 0.02 20 6 13 o o o
all 29.91 79.76 51.90 91 0.02 0.22 130 85 57 o o 1

40 [l , 2500] 39.75 146.80 31.82 79 0.02 0.13 56 36 4 o o o
[1, 5000] 39.87 111.88 80.00 134 0.09 0.35 44 42 16 o o o
[l , 7500] 39.92 88.75 93.35 121 0.03 0.10 20 13 19 o o o

[l, 10000] 39.87 74.78 76.62 108 0.02 0.03 14 7 14 o o o
all 39.85 105.55 70.45 134 0.04 0.35 134 98 53 o o o

50 [1 , 2500] 49.60 182.70 32.93 71 0.02 0.06 60 37 o o o o
[1, 5000] 49.65 140.88 106.97 181 0.20 0.66 41 40 19 o o o
[l, 7500] 49.82 110.80 122.42 151 0.07 0.13 19 16 24 o o o

[1, 10000] 49.93 94.27 98.40 131 0.03 0.06 14 9 12 o o o
all 49.75 132.16 90.18 181 0.08 0.66 134 102 55 o o o

75 [1, 2500] 73.82 271.55 58.00 115 0.06 0.16 58 42 2 o o o
[1, 5000] 74.23 209.83 157.35 256 0.53 2.00 49 49 11 o o o
[1, 7500] 74.67 165.52 190.80 239 0.26 0.61 31 26 16 o o o

[1, 10000] 74.72 142.38 160.85 227 0.12 0.27 10 4 15 o o o
all 74.36 197.32 141.75 256 0.24 2.00 148 121 44 o o o

100 [1 , 2500] 98.13 359.88 74.17 152 0.10 0.22 59 42 1 o o o
[l, 5000] 98.90 280.47 166.03 277 0.44 2.81 52 49 8 o o o
[1, 7500] 99.18 221.73 268.80 311 0.76 1.54 37 35 14 o 1 o

[1, 10000] 99.45 191.37 224.30 294 0.29 0.66 17 10 11 o o o
all 98.92 263.36 183.33 311 0.40 2.81 165 136 34 o 1 o

11

Table 5.3: Small-item-size instances of Degraeve and Peeters (2003), int= all

m d ffiav m~v iav imx tav tmx n , Hl H2 H3 H4 n•
10 10 10.00 24.95 10.77 26 O.DO O.Ol 69 14 6 o o o

50 9.99 27.47 16.44 31 O.DO O.Ol 27 20 27 o o
100 9.99 27.89 18.21 31 O.DO O.Ol 17 15 37 o o o

20 10 19.94 48.60 25.93 58 O.DO O.Ol 57 16 9 o o o
50 19.99 54.96 33.41 59 O.Ol 0.04 34 22 25 o o o

100 19.94 55.81 38.20 69 O.Ol 0.03 29 26 30 o o o
30 10 29.91 73.34 43.33 91 O.Ol 0.22 57 28 5 o o 1

50 29.94 83.22 54.80 91 0.02 0.08 38 29 22 o o o
100 29.88 82.73 57.59 91 0.02 0.13 35 28 30 o o o

40 10 39.83 96.79 56.89 109 0.02 0.13 59 29 9 o o o
50 39.86 107.94 75.69 121 0.05 0.21 42 38 18 o o o

100 39.86 111.94 78.76 134 0.05 0.35 33 31 26 o o o
50 10 49.70 121.30 75.41 151 0.05 0.36 59 35 6 o o o

50 49.76 137.31 95.61 171 0.08 0.42 42 35 20 o o o
100 49.79 137.88 99.51 181 0.11 0.66 33 32 29 o o o

75 10 74.41 181.36 121.24 216 0.18 1.15 61 41 7 o o o
50 74.38 204.78 148.64 256 0.22 1.33 45 42 14 o o o

100 74.29 205.83 155.38 239 0.32 2.00 42 38 23 o o o
100 10 98.90 243.64 154.60 310 0.28 1.69 62 35 4 o o o

50 99.08 270.59 195.05 311 0.42 1.95 56 53 11 o o o
100 98.78 275.86 200.32 303 0.49 2.81 47 48 19 o o

average solution times grow significantly, and the maximum solution times jump up, most
spectacularly on the instances with width interval [1500, 2500]. This is due to the poor
performance of our knapsack solver on these instances. Similar slowdowns on this interval
were reported in [DeP03, Tab. 4a] already form= 20, i.e., even for smaller problems.

To save space, Table 5.6 presents only aggregate results on the instances of [WiiG96],
with each row giving statistics over the 800 instances used for each value of m . Here
our main point is that only three out of 4000 (0.075%) problems were not solved. Our
"lighter" heuristics HO through H2 solved 99.7% of problems, whereas the two best (and
more complicated) heuristics RSUC and CSTAOPT of [WiiG96] solved 98.0% and 92.7%
of problems, respectively (99.6% if they had been applied together). The fairly large
maximum solution time in Tab. 5.6 stemmed from a single knapsack subproblem.

Table 5.7 gives our results for the 6 data classes of [Van99] with m = 50 and 20
instances per row. (Since we used the original instances, the results are not identical to
those in Tabs. 5.1 and 5.5.) These instances are fairly easy, never requiring H3 or H4; in
fact HO through H2 suffice for solving all the CSP instances used in [Van99].

Quite suprisingly, all the industrial instances we could find in the literature turned out
to be easy for our method. Tables 5.8- 5.10 give our results for the industrial instances
of [Van98] (as numbered in (DeP03, Tab. 7]), (Van99, Tab. 1] and (DeS99] (as named in
[DeP03, Tab. 9]). The finał column identifies the heuristic which delivered the optima!
solution; in other words, HO through H2 solved all these instances except for a single
instance solved by H3.

12

Table 5.4: Medium-item-size instances of Degraeve and Peeters (2003), d = 50

m int ffiav m~v iav imx tav tmx ne Hl H2 H3 H4 na

10 (500, 2500] 10.00 33.80 13.65 23 0.00 0.02 13 13 7 o o o
[1000, 2500] 10.00 31.40 15.45 25 0.00 O.Ol 9 9 11 o o o
[1500, 2500] 9.90 29.70 16.40 25 0.00 O.Ol 4 4 16 o o o
(500, 5000] 10.00 28.15 19.10 25 0.00 O.Ol 5 5 13 o 1 o

[1000, 5000] 10.00 24.70 17.30 22 0.00 O.Ol 5 7 12 o o o
[1500, 5000] 9.90 22.50 17.40 23 0.00 O.Ol 2 5 15 o o o
[500, 7500] 10.00 20.35 20.00 29 0.00 O.Ol 3 1 10 o o o

[1000, 7500] 10.00 19.00 18.65 24 0.00 O.Ol 1 o 8 o o o
[1500, 7500] 10.00 17.40 19.25 25 0.00 O.Ol o o 8 o o o
[500, 10000] 10.00 18.30 18.95 28 0.00 O.Ol 5 o 3 o o o
[1000, 10000] 10.00 16.50 17.35 22 0.00 0.00 3 2 4 o o o
[1500, 10000] 10.00 15.30 16.75 20 0.00 O.Ol 4 2 5 o o o

all 9.98 23.09 17.52 29 0.00 0.02 54 48 112 o 1 o
20 [500, 2500] 20.00 67.00 26.85 58 O.Ol 0.09 16 16 4 o o o

(1000,2500] 19.95 63.30 33.95 58 0.02 0.11 13 13 7 o o o
(1500 , 2500] 19.75 59.25 39.00 49 0.02 0.03 10 10 10 o o o
[500, 5000] 19.95 52.40 39.85 45 O.Ol 0.02 3 3 17 o o o
[1000, 5000] 19.95 48.30 36.35 41 O.Ol 0.02 2 2 18 o o o
[1500, 5000] 19.95 45.75 34.50 41 0.00 O.Ol 1 2 18 o o o
[500, 7500] 19.95 40.50 39.70 52 0.00 O.Ol 3 1 7 o o o
[1000, 7500] 20.00 37.55 37.90 44 0.00 O.Ol 4 2 10 o o o
[1500, 7500] 20.00 34.30 34.05 41 0.00 O.Ol 3 1 8 o 1 o
[500, 10000) 20.00 34.80 33.90 48 0.00 O.Ol 5 o 4 o o o
[1000, 10000] 19.95 32.40 32.65 45 0.00 O.Ol 4 o 5 o o o
[1500, 10000] 20.00 31.35 31.95 40 0.00 O.Ol 4 o 6 o o o

all 19.95 45.58 35.05 58 O.Ol 0.11 68 50 114 o 1 o
30 [500, 2500) 29.65 100.25 39.35 51 O.Ol 0.04 16 16 4 o o o

[1000, 2500] 29.85 95.30 40.65 55 O.Ol 0.04 11 11 9 o o o
(1500, 2500) 29.50 88.50 59.05 93 0.06 0.16 10 10 10 o o o
[500, 5000] 30.00 79.65 61.00 71 0.03 0.06 6 6 14 o o o

[1000,5000) 29.80 72.95 57.75 71 0.02 0.11 9 9 11 o o o
(1500, 5000] 29.60 66.70 53.80 65 O.Ol 0.02 6 8 12 o o o
(500, 7500) 29.95 62.25 63.90 75 O.Ol 0.03 4 3 7 o o o

(1000, 7500] 30.00 55.60 58.95 71 O.Ol 0.02 3 2 10 o o o
(1500, 7500] 29.90 51.75 55.85 69 O.Ol O.Ol 1 1 10 o o o
[500, 10000] 29.95 52.30 52.00 67 O.Ol O.Ol 2 2 6 o o o

[1 ooo, 10000 J 29.95 49.85 53.05 64 O.Ol O.Ol 3 3 7 o o o
[1500, 10000] 29.95 46.55 49.15 61 O.Ol O.Ol 2 2 5 o o o

all 29.84 68.47 53.71 93 0.02 0.16 73 73 105 o o o
40 (500, 2500] 39.75 135.85 46.45 61 0.02 0.04 15 15 5 o o o

[1000, 2500) 39.65 125.35 50.60 68 0.02 0.03 11 11 9 o o o
[1500, 2500) 39.30 117.90 66.90 101 0.15 0.58 9 9 11 o o o
[500, 5000] 39.85 103.30 82.05 101 0.07 0.11 9 9 11 o o o
[1000, 5000] 39.80 95.50 76.10 99 0.05 0.09 6 7 13 o o o
[1500, 5000] 39.75 90.85 71.70 84 0.03 0.05 4 4 16 o o o
(500, 7500] 39.80 81.05 88.40 120 0.02 0.04 1 o 11 o o o

[1000, 7500] 39.90 73.90 81.00 96 0.02 0.03 3 2 9 o o o
[1500, 7500] 39.90 71.35 76.05 89 O.Ol 0.02 3 2 10 o o o
[500, 10000] 39.85 68.80 71.15 93 O.Ol 0.02 2 2 6 o o o
[1000, 10000] 39.90 63.50 65.55 80 O.Ol 0.02 2 o 5 o o o
[1500, 10000 J 39.90 60.40 63.30 82 O.Ol 0.02 4 1 5 o o o

all 39.78 90.65 69.94 120 0.04 0.58 69 62 111 o o o

13

Table 5.5: Medium-item-size instances of Degraeve and Peeters (2003), d = 50

m int mav m~v iav imx łav tmx n, Hl H2 H3 H4 n~
50 [500, 2500] 49.60 170.70 53.60 71 0.03 0.04 20 20 o o o o

[1000, 2500 I 49.20 155.95 64.55 83 0.03 0.04 8 8 12 o o o
[1500, 2500] 49.00 147.00 75.05 109 0.24 0.89 2 3 17 o o o
[500, 5000] 49.45 127.80 104.05 128 0.15 0.26 10 10 10 o o o

[1000, 5000 I 49.80 121.15 92.75 108 O.OB 0.14 8 8 12 o o o
[1500, 5000] 49.55 114.20 92.40 123 0.06 0.09 4 4 16 o o o
[500, 7500] 49.75 104.90 120.35 156 0.05 0.10 4 3 9 o o

[1000, 7500] 49 .70 93.70 106.30 125 0.04 0.06 2 2 14 1 o o
[1500, 7500] 49.90 86.65 96.20 112 0.03 0.07 4 3 7 o o 1
[500, 10000] 49.85 85.30 93.25 118 0.03 0.05 4 2 8 o o o
[1000, 10000] 50.00 83.05 89.65 111 0.02 0.04 4 o 9 o o o
[1500, 10000] 49.90 73.90 77.00 108 O.Ol 0.02 4 2 4 o o o

all 49.64 113.69 88.76 156 0.06 0.89 74 65 118 1
75 [500, 2500] 73.65 251.20 82.85 102 0.06 O.OB 14 14 6 o o o

[1000, 2500] 73.40 232.30 88.60 101 0.05 0.06 5 5 15 o o o
[1500, 2500] 71.85 215.55 102.25 164 2.72 8.56 3 3 17 o o o
[500, 5000] 74.10 193.55 163.50 216 0.50 0.98 9 9 11 o o o

[1000,5000] 74.00 181.05 143.95 175 0.29 0.46 12 12 8 o o o
[1500, 5000] 74.15 167.65 141.75 205 0.18 0.41 10 11 9 o o 1
[500, 7500] 74.70 154.65 181.65 232 0.20 0.50 7 7 11 o o o

[1000, 7500] 74.50 138.80 171.25 201 0.12 0.16 6 7 5 o o o
[1500, 7500] 74.50 128.95 153.60 178 0.09 0.15 6 3 7 o o o
[500, 10000] 74.70 129.85 146.80 180 0.09 0.13 6 o 3 o o o
[1000, 10000] 74.65 120.65 137.85 166 0.07 0.12 3 2 4 o o o
[1500, 10000] 74.70 114.95 130.40 180 0.05 0.10 2 1 8 o o o

all 74.08 169.10 137.04 232 0.37 8.56 83 74 104 o o 1
100 [500, 2500] 98.10 336.05 104.35 119 0.08 0.12 13 13 7 o o o

[1000, 2500] 96.30 303.40 105.95 116 0.07 0.14 4 4 16 o o o
[1500, 2500] 95.55 286.65 128.35 210 13.50 61.84 3 3 17 o o o
[500,5000] 98.70 263.50 204.25 260 0.81 2.06 15 15 5 o o o

[1000, 5000] 98.65 240.15 197.50 220 0.72 1.00 9 9 11 o o o
[1500, 5000] 98.70 225.25 189.35 269 0.48 0.73 8 8 10 o 2 o
[500, 7500] 99.15 202.85 252.35 295 0.43 0.54 4 6 10 o o o

[1000, 7500] 99.40 188.45 240.60 295 0.31 0.40 8 8 10 o 1 o
[1500, 7500] 98.70 174.60 212.80 236 0.22 0.33 1 14 o 1 o
[500, 10000] 99.40 174.70 210.00 272 0.23 0.40 o 7 o o o

[1000, 10000] 99.45 163.90 192.15 235 0.17 0.43 3 2 4 o o o
[1500, 10000] 99.25 153.35 174.25 208 0.12 0.16 3 2 7 o o o

all 98.45 226.07 184.32 295 1.43 61.84 72 71 118 o 4 o

14

Table 5.6: CSP instances of Wa.scher and Gau (1996), int= all, d = all

m ffiav m~v iav imx tav tmx n, Hl H2 H3 H4 n~
10 9.99 25.37 14.27 35 O.DO 0.02 449 134 192 o o o
20 19.96 50.46 30.73 61 O.Ol 8.36 485 240 183 o 2 o
30 29.90 75.72 48.18 105 O.Ol 0.14 503 281 161 o 1 o
40 39.84 100.10 65.05 123 0.04 3.29 503 314 159 o 2 2
50 49 .73 125.22 84.75 171 0.07 0.47 526 341 138 o 4 1
all 29.88 75.37 48.60 171 0.03 8.36 2466 1310 833 o 9 3

Table 5.7: CSP instances of Vanderbeck (1999), m = 50

il. int ffiav m~v iav imx tav tmx n, Hl H2 H3 H4 ng
50 (1, 2500) 49.40 185.30 47.40 71 0.03 0.06 20 18 o o o o
50 [1, 5000) 49.65 143.05 114.05 151 0.20 0.34 13 13 7 o o o
50 (1, 7500] 49.75 110.00 111.85 144 0.06 0.11 6 5 8 o o o
50 (500, 2500) 49.40 166.10 56.80 77 0.03 0.04 14 14 6 o o o
50 (500, 5000) 49.70 128.20 103.65 114 0.14 0.27 11 11 9 o o o

100 (500, 5000) 49.70 129.25 104.40 131 0.14 0.33 8 8 12 o o o

5.4 Impact of tighter knapsack bounds

The results of §5.3 were obtained for the relaxed bounds of (2.9). Using the tighter bounds
of (2.8) al!owed us to solve just two more instances at the expense of longer running
times. To save space, the following tables and remarks list only data classes on which the
tightening of KP bounds mattered most, giving more details for larger problem sizes.

Concerning Tables 5.11-5.12, the good news is that tighter bounds allowed us to solve
all the small-item-size instances of (DeP03], and all but one of the medium-item-size
instances of (DeP03]. Unfortunately the running times grew substantially relative to Tabs.
5.2 and 5.5. On the small-item-size instances, form ~ 40 the average running times grew
by about 150% (mostly from increasing by about 200% on width interval (1, 5000]). On the
medium-item-size instances, the average running times grew by 200%, 217%, 303% and
446% for m = 40, 50, 75 and 100, increasing by 367- 531 % on width interval (1500, 2500],
157-223% on (500, 5000], and 140- 179% on (1000, 5000]; for m = 100, they went up by 67-
156% on four other intervals. The iteration numbers were about the same. The increase
in running times can be attributed to the knapsack solver (which made more than two
million backtrackings on some subproblems).

For the instances of [WaG96], the same 3997 out of 4000 instances were solved, but
relative to Tab. 5.6, form = 40 and 50 the average running times grew by 100% and 143%.

For the instances of [Van99], relative to Tab. 5.7, the average running times grew by
between 67% and 200%; their sum increased by 175%.

15

Table 5.8: Industrial CSP instances of Vance (1998)

inst. m m' t n, Hi
1 2 7 1 0.00 HO
2 2 8 3 0.00 Hl
3 3 11 0.00 1 HO
4 5 17 1 0.00 HO
5 14 50 15 O.Ol Hl
6 5 19 1 0.00 HO
7 4 14 1 0.00 1 HO
8 7 27 10 0.00 o H2
9 11 46 12 0.00 1 Hl

10 3 9 2 0.00 1 HO
11 2 7 0.00 1 HO
12 6 23 0.00 1 HO
13 2 9 1 0.00 1 HO
14 3 11 4 0.00 Hl
15 7 20 8 0.00 Hl
16 4 9 1 0.00 HO
17 12 42 24 0.00 o H2
18 14 44 15 0.00 Hl
19 5 15 13 0.00 o H2
20 11 31 21 0.00 o H2
21 9 27 16 0.00 o H2
22 8 25 16 0.00 o H2
23 7 20 8 0.00 1 Hl
24 7 22 13 0.00 o H2
25 12 39 13 0.00 1 Hl
26 6 18 7 0.00 1 Hl
27 12 40 13 0.00 1 Hl
28 18 48 1 0.00 1 HO

Table 5.9: Industrial CSP instances of Vanderbeck (1999)

inst. name m m' t n, Hi
1 7pl8 7 22 13 0.00 o H2
2 llp4 11 46 12 O.Ol Hl
3 12p19 12 39 13 0.00 Hl
4 14pl2 14 50 15 O.Ol 1 Hl
5 dl6p6 16 34 17 0.00 1 Hl
6 25p0 25 80 66 0.07 1 Hl
7 28p0 28 102 47 0.02 o H2
8 30p0 26 86 27 0.00 1 Hl
9 d33p20 23 53 24 0.07 1 Hl

10 d43p21 32 74 33 0.04 Hl

16

Table 5.10: Industrial CSP instances of Degraeve and Schrage (1999)

name m m' n, Hi
DSOl 41 90 62 0.05 1 Hl
DS02 40 89 71 0.04 o H2
D803 26 56 47 0.00 1 Hl
D804 14 29 20 O.Ol o H3
D805 18 33 31 0.00 o H2
DS06 71 149 132 0.28 Hl
D807 14 41 15 O.Ol 1 Hl
DS08 35 58 47 0.00 1 Hl
D809 35 86 36 0.05 1 Hl
DSlO 46 98 102 0.06 1 Hl
D811 42 89 43 0.00 1 Hl
D812 53 110 97 0.03 1 Hl
D813 22 47 30 0.00 1 Hl
DS14 29 45 40 0.00 o HO
D815 43 78 55 0.00 1 Hl
D816 8 24 13 O.Ol o H2
D817 37 lll 36 0.00 o H2
DS18 16 54 17 0.00 1 Hl
D819 23 67 43 0.02 o H2
D820 11 41 18 0.04 o H2

Table 5.11: Small-item-size instances with tight KP bounds, J = all

m int mav m:v iav imx tav tmx n, Hl H2 H3 H4 n~
40 [1, 5000] 39.87 111.88 80.40 141 0.28 1.38 44 42 16 o o o

all 39.85 105.55 70.63 141 0.10 1.38 126 93 58 o o o
50 [1, 5000] 49.65 140.88 107.18 171 0.60 2.20 41 40 19 o o o

all 49.75 132.16 90.49 171 0.20 2.20 131 100 57 o o o
75 [1, 5000] 74.23 209.83 158.25 236 1.63 6.29 52 52 8 o o o

[l, 7500] 74.67 165.52 189.22 249 0.53 1.79 28 26 16 o o o
[1, 10000] 74.72 142.38 160.50 231 0.19 0.49 15 6 13 o o o

all 74.36 197.32 141.57 249 0.61 6.29 152 125 40 o o o
100 [1, 2500] 98.13 359.88 74.53 140 0.16 0.42 59 42 o o o

[1, 5000] 98.90 280.47 165.08 281 1.34 11.15 52 49 7 o 1 o
[1, 7500] 99.18 221.73 268.20 319 1.54 4.55 28 27 23 o o o

[1, 10000] 99.45 191.37 225.10 301 0.51 1.68 16 9 11 o 1 o
all 98.92 263.36 183.23 319 0.89 11.15 155 127 42 o 2 o

17

Table 5.12: Medium-item-size instances with tight KP bounds, d = 50

m int mav m~v iav imx tav tmx n. Hl H2 H3 H4 n~
30 [1500, 2500] 29.50 88.50 58.50 91 0.30 0.81 12 12 8 o o o

all 29.84 68.47 53.63 91 0.05 0.81 78 77 100 o 1 o
40 [1500, 2500] 39.30 117.90 67.50 101 0.82 3.75 9 9 11 o o o

[500, 5000] 39.85 103.30 82.20 101 0.18 0.32 9 9 11 o o o
all 39.78 90.65 70.05 116 0.12 3.75 69 63 110 o o o

50 [1500, 2500] 49.00 147.00 75.00 109 1.12 4.80 4 4 16 o o o
(500, 5000] 49.45 127.80 103.95 128 0.40 0.76 11 11 9 o o o

[1000, 5000] 49.80 121.15 93.15 110 0.20 0.34 8 8 12 o o o
all 49.64 113.69 88.92 154 0.19 4.80 83 71 111 o 3 1

75 [1500, 2500] 71.85 215.55 101.75 159 14.03 53.75 3 3 17 o o o
(500, 5000] 74.10 193.55 164.80 216 1.43 3.15 10 10 9 1 o o

[1000, 5000] 74.00 181.05 144.05 175 0.81 1.35 12 12 8 o o o
[1500, 5000] 74.15 167.65 142.70 205 0.44 0.67 9 9 11 o o o
[500, 7500] 74.70 154.65 180.45 216 0.36 0.74 11 11 7 o o o

all 74.08 169.10 137.08 216 1.49 53.75 80 71 106 1 o o
100 [1500, 2500] 95.55 286.65 128.05 199 85.18 413.15 3 3 17 o o o

[500, 5000] 98.70 263.50 206.25 260 2.62 7.87 17 17 3 o o o
(1000, 5000] 98.65 240.15 197.00 220 1.97 2.78 9 9 11 o o o
[1500, 5000] 98.70 225.25 189.80 263 1.23 1.79 7 7 12 o 1 o
[500, 7500] 99.15 202.85 255.25 288 0.75 1.21 4 4 12 o o o
[1000, 7500] 99.40 188.45 238.95 293 0.52 0.83 7 9 10 o o o

(1000, 10000] 99.45 163.90 193.25 246 0.31 1.93 2 o 6 o o o
all 98.45 226.07 184.73 293 7.81 413.15 75 73 118 o 2 o

5.5 Results for the bin-packing problem

Following [DeP03], in the next three tables we present our results for the BPP.
Table 5.13 gives our results for the BPP instances of [DeP03] (20 instances per row).

All the 360 instances were solved (without requiring H3 and H4) .
Table 5.14 reports results for the BINPACK instances from the OR-Library [Bea90]

(20 instances per row). The first four uniform classes were solved by calling H4 just once.
However, only 19 out of the 80 triplet instances were solved (with H4 helping on one
instance) . The remaining instances had unit gaps; the "gap" column gives averages of
relative gaps (ez* - r~kl)/f~kl We add that for the CSP instances of §5.3, the running
times of H4 were not excessive, and H4 was called quite infrequently anyway. In contrast,
on the triplet classes t249 and t501, the use of H4 increased the running times substantially,
as illustrated in Table 5.15 (the influence of H3 could be ignored). Note that the triplet
classes are quite difficult for traditional .LP relaxation [DeP03, Tab. 12].

Table 5.16 presents our results for the modified BPP classes of [DeP03] (20 instances
per row). Just one out of the 180 problems was not solved (H4 helped on two problems).
The transformation into a CSP reduced the number of items by at most 5% on average. For
almost 500 variables, the large iteration numbers and running times are not too suprising.

18

Table 5.13: BPP instances of Degraeve and Peeters (2003)

m w int ffiav m~v iav imx lav lmx n, Hl H2 H3 H4 n~
500 100 [1,100] 99.35 167.20 184.10 221 0.06 0.09 12 1 1 o o o

[20,100] 80.75 116.00 111.50 123 0.02 0.03 10 2 o o o o
(50,100] 51.00 52.00 56.60 63 0.00 O.Ol 15 o o o o o

120 [1,100] 99.65 181.85 37.05 195 0.28 3.71 17 1 o o o o
(20,100] 80.85 131.20 132.80 146 0.03 0.04 14 6 o o o o
(50,100] 51.00 62.00 56.55 61 0.00 O.Ol 13 o o o o o

150 [1,100] 99.45 201.55 1.00 1 0.00 O.Dl 20 o o o o o
[20,100] 80.85 151.65 86.70 102 O.Ol 0.02 14 14 6 o o o
(50,100] 51.00 77.00 64.80 72 0.00 O.Ol 12 o o o o o

1000 100 [1,100] 100.00 183.65 199.90 230 0.07 0.11 12 1 o o o
(20,100] 81.00 117.95 114.25 133 0.02 0.03 14 4 1 o o o
(50,100] 51.00 52.00 57.35 64 0.00 O.Ol 9 o o o o o

120 (1,100] 100.00 202.20 24.65 174 O.Ol 0.05 19 2 1 o o o
(20,100] 81.00 132.95 143.40 167 0.03 0.04 10 3 2 o o o
(50,100] 51.00 62.00 56.90 62 0.00 O.Ol 11 o o o o o

150 [1,100] 100.00 226.15 7.00 121 0.00 0.02 20 1 o o o o
[20,100] 81.00 154.90 86.65 102 O.Ol 0.02 12 12 8 o o o
(50,100] 51.00 77.00 67.25 77 O.Ol O.Ol 10 o o o o o

Table 5.14: BINPACK uniform and triplet instances

name ffiav m~v iav imx lav lmx n, Hl H2 H3 H4 gap ng

u120 63.20 88.75 48.60 89 O.Ol O.Ol 20 14 o o o 0.0% o
u250 77.25 129.00 86.40 122 O.Ol 0.03 19 19 1 o o 0.0% o
u500 80.80 151.05 85.85 113 O.Ol 0.04 16 16 3 o 1 0.0% o
ulOOO 81.00 155.00 86.20 97 O.Ol 0.02 12 12 8 o o 0.0% o
t60 49.95 58.80 40.20 56 O.Ol 0.04 o 1 19 o o 1.5% 6
tl20 86.15 110.75 72.60 91 0.06 0.09 o o 19 o 1 2.0% 16
t249 140.10 199.15 125.25 145 0.26 0.33 o o 20 o o 1.2% 20
t501 194.25 315.40 166.90 194 0.63 0.89 o o 20 o o 0.6% 19

Table 5.15: BINPACK triplet instances without H3 and H4

name ffiav m~v iav imx lav lmx n, Hl H2 gap ng

t60 49.95 58.80 40.20 56 0.00 O.Ol o 19 1.5% 6
t120 86.15 110.75 72.60 91 O.Ol 0.02 o o 20 2.1% 17
t249 140.10 199.15 125.25 145 0.04 0.06 o o 20 1.2% 20
t501 194.25 315.40 166.90 194 0.08 0.11 o o 20 0.6% 19

19

Table 5.16: Modified BPP instances of Degraeve and Peeters (2003)

w int ffi a v m~v i a.v imx t •• tmx ne Hl H2 H3 H4 nf

10000 [l, 10000] 488.65 494.05 1484.40 1737 35.03 48.50 14 3 o o o o
[2000, 10000] 485.15 490.20 800.70 916 7.07 9.89 15 1 o o o o
[5000,10000] 474.75 474.80 457.70 480 1.16 1.36 16 o o o o o

12000 [l , 10000] 486.95 494.55 815.90 1732 25.86 58.14 18 7 1 o o o
[2000,10000] 484.75 492.20 1157.90 1328 15.04 21.37 18 2 o o o o
[5000, 10000] 475.95 480.35 520.75 550 2.22 2.65 15 o o o o o

15000 [l, 10000] 487.90 497.15 285.10 1171 7.99 67.07 17 5 o o 2
[2000, 10000] 482.70 494.25 805.05 1144 16.11 29.28 16 16 4 o o o
[5000, 10000] 475.25 486.95 691.50 786 5.13 6.29 13 o o o o o

Table 5.17: Comparison of running times with Degraeve and Peeters (2003), int= all

Tab. 5.1 Tab. 5.2 Tabs. 5.4- 5.5
m HR LR BR LR BR LR BR
30 0.17 0.10 0.02 0.10 0.02 0.29 0.02
40 0.44 0.21 0.05 0.21 0.04 0.71 0.04
50 0.74 0.38 0.08 0.37 0.08 1.45 0.06
75 5.03 0.81 0.22 2.18 0.24 9.57 0.37

100 10.14 2.99 0.42 2.63 0.40 21.08 1.43

5.6 Comparisons with other procedures from the literature

In Table 5.17 we compare the average running times of our bundle relaxation code BR
with the two best procedures HR and LR of (DeP03] on the instances used for Tabs. 5.1,
5.2 and 5.4- 5.5. The times for HR and LR obtained on a Pentium Pro 200 MHz were
extracted from (DeP03, Tabs. 1- 4b]. Two points should be noted. First, both HR and LR
employed an industrial LP solver (much more sophisticated than our dense QP solver),
and LR additionally used subgradient optimization. Second, due to lacking knowledge,
let's assume that the machine of (DeP03] was ten times slower than ours. Then Table
5.17 suggests that on the small-item-size instances BR was comparable in speed with HR
(about twice slower than LR), while on the medium-item-size instances BR could beat LR.
Similarly, in view of Tab. 5.6 and (DeP03, Tab. 10], on the instances of [WaG96] BR was
as fast as HR (twice slower than LR), whereas Tab. 5.7 and [DeP03, Tab. 5a] indicate that
on the instances of [Van99] BR was comparable with HR, and sometimes faster than LR.
On the industrial instances of [DeS99] (cf. Tab. 5.10 and [DeP03, Tab. 9]), BR behaved
like HR (sometimes better than LR).

When the dual objective evaluations happen to be exact, our BR code runs essentially
like the standard bundle method used in [FeKOO] . Therefore, we now summarize our results
for exact KP solutions (Er = O) relative to Tab. 5.2 (where Er = 10-8); similar features
were observed on other instances. First, the iteration numbers and the performance of our

20

Table 5.18: Industrial and random CSP instances of Briant et al. (2004)

instance source mav m~v iav imx tav tmx

[BLM+o5, Tab. 2.1] 18.00 56.89 30.00 69 0.02 0.10
[BLM+o5, Tab. 2.2] 49.70 129.25 108.15 141 0.15 0.40
[BLM+o5, Tab. 2.3] 18.00 57.89 26.44 40 0.08 0.51
[BLM+o5, Tab. 2.4] 49.70 129.60 119.35 154 0.34 0.47

heuristics <lid not change significantly. (In other words, the errors occuring in the inexact
case were small enough to be accommodated gracefully by our code.) Second, the running
times increased quite dramatically: for m = 30, 40, 50, 75 and 100, the "all" average times
grew by factors of 27.5, 60.6, 13.5, 31.7 and 33.2, respectively.

Finally, we compare our running times with those in [BLM+o5, §2.2].

Remark 5.1. Our timings for u120 and u250 in Tab. 5.14 and for tl20 and t249 in Tab.
5.15 were about the same without Hl through H4. Relative to [BLM+o5, Tab. 2.5] (where
the machine used was about twice slower than ours), our running times were shorter at
least 57 times for u120/u250, 284 times for t120, and 227 times for t249. Table 5.18 gives
our results for the remaining CSP instances of [BLM+o5, §2.2]. Relative to [BLM+o5,
Tabs. 2.1-2.4], our running times were shorter 12, 25, 32 and 27 times, respectively.

Acknowledgment. I would like to thank G. Belov, Z. Degraeve, M. Peeters, D. Pisinger,
G. Scheithauer and L. Schrage for extensive discussions, and F. Vanderbeck and G.
Wa.scher for sharing their instances. Special thanks go to C. Lemarechal for inspiring
this work.

References
[BADF04] H. Ben Amor, J. Desrosiers and A. Frangioni, Stabilization in column generation, Tech. Report

G-2004-62, GERAD, Montreal, 2004.

[BAVdC04] H. Ben Amor and J. M. Valerio de Carvalho, Cutting stock problems, Tech. Report G-2004-30,
GERAD, Montreal, 2004.

[Bea90]

[BeS02]

[BeS04a]

[BeS04b]

[BLM+o5J

[Chv83]

[DeP03]

J. E. Beasley, OR-Library: Distributing test problems by electronic mail, J. Oper. Res. Soc.
41 (1990) 1069-1072.

G. Belov and G. Scheithauer, A cutting piane algorithm for the one-dimensional cutting stock
problem with multiple stock lengths, European J. Oper. Res. 141 (2002) 274-294.

__ , A branch-and-cut-and-price algorithm for one- and two-dimensional two-stage cutting
problems, European J. Oper. Res. ? (2004). To appear.

__ , Setup and open stacks minimization in one-dimensional stock cutting, INFORMS J.
Comput. ? (2004). To appear.

O. Briant, C. Lemarechal, Ph. Meurdesoif, S. Michel, N. Perrot and F. Vanderbeck, Com
parison of bundle and classical column generation, Research Report RR-5453, INRIA, Mont
bonnot, France, 2005.
V. Chvatal, Linear Programming, Freeman, New York, N.Y., 1983.
Z. Degraeve and M. Peeters, Optima/ integer solutions to industrial cutting stock problems:
Part 2: Benchmark results, INFORMS J. Comput. 15 (2003) 58-81.

21

[DeS99]

[FeK00]

[GaW95)

[GiG61]

[Hol02)

[Kiw94]

[Kiw04)

[KPP04]

[MaT90]

[NST99]

[ScW97]

[Sta90)

[STMB0l)

[Van98)

[Van99)

[Van02)

[WiiG96]

Z. Degraeve and L. Schrage, Optima/ integer solutions to industrial cutting stock problems,
INFORMS J. Comput. 11 (1999) 406-419.

S. Feltenmark and K. C. Kiwiel, Dual applications of proximal bundle methods, including
Lagrangian relaxation of nonconvex problems, SIAM J. Optim. 10 (2000) 697-721.

T. Gau and G. Wiischer, CUTGENJ: A problem generator Jor the standard one-dimensional
cutting stock problem, European J. Oper. Res. 84 (1995) 572-579.

P. C. Gilmore and R. E. Gomory, A linear programming approach to the cutting-stock problem,
Oper. Res. 9 (1961) 849-859.

O. Holthaus, Decomposition approaches for solving the integer one-dimensional cutting stock
problem with different types of standard lengths, European J. Oper. Res. 141 (2002) 295-312.

K. C. Kiwiel, A Cholesky dual method Jor proximal piecewise linear programming, Numer.
Math. 68 (1994) 325-340.

___ , A proximal bund le method with approximate subgradient linearizations, SIAM J.
Optim. ? (2004). To appear.

H. Kellerer, U. Pferschy and D. Pisinger, Knapsack Problems, Springer, Berlin, 2004.

S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer lmplementations,
John Wiley & Sons, New York, 1990.

C. Nitsche, G. Scheithauer and J, Terno, Tighter relaxations for the cutting stock problem,
European J. Oper. Res. 112 (1999) 654-663.

P. Schwerin and G. Wiischer, The bin-packing problem: A problem generator and same nu
merical experiments, Int. Trans. Oper. Res. 4 (1997) 337-389.

H. Stadtler, One-dimensional cutting stock problem in the aluminium industry and its solu
tion, European J. Oper. Res. 44 (1990) 209-223.

G. Scheithauer, J. Terno, A. Miiller and G. Belov, Solving one-dimensional cutting stock
problems exactly using a cutting piane algorithm, J . Oper. Res. Soc. 52 (2001) 1390-1401.

P. H. Vance, Branch and price algorithms for the one-dimensional cutting stock problem,
Comput. Optim. Appl. 9 (1998) 212-228.

F. Vanderbeck, Computational study of a column generation algorithm for bin packing and
cutting stock problems, Math. Programming 86 (1999) 565-594.

___ , Extending Dantzig 's bound to the bounded multiple-class binary knapsack problem,
Math. Programming 94 (2002) 125-136.

G. Wiischer and T. Gau, Heuristics Jor the integer one-dimensional cutting stock problem,
OR Spectrum 18 (1996) 131-144.

22

