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Abstract 

We show that the LP relaxation of the cutting-stock problem can be solved efficiently 
by the recently proposed inexact bundle method. This method saves work by allow­
ing inaccurate solutions to knapsack subproblems. With sui table rounding heuristics, 
our method solves almost all the cutting-stock instances from the literature. 

Key words. Nondifferentiable convex optimization, Lagrangian relaxation, 
integer programming, bundle methods, knapsack problems, cutting-stock. 

1 Introduction 

The cutting-stock problem (CSP) is usually solved by LP-based column generation, round­
ing heuristics and branch-and-bound; see, e.g., [BeS02, BeS04a, DeP03, DeS99, Van98, 
Van99]. Since column generation applied to its LP relaxation may converge slowly, there 
is interest in stabilized variants based on LP or QP [BADF04, BAVdC04, BLM+os]. Al­
ternatively, the highly efficient hybrid approach of [DeP03] generates additional columns 
by applying subgradient optimization to its Lagrangian relaxation. 

In this paper we show that its LP relaxation can also be solved efficiently by the inexact 
bundle method of [Kiw04]. This QP-based method saves work by allowing inaccurate 
solutions to Lagrangian subproblems. For the CSP, each subproblem is a knapsack problem 
(KP). We give a simple test for inexact KP solutions that works quite well in practice. 
Further, by using relaxed bounds, we avoid the difficulties arising when a bounded KP is 
transformed into a 0-1 KP [Van02]. Next, by adapting the ideas of [BeS02, Hol02, Sta90, 
Wii.G96] to our inexact framework, we give rounding heuristics that salve almost all the 
CSP instances from the literature; in particular, they beat the best heuristics of [Wii.G96]. 

In effect, our inexact KP solutions, bound relaxation and rounding heuristics should 
be of interest also for other column generation approaches to the CSP. 

Our work was inspired by [BLM+os], where the CSP's Lagrangian relaxation is solved 
by a standard (exact) bundle method. Thanks to inexact KP solutions, our method is 
much faster in practice than all the algorithms tested in [BLM+os, §2.2] (see Rem. 5.1). 

"Research supported by the State Committee for Scientific Research under Grant 4TllA00622. 
!Systems Research Institute, Newelska 6, 01-447 Warsaw, Poland (kiwiel©ibspan. waw. pl) 
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The paper is organized as follows. In §2 we recall the classic CSP model of [GiG61] and 
introduce inexact KP solutions for its Lagrangian relaxation. Our rounding heuristics are 
given in §3 in a generał form suitable for other approaches. The inexact bundle method is 
reviewed in §4. Our computational results are presented in §5. 

2 Lagrangian relaxation of the CSP 

The one-dimensional cutting-stock problem (CSP) is to minimize the number of stock 
pieces of width W used to meet the demands d, for items to be cut at their widths 
w, E (O, W], for i = 1, ... , m. The bin-packing problem (BPP) is a special case of the CSP 
with unit demands. 

2.1 The Gilmore-Gomory model 

This classic model [GiG61] is formulated as follows. Denote the set of cutting patterns by 

Let Zp be the number of times pattern p is used. The original model has the form 

min L Zp s.t. 
pEP 

"'"' IPI ~ pzp 2: d, z E ~+ . 
pEP 

For Lagrangian relaxation we augment this model with the redundant constraint 

LZP::; N, 
pEP 

(2.1) 

(2.2a) 

(2.2b) 

where N is an upper bound on the optima! value of (2.2a) (e.g., N= L; d,); this ensures 
boundedness of the ground set Z := { z E ~!;1 : Lp zp ::; N}. Relaxing the demand 
constraint LpPZp 2: d with a price vector u yields the Lagrangian L(z; u) := Lp Zp + u(d­
LpPzp) and the dual Junction 

0(u) := min {L(z; u)= ud+ L p(l - up)zp}. ~z ~ 
(2.3) 

The Lagrangian subproblem above may be solved by finding a solution p(u) of the KP 

p(u) E Argmax{up: wp ::;'. W,p E ~'.;.'} (2.4) 

and taking Zp(u) = N, Zp = O for p c/ p(u) if up(u) > 1, z= O otherwise, thus producing 

0(u) =ud+ N [ 1 - up(u) L, (2 .5) 

where [·]- := min{·, O}. Let vcc and vff? denote the optima! values of (2.2) and its LP 
relaxation, respectively. It is well known that vff? coincides with the dual optima! value 

0. := max{ 0(u): u E JR'.;.'}. 
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Experiments show that u := w/W is a good initial estimate of solutions to the La­
grangian dual (2.6) [BAVdC04, §4), [BLM+os, §2] . In fact u minimizes the relaxed dual 
function 

0LP(u) :=ud+ N [ 1 - uE(u) ]_, (2.7) 

where p(u) solves the LP relaxation of (2.4). Indeed, since 0LP(u) = ud ś vGG ś N , we 
see that -d = -N(ud/N)(d/ud) is a subgradient of the second term of (2.7) at u. 

2.2 Inexact KP solutions 

To strengthen our relaxation, we may consider only proper patterns p such that 

pśb with b; :=min{d; , LW/w;J}, i=l:m. (2.8) 

Indeed, adding the bound p ś b to (2.1) and (2.4) does not change vae, but it may raise 
vf}? [NST99]. Then the column generation subproblem (2 .4) becomes a bounded KP, 
which can be turned into a 0-1 KP via the transformation of [MaT90, §3.2]. However, 
this transformation may duplicate solution representations, thus creating difficulties for 
0-1 KP solvers [Van02]. To avoid duplicates, we may use the relaxed bound 

p ś b' with b; := i 10g2 (b,+1)l - 1, i = 1: m, (2.9) 

which corresponds to replacing d; in (2.8) by the smallest number 2i - 1 2'. d;, j 2'. 1 
(2d; - 1 in the worst case); the number of transformed variables is the same. We solve the 
transformed KP by a double precision version of procedure MTlR of (MaT90] (because 
more recent KP solvers [KPP04] accept integer data only). To reduce its work, we allow 
MTlR to find an approximate solution for a given relative accuracy tolerance E, . Namely, 
the backtracking step exits if ( 2'. (1 - E,)(, where ( := up for the incumbent pand ( is 
MTlR's upper bound on up(u) . Hence, by (2.5), we have the accuracy estimates 

ę_(u) :=ud+ N ( 1 - n_ ś 0(u) ś 0(u) :=ud+ N ( 1 - ()_, 

0(u) - ę_(u) ś N ( ( - () ś NE,(. 

(2.10a) 

(2.10b) 

For a norma! exit with an optima! p = p(u), we may replace ( by ( and Er by O in (2.10) . 

3 Heuristic rounding of relaxed solutions 

Typical rounding heuristics proceed as follows. A solution z of the LP relaxation is rounded 
into an integer solution z. A sequential heuristic applied to the residua/ problem (2.2) with 
d replaced by d' := d - I:P pzp delivers a residua! solution z. Then the sum z+ z serves as 
a possibly inexact solution of (2.2) (which is exact if its value is equal to a !ower bound on 
VGG; e.g., r vff?l) , Since for simple rounding down (z= LzJ), the residua] problem may be 
too large to be solved optimally by a heuristic, some components of z may be increased 
[Hol02, STMBOl]; however, ifthe residua! problem becomes too small to produce a solution 
to the original problem, some components of z may be decreased [BeS02] . 
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In §3.1 we give a generał rounding procedure, which augments the ideas of [BeS02, 
Hol02] with the oversupply reduction of [Sta90]. As for sequential heuristics, in §3.2 
we describe minor (but useful) modifications of the first-fit-decreasing (FFD) of [Chv83] 
and the heuristics of [BeS04b, Hol02]. Since it pays to call lighter heuristics first, useful 
combinations of rounding and sequential heuristics are detailed in §3.3. 

3.1 A generał rounding procedure 

Numbering the patterns so that P = {pi}J=I• we may write (2.2a) as 

n 

min LZi s.t. 
j=l 

n 

Lpizi?. d, z E ?l~. 
j=l 

(3.1) 

Given an incumbent solution z* of (3.1) (e.g., found by FFD) and a point z E IR~ (e.g., 
found by LP relaxation), the following procedure attempts to improve z* by calling a 
heuristic on residua! problems derived from rounded variants of z. Lete := (1, ... , 1) E lRn. 

Procedure 3.1 (Rounding procedure). 
Step 1 (Rounding down). Set z:= lzJ and d' := d - I:,ipizi. Sort the fractional parts 
Tj := Zj - Zj so that Tj, ?. ... ?. Tin• and set fi:= l{j: Tj > O}I-

Step 2 ( OveTsupply Teduction) . While d' ;2'. O, pick J to maximize 

L Wi min { p{, -d: } (3.2) 
i:d~<O 

over j s.t. Zj > O, set z5 := z5 - l and d' := d' + p1. 

Step 3 (Partial TOUnding up). Set I := 0. For i = 1: fi, if pi< :c=; d', set zi, = Zj, + l, 
d' := d' - pi<, I:= I U fa}. 

Step 4 (Heuristic improvement). Using a heuristic, find a feasible point z for the residua! 
problem (3.1) with d replaced by d'. If ez+ ez< ez*, set z*:= z+ z. 

Step 5 (Residual problem extension). If I ie 0, remove from I its last entry j, set 
Zj := zi - l, d' := d' + pi and return to Step 4. 

If z solves the LP relaxation of an equality-constrained CSP, aur procedure reduces to 
the one in [BeS02, §2.5]; otherwise Step 2 (due to [Sta90, Fig. 3]) helps. Following [BeS02, 
§5.2], aur implementation allows at most ten returns from Step 5. 

One of our heuristics uses the following modification of Step 3, based on the ideas in 
[Hol02, §3.2]. 

Step 3' (Partia/ rounding up). Set I := 0, K := {j : pi :c=; d', Tj > O}. While K ie 0, 
pick I to maximize L,;JJ; over j E K, set z5 = z5 + l, d' := d' - p1, I := I U {J}, 
K := {j E K: pi :c=; d',j f J}. 
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3.2 Sequential heuristics 

We now describe our heuristics for the residua! problem (2.2a) with d replaced by d' ~ O, 
assuming w1 ~ ... ~ Wm . 

Our implementation of FFD works as follows. Set z := O, d" := d'. While d" eł O, 
generate the next pattern p by setting 

(3.3) 

set 1,, := min{ld7/p;j : p; > O}, Zp := Zp + "', d" := d" - 1,,p. The version of [Chv83, p. 208] 
employs 1,, = 1, and hence is less efficient for large demands. 

Our modification of the sequential heuristic procedure (SHP) of [Hol02, §3.2], given a 
price vector u E lRm (e.g., an approximate solution of (2.6)) and a price tolerance Utol > O 
for rounding errors (we use Uto! = 10-12), sets ii; := max{ u;, Ut0 1} for i = 1: m and replaces 
the FFD formula (3.3) by the bounded KP 

p E Arg max { iip : wp ::; W, p ::; d", p E a'.';' } . (3.4) 

Our implementation of the sequential value correction (SVC) heuristic of [BeS04b, §2] 
records the best solution found by calling SHP at most thirty times with ii modified as 
follows. Initially ii; := max{l, Wu;}, i= 1: m. If wd" 'i, W, then after solving (3.4) and 
updating d", for i such that p; > O, set 

u; := [')';U;+ (W/wp)wf-04 ] / (1'; + 1) with ')'; := rl; (d; + d;') /p;, (3.5) 

for !1; picked randomly in [1/n;, n;], where n; is chosen at random in [1, 1.5]. An early 
exit occurs if SHP finds z such that ez+ ez = r 0( u) l, in which case z* := z+ z is optima!. 

3.3 Combinations of rounding and sequential heuristics 

We now give more details on the five heuristics used in our experiments. 
Our initial heuristic HO calls FFD with d' = d (i.e., on the original problem) to initialize 

the incumbent z* := z and the upper bound N := ez*. 
The remaining heuristics use an extension of Procedure 3.1 with a copy of Step 4 

inserted after Step 1; the sequential heuristics employed at these steps are listed below. 
Our periodic heuristic Hl is called by the bundle method (every twentieth iteration, 

starting from iteration k = m + 1) with the current relaxed solution z := zk and the !ower 
bound & :::; 0 •. Hl calls FFD, exiting if ez* = rnk l, since then z* is optima!. 

Our finał heuristics H2, H3 and H4 are called successively upon termination of the 
boundle method, using the finał z := zk, u := uk and &. H2 employs both FFD and 
SHP, H3 just SHP and the modified Step 3', whereas H4 uses SVC. Of course, H3 and H4 
(or just H4) are not called if H2 (or H3) exits with ez*= r&l, whereas svc exits when 
ez+ ez= ręki. 
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4 The inexact proximal bundle method 

We now sketch the main features of the inexact bundle method of [Kiw04]. 
Our method generates trial points uk E IR'.;', k = 1, 2, ... , at which the dual function 

0 is evaluated (possibly inexactly) as described in §2.2. Specifically, for each k, set pk to 
the (possibly inaccurate) KP solution p satisfying the bounds of (2.10) for u= uk, and !et 
(k := (, (k := (. Recalling (2.3), define the associated Lagrangian solution zk by setting 
z; := N, z: := O for q =fp if ~ > 1, zk := O otherwise. Thus we have the !ower bound 
fl(uk) ::; 0(uk) and L(z\ uk) = 0(u) in (2.10); in particular, 

k k k (- ) -L(z ;u )-0(u )::;N (k-(k ::;Ncr(k . (4.1) 

Further, by (2.3), the following linearization of 0 at uk majorizes 0(u) for all u: 

0k(u) := L(z\ u)= ud+ { N (1 - upk) if zk =f_O, 
O otherw1se. 

(4.2) 

Iteration k uses the polyhedral cutting-plane model of 0 

(4.3) 

for finding 
(4.4) 

where tk > O is a stepsize that controls the size of luk+1 -ukl and the prox center uk := uk' 
has the value 0~ := 0k,(uk') for same k'::; k (usually 0~ = maxJ=10i(ui)). If necessary, the 

stepsize tk is increased and uk+I is recomputed until the predicted ascent 0k( uk+l) - 0~ is 
sufficiently positive. An ascent step to uk+1 := uk+1 with k' := k + 1 occurs if 

(4.5) 

for a fixed 1,, E (O, 1) (we use 1,, = 0.1). Otherwise, a null step uk+I := uk improves the 
next model 0k+I with the new linearization 0k+I as stipulated in ( 4.3). 

If we omitted the quadratic term in (4.4), the resulting cutting-plane method could 
generate uk+1 far from the previous points, and it would require storing all linearizations 
(Jk = {l, . .. , k} in (4.3)). In contrast, the quadratic term usually keeps uk+l close enough 
to the best point found so far, and it allows limiting the number of stored linearizations. 

We salve subproblem ( 4.4) with the QP routine of [Kiw94], which finds its multipliers 
{vJ}iEJ• C IR+, also known as convex weights, such that L-jEJ• vj = l and the set Jk := 
{j E Jk : vj =f O} has at most m + 1 elements. We set Jk+ 1 := Jk U {k + 1} and then, if 
necessary, drop from Jk+I an index j E Jk\Jk with the largest 0i(uk+I) to keep IJk+ll:::; M 
for a fixed M 2". m + 2. 

Combining the accumulated Lagrangian solutions {zi}iEJ" with their weights {vj}iEJ•, 
we may estimate solutions to the LP relaxation of (2.2) via the aggregate primal solution 

(4.6) 
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In other words, z;; = Nvj for nontrivial patterns pi indexed by J;, := {j E Jk : zi i= O} 
(which need not be stored, since they can be recovered from '70i = d - Npi; see (4.2)). 
Our heuristics also use the lower bound iJ.Jc := maxi$kfl.(ui) on 0. = vfi (cf. (2.6)). 

We now point out some useful consequences of the convergence analysis in [Kiw04, §5] . 
The LP relaxation of (2.2) may be written as 

vff? := min {;0 (z) := L zp s.t. {;(z) := d - L pzp::; O, z E conv Z. (4.7) 
pEP pEP 

Lete := supk[0k(uk)-0(uk)] be the maximum evaluation error; by (4.1), we have e::; l := 
Ner supk (k- Consider the set of e-optimal solutions of the LP relaxation (4.7): 

Z, := z E conv Z: '1/Jo(z) ś vLP + E, '1/J(z) ś O . { - GG - } (4.8) 

The lim i ts 0'f: : = limk 0ż, fl,,, : = limk iJ.Jc satisfy 0'f: E [vf f, vf f + ej, fl,,, E [ 0'f: - l, vf j], and 
there exists Kc {1, 2, ... } such that limkEK {;0(zk) = 0'f: and limkEK maxb1 {;;(zk) ś O; 
in particular, the bounded sequence { zk hEK converges to the e-optimal set Z,. The 
accuracy observed in practice corresponds to such estimates with e and l determined by 
the maximum errors 0k(uk) - 0(uk) and 0(uk) - fl.(uk) that occur for large k; since both 
errors are at most N((k - (k), where the KP gap (k - (k is usually tiny for large k, small 
values of E and l can be attained if the algorithm runs long enough. 

We stop if min{vk, l1rkl + ak} ś Eopt(l + l0ŻI), where Vk is given in (4.5), 1rk := (uk -
uk+1 )/tk, ak := Vk - tkl1rkl 2 and Eopt > O is an optimality tolemnce (cf. [Kiw04, §4.2]) . For 
Eopt = 10- s, iJ.Jc usually agrees with 0. in at least 8 digits, enough for our purposes. 

5 Computational results 

5.1 Data sets 

In our computational experiments, for the CSP we use the 28 industrial instances of 
[Van98], the 10 industrial instances of [Van99], and the 20 industrial instances of [DeS99]. 
In addition, we use the following randomly generated instances: the 4000 instance of 
[WaG96], the 3360 instances of [DeP03] and the 120 instances of [Van99]. For the BPP, 
we use the 540 randomly generated instances of [DeP03], and the 160 instances from the 
BINPACK collection of the OR-Library [Bea90]. 

The instances of [WaG96] are constructed by the CUTGENl generator [GaW95], using 
the following parameter values: the number of orders m = 10, 20, 30, 40, 50, the width 
W = 10,000, the interval fr action c = 0.25, 0.5, O. 75, 1, and the average demand J = 10, 50. 
The widths w; are uniformly distributed integers between 1 and cW. For m uniform 
random numbers R1 , . .• , R-m E (O, 1), the demands d; := LR,:•.':~,,.J for i < m, and 
dm := md - Li<m d; (in fact slightly more complicated formulas are used [GaW95]). 
Duplicate widths are aggregated by summing their demands. Combining the different 
values for m, c and J results in 40 classes; in each class, 100 instances are generated. 

The small-item-size instances of [DeP03] are generated similarly for m = 10, 20, 30, 40, 
50, 75,100, c = 0.25, 0.5, 0.75, 1 and J = 10, 50,100, except that R1 , . .. , R-m E (0.1, 0.9) 
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for the demand distribution. In the medium-item-size instances of [DeP03], only ii= 50 is 
used and the widths are uniformly distributed on [wmin, cW], where Wmin = 500, 1000, 1500. 
Both cases have 84 data classes, and 20 instances are generated in each class. 

The instances of [Van99] comprise 6 classes with m = 50, and 20 instances per class. 
The first three classes are generated like those of [WiiG96] above with c = 0.25, 0.5, O. 75 
and ii= 50, the next two classes have widths in [500, 2500] and [500, 5000] with ii= 50, 
and the sixth class has widths in [500, 5000] and ii= 100. 

In the BPP instances of [DeP03], m = 500 or 1000 weights are uniformly distributed 
in the intervals (1,100], (20,100], (50,100] as in BPPGEN (ScW97], and the capacity 
W = 100, 120, 150; identical items are aggregated for the corresponding CSPs. In each 
of the 18 resulting classes, 20 instances are generated. The modified BPP instances of 
[DeP03] use m = 500, the weight intervals (1, 10000], (2000, 10000], (5000, 10000], and the 
capacity W= 10000, 12000, 15000, again with 20 instances per class. 

The BINPACK instances from the OR-Library (Bea90] comprise two categories. The 
uniform category has the capacity W = 150, m weights uniformly distributed in the 
interval [20, 100], and 20 instances generated for each value of m = 120,250,500, 1000. 
(The classes with m = 500, 1000 also appear in the BPP category of [DeP03], but with 
different instances.) In the triplet category, each bin of capacity W = 1000 is filled 
with exactly three items (the first item w' is picked in [380,490], the second item w" in 
[250, (W - w')/2), and the third item equals W - w' - w") . There are 20 instances for 
each value of m = 60, 120, 249, 501. 

5.2 Implemented variants 

Our codes were programmed in Fortran 77 and run on a notebook PC (Pentium M 755 2 
GHz, 1.5 GB RAM) under MS Windows XP. 

For solving the dual problem (2.6), we used a general-purpose bundle code that treats 
subgradients as dense vectors in double precision. A faster code could exploit the fact 
that each subgradient of 0 has the form '70k = d or '70k = d - Npk (see (4.2)), with a 
common integer part d and an integer sparse knapsack solution pk. Ignoring sparsity, our 
code requires m x M memory locations for storing up to M 2: m + 3 subgradients, and 
additional workspace of order M 2 for solving the QP subproblem ( 4.4) with the routine of 
[Kiw94]. We used M = m + 3 to test how "minimal" bundle performs. 

The bounded KPs arising in column generation and SHP were solved by the modified 
version of MTlR (cf. §2.2) with the accuracy tolerance Er = 10-s_ For smaller values of 
Er, we could not solve even some small instances in reasonable time (e.g., problem 28p0 
in Tab. 5.9 took 28.30, 40.99 and 67.13 seconds for Er= 10-13 , 10-14 and O, respectively) . 
For column generation, we used the relaxed bounds of (2.9), because the tighter bounds 
of (2.8) produced longer computing times. In contrast, SHP employed in (3.4) the natura! 
bounds given by (2.8) with d replaced by d". 

Our implementation of the rounding procedure of §3.1 is slower than necessary because 
the patterns are recovered as pi= (d - '70i)/N, instead of being stored separately. 
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5.3 Results for the cutting-stock problem 

To ease comparisons, we follow closely the presentation of [DeP03]. Every data class is 
identified by three parameters: the number of items m, the interval in which the widths 
are distributed denoted by int, and the average demand d. An indicator "all" for any of 
these parameters means that the reported results are aggregated over all relevant values 
for that particular parameter. If a parameter is constant for all instances represented in a 
table, its value is indicated in the table heading. 

Our results for the small-item-size instances of [DeP03] with d = 50 are reported in 
Table 5.1. The columns mav and m~v give the average numbers of items and variables 
in the associated 0-1 knapsack subproblems. The columns iav and imx report the average 
and maximum numbers of iterations of the bundle code. The columns tav and tmx give 
the average and maximum running times in wall-clock seconds. The column n. lists the 
numbers of "early'' terminations due to discovering that ez* = r~ l for the incumbent 
z* delivered by HO or Hl before bundle terminated on its own. Recall that Hl is called 
after HO, H2 after Hl, etc., unless ez* = rttk l occurs earlier. The columns labelled Hl 
through H4 give the numbers of instances in which the corresponding heuristic found the 
best prima! value ez* first (for the remaining instances ez* was found by HO); a zero entry 
means that heuristic was not called or did not contribute usefully. The finał column n9 

reports the numbers of instances with a nonzero finał gap g := ez* - r ~ l; we stress that 
the finał gaps never exceeded one unit in all of our instances. 

The averages, maxima and sums in Table 5.1 are taken over 20 instances for each 
interval, and thus over 80 instances for each "all" row. In Table 5.2, there are 60 instances 
per interval (i.e., 20 instances for each value of the average demand d = 10, 50, 100), and 
each "all" row gives statistics over the 240 instances used for each value of m. Finally, 
each row in Table 5.3 reports statistics over 80 instances (obtained from the 20 instances 
used for each of the four width intervals) . 

From the "all" entries for n„ Hl through H4 and n9 in Table 5.2, we see that early 
termination occured on between 47% and 69% of problems, HO and Hl solved between 
70% and 85% of problems, H2 solved almost all the remaining problems, H3 and H4 
helped in solving 2 problems, and just one out of the 1680 problems was not solved. Note 
that the best method LR of [DeP03] also could not solve one instance within 15 minutes 
(two instances within 6 minutes), and its FFD-based rounding heuristic solved 91.6% of 
problems, whereas our "lighter" heuristics HO through H2 solved 99.8% of problems. 

Our results for the medium-item-size instances of [DeP03] are presented in Tables 5.4 
and 5.5, where each "all" row gives statistics over the 240 instances used for each value 
of m. Early termination occured on between 22% and 35% of problems, HO and Hl solved 
between 49% and 56% of problems, H2 solved almost all the remaining problems, H3 
solved one problem, H4 solved 7 problems, and just two out of the 1680 problems were not 
solved. The rounding heuristic of [DeP03] solved 69.9% of problems, whereas HO through 
H2 solved 99.4% of problems. 

Comparing the "all" rows in Tables 5.1- 5.2 and 5.4- 5.5, we see that the average and 
maximum solution times are quite similar in the small- and medium-size-item cases for 
problem sizes m up to 50. However, form= 75 and 100, in the medium-size-item case the 
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Table 5.1: Small-item-size instances of Degraeve and Peeters (2003), d = 50 

m int ffiav m~v iav imx tav tmx n, Hl H2 H3 H4 ng 

10 [1, 2500] 10.00 38.15 7.95 20 0.00 O.Ol 19 13 o o o o 
[1, 5000] 10.00 29.45 19.75 31 0.00 O.Ol 5 7 13 o o o 
[1, 7500] 9.95 22.35 19.95 29 0.00 O.Ol o o 8 o o o 

[1, 10000] 10.00 19.95 18.10 24 0.00 O.Ol 3 o 6 1 o o 
all 9.99 27.47 16.44 31 0.00 O.Ol 27 20 27 1 o o 

20 [1, 2500] 20.00 78.65 13.00 21 0.00 O.Ol 20 12 o o o o 
[1, 5000] 19.95 57.10 42.10 56 O.Ol 0.04 7 7 12 o o o 
[1, 7500] 20.00 45.15 42.10 59 0.00 O.Ol 3 2 8 o o o 
[1, 10000] 20.00 38.95 36.45 52 0.00 O.Ol 4 1 5 o o o 

all 19.99 54.96 33.41 59 O.Ol 0.04 34 22 25 o o o 
30 [1, 2500] 29.90 116.85 26.40 51 O.Ol 0.03 20 15 o o o o 

(1, 5000] 29.90 87.30 69.25 91 0.04 0.08 9 9 11 o o o 
[1, 7500] 30.00 68.50 65.40 91 O.Ol 0.02 5 3 8 o o o 
[1, 10000] 29.95 60.25 58.15 69 O.Ol 0.02 4 2 3 o o o 

all 29.94 83.22 54.80 91 0.02 0.08 38 29 22 o o o 
40 [1, 2500] 39.80 153.20 39.65 76 0.02 0,07 19 17 1 o o o 

[1, 5000] 39.85 113.20 92.50 121 0.12 0.21 14 14 6 o o o 
[1, 7500] 39.90 89.20 92.35 121 0.03 0.05 6 6 6 o o o 

[1, 10000] 39.90 76.15 78.25 108 0.02 0.03 3 1 5 o o o 
all 39.86 107.94 75.69 121 0.05 0.21 42 38 18 o o o 

50 [1, 2500] 49.60 190.70 35.75 51 0.02 0.04 20 14 o o o o 
[1, 5000] 49.70 145.30 116.55 171 0.19 0.42 16 16 4 o o o 
[1, 7500] 49.75 113.30 124.85 151 0.07 0.12 5 3 13 o o o 

[1 , 10000] 50.00 99.95 105.30 131 0.04 0.06 1 2 3 o o o 
all 49.76 137.31 95.61 171 0.08 0.42 42 35 20 o o o 

75 [1, 2500] 73.85 285.85 72.10 115 0.07 0.15 19 17 1 o o o 
[1, 5000] 74.10 218.00 167.30 256 0.42 1.33 18 18 2 o o o 
[1, 7500] 74.80 170.10 196.40 226 0.29 0.61 5 5 7 o o o 

[1, 10000] 74.75 145.15 158.75 218 0.12 0.24 3 2 4 o o o 
all 74.38 204.78 148.64 256 0.22 1.33 45 42 14 o o o 

100 [1, 2500] 98.50 374.00 100.50 120 0.13 0.22 20 20 o o o o 
[1, 5000] 99.05 286.45 182.35 261 0.45 1.95 17 17 3 o o o 
[1, 7500] 99.30 227.35 272.70 311 0.78 1.27 14 13 5 o o o 

[1, 10000] 99.45 194.55 224.65 294 0.31 0.66 5 3 3 o o o 
all 99.08 270.59 195.05 311 0.42 1.95 56 53 11 o o o 
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Table 5.2: Small-item-size instances of Degraeve and Peeters (2003), d = all 

m int ffia v m~v i av imx lav tmx ne Hl H2 H3 H4 ng 

10 [1, 2500) 10.00 36.70 8.02 28 0.00 O.Ol 54 30 5 o o o 
[1, 5000) 9.98 28.80 16.13 31 0.00 O.Ol 22 12 33 o o o 
[1, 7500) 9.98 22.10 18.17 29 0.00 O.Ol 19 4 18 o o o 

[1 , 10000] 10.00 19.48 18.25 31 0.00 O.Ol 18 3 14 o o 
all 9.99 26.77 15.14 31 0.00 O.Ol 113 49 70 1 o o 

20 [1, 2500) 19.95 74.15 14.92 61 0.00 0.02 58 31 2 o o o 
[1 , 5000] 19.90 56.25 37.57 56 O.Ol 0.04 30 25 29 o o o 
[1, 7500) 19.97 43.53 41.33 69 0.00 O.Ol 16 6 21 o o o 

[1, 10000] 20.00 38.57 36.23 52 0.00 O.Ol 16 2 12 o o o 
all 19.95 53.13 32.51 69 O.Ol 0.04 120 64 64 o o o 

30 [1 , 2500] 29.85 110.18 22.02 51 O.Ol 0.03 59 36 o o o 
[1 , 5000] 29.88 84.18 62.42 91 0.04 0.22 35 33 24 o o 1 
[1, 7500] 29.95 66.50 65.53 91 O.Ol 0.03 16 10 19 o o o 

[1, 10000] 29.95 58.18 57.65 83 O.Ol 0.02 20 6 13 o o o 
all 29.91 79.76 51.90 91 0.02 0.22 130 85 57 o o 1 

40 [l , 2500] 39.75 146.80 31.82 79 0.02 0.13 56 36 4 o o o 
[1, 5000] 39.87 111.88 80.00 134 0.09 0.35 44 42 16 o o o 
[l , 7500] 39.92 88.75 93.35 121 0.03 0.10 20 13 19 o o o 

[l, 10000] 39.87 74.78 76.62 108 0.02 0.03 14 7 14 o o o 
all 39.85 105.55 70.45 134 0.04 0.35 134 98 53 o o o 

50 [1 , 2500] 49.60 182.70 32.93 71 0.02 0.06 60 37 o o o o 
[1, 5000] 49.65 140.88 106.97 181 0.20 0.66 41 40 19 o o o 
[l, 7500] 49.82 110.80 122.42 151 0.07 0.13 19 16 24 o o o 

[1, 10000] 49.93 94.27 98.40 131 0.03 0.06 14 9 12 o o o 
all 49.75 132.16 90.18 181 0.08 0.66 134 102 55 o o o 

75 [1, 2500] 73.82 271.55 58.00 115 0.06 0.16 58 42 2 o o o 
[1, 5000] 74.23 209.83 157.35 256 0.53 2.00 49 49 11 o o o 
[1, 7500] 74.67 165.52 190.80 239 0.26 0.61 31 26 16 o o o 

[1, 10000] 74.72 142.38 160.85 227 0.12 0.27 10 4 15 o o o 
all 74.36 197.32 141.75 256 0.24 2.00 148 121 44 o o o 

100 [1 , 2500] 98.13 359.88 74.17 152 0.10 0.22 59 42 1 o o o 
[l, 5000] 98.90 280.47 166.03 277 0.44 2.81 52 49 8 o o o 
[1, 7500] 99.18 221.73 268.80 311 0.76 1.54 37 35 14 o 1 o 

[1, 10000] 99.45 191.37 224.30 294 0.29 0.66 17 10 11 o o o 
all 98.92 263.36 183.33 311 0.40 2.81 165 136 34 o 1 o 
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Table 5.3: Small-item-size instances of Degraeve and Peeters (2003), int= all 

m d ffiav m~v iav imx tav tmx n , Hl H2 H3 H4 n• 
10 10 10.00 24.95 10.77 26 O.DO O.Ol 69 14 6 o o o 

50 9.99 27.47 16.44 31 O.DO O.Ol 27 20 27 o o 
100 9.99 27.89 18.21 31 O.DO O.Ol 17 15 37 o o o 

20 10 19.94 48.60 25.93 58 O.DO O.Ol 57 16 9 o o o 
50 19.99 54.96 33.41 59 O.Ol 0.04 34 22 25 o o o 

100 19.94 55.81 38.20 69 O.Ol 0.03 29 26 30 o o o 
30 10 29.91 73.34 43.33 91 O.Ol 0.22 57 28 5 o o 1 

50 29.94 83.22 54.80 91 0.02 0.08 38 29 22 o o o 
100 29.88 82.73 57.59 91 0.02 0.13 35 28 30 o o o 

40 10 39.83 96.79 56.89 109 0.02 0.13 59 29 9 o o o 
50 39.86 107.94 75.69 121 0.05 0.21 42 38 18 o o o 

100 39.86 111.94 78.76 134 0.05 0.35 33 31 26 o o o 
50 10 49.70 121.30 75.41 151 0.05 0.36 59 35 6 o o o 

50 49.76 137.31 95.61 171 0.08 0.42 42 35 20 o o o 
100 49.79 137.88 99.51 181 0.11 0.66 33 32 29 o o o 

75 10 74.41 181.36 121.24 216 0.18 1.15 61 41 7 o o o 
50 74.38 204.78 148.64 256 0.22 1.33 45 42 14 o o o 

100 74.29 205.83 155.38 239 0.32 2.00 42 38 23 o o o 
100 10 98.90 243.64 154.60 310 0.28 1.69 62 35 4 o o o 

50 99.08 270.59 195.05 311 0.42 1.95 56 53 11 o o o 
100 98.78 275.86 200.32 303 0.49 2.81 47 48 19 o o 

average solution times grow significantly, and the maximum solution times jump up, most 
spectacularly on the instances with width interval [1500, 2500]. This is due to the poor 
performance of our knapsack solver on these instances. Similar slowdowns on this interval 
were reported in [DeP03, Tab. 4a] already form= 20, i.e., even for smaller problems. 

To save space, Table 5.6 presents only aggregate results on the instances of [WiiG96], 
with each row giving statistics over the 800 instances used for each value of m . Here 
our main point is that only three out of 4000 (0.075%) problems were not solved. Our 
"lighter" heuristics HO through H2 solved 99.7% of problems, whereas the two best (and 
more complicated) heuristics RSUC and CSTAOPT of [WiiG96] solved 98.0% and 92.7% 
of problems, respectively (99.6% if they had been applied together). The fairly large 
maximum solution time in Tab. 5.6 stemmed from a single knapsack subproblem. 

Table 5.7 gives our results for the 6 data classes of [Van99] with m = 50 and 20 
instances per row. (Since we used the original instances, the results are not identical to 
those in Tabs. 5.1 and 5.5.) These instances are fairly easy, never requiring H3 or H4; in 
fact HO through H2 suffice for solving all the CSP instances used in [Van99]. 

Quite suprisingly, all the industrial instances we could find in the literature turned out 
to be easy for our method. Tables 5.8- 5.10 give our results for the industrial instances 
of [Van98] (as numbered in (DeP03, Tab. 7]), (Van99, Tab. 1] and (DeS99] (as named in 
[DeP03, Tab. 9]). The finał column identifies the heuristic which delivered the optima! 
solution; in other words, HO through H2 solved all these instances except for a single 
instance solved by H3. 

12 



Table 5.4: Medium-item-size instances of Degraeve and Peeters (2003), d = 50 

m int ffiav m~v iav imx tav tmx ne Hl H2 H3 H4 na 

10 (500, 2500] 10.00 33.80 13.65 23 0.00 0.02 13 13 7 o o o 
[1000, 2500] 10.00 31.40 15.45 25 0.00 O.Ol 9 9 11 o o o 
[1500, 2500] 9.90 29.70 16.40 25 0.00 O.Ol 4 4 16 o o o 
(500, 5000] 10.00 28.15 19.10 25 0.00 O.Ol 5 5 13 o 1 o 

[1000, 5000] 10.00 24.70 17.30 22 0.00 O.Ol 5 7 12 o o o 
[1500, 5000] 9.90 22.50 17.40 23 0.00 O.Ol 2 5 15 o o o 
[500, 7500] 10.00 20.35 20.00 29 0.00 O.Ol 3 1 10 o o o 

[1000, 7500] 10.00 19.00 18.65 24 0.00 O.Ol 1 o 8 o o o 
[1500, 7500] 10.00 17.40 19.25 25 0.00 O.Ol o o 8 o o o 
[500, 10000] 10.00 18.30 18.95 28 0.00 O.Ol 5 o 3 o o o 
[1000, 10000] 10.00 16.50 17.35 22 0.00 0.00 3 2 4 o o o 
[1500, 10000] 10.00 15.30 16.75 20 0.00 O.Ol 4 2 5 o o o 

all 9.98 23.09 17.52 29 0.00 0.02 54 48 112 o 1 o 
20 [500, 2500] 20.00 67.00 26.85 58 O.Ol 0.09 16 16 4 o o o 

(1000,2500] 19.95 63.30 33.95 58 0.02 0.11 13 13 7 o o o 
(1500 , 2500] 19.75 59.25 39.00 49 0.02 0.03 10 10 10 o o o 
[500, 5000] 19.95 52.40 39.85 45 O.Ol 0.02 3 3 17 o o o 
[1000, 5000] 19.95 48.30 36.35 41 O.Ol 0.02 2 2 18 o o o 
[1500, 5000] 19.95 45.75 34.50 41 0.00 O.Ol 1 2 18 o o o 
[500, 7500] 19.95 40.50 39.70 52 0.00 O.Ol 3 1 7 o o o 
[1000, 7500] 20.00 37.55 37.90 44 0.00 O.Ol 4 2 10 o o o 
[1500, 7500] 20.00 34.30 34.05 41 0.00 O.Ol 3 1 8 o 1 o 
[500, 10000) 20.00 34.80 33.90 48 0.00 O.Ol 5 o 4 o o o 
[1000, 10000] 19.95 32.40 32.65 45 0.00 O.Ol 4 o 5 o o o 
[1500, 10000] 20.00 31.35 31.95 40 0.00 O.Ol 4 o 6 o o o 

all 19.95 45.58 35.05 58 O.Ol 0.11 68 50 114 o 1 o 
30 [500, 2500) 29.65 100.25 39.35 51 O.Ol 0.04 16 16 4 o o o 

[1000, 2500] 29.85 95.30 40.65 55 O.Ol 0.04 11 11 9 o o o 
(1500, 2500) 29.50 88.50 59.05 93 0.06 0.16 10 10 10 o o o 
[500, 5000] 30.00 79.65 61.00 71 0.03 0.06 6 6 14 o o o 

[1000,5000) 29.80 72.95 57.75 71 0.02 0.11 9 9 11 o o o 
(1500, 5000] 29.60 66.70 53.80 65 O.Ol 0.02 6 8 12 o o o 
(500, 7500) 29.95 62.25 63.90 75 O.Ol 0.03 4 3 7 o o o 

(1000, 7500] 30.00 55.60 58.95 71 O.Ol 0.02 3 2 10 o o o 
(1500, 7500] 29.90 51.75 55.85 69 O.Ol O.Ol 1 1 10 o o o 
[500, 10000] 29.95 52.30 52.00 67 O.Ol O.Ol 2 2 6 o o o 

[ 1 ooo, 10000 J 29.95 49.85 53.05 64 O.Ol O.Ol 3 3 7 o o o 
[1500, 10000] 29.95 46.55 49.15 61 O.Ol O.Ol 2 2 5 o o o 

all 29.84 68.47 53.71 93 0.02 0.16 73 73 105 o o o 
40 (500, 2500] 39.75 135.85 46.45 61 0.02 0.04 15 15 5 o o o 

[1000, 2500) 39.65 125.35 50.60 68 0.02 0.03 11 11 9 o o o 
[1500, 2500) 39.30 117.90 66.90 101 0.15 0.58 9 9 11 o o o 
[500, 5000] 39.85 103.30 82.05 101 0.07 0.11 9 9 11 o o o 
[1000, 5000] 39.80 95.50 76.10 99 0.05 0.09 6 7 13 o o o 
[1500, 5000] 39.75 90.85 71.70 84 0.03 0.05 4 4 16 o o o 
(500, 7500] 39.80 81.05 88.40 120 0.02 0.04 1 o 11 o o o 

[1000, 7500] 39.90 73.90 81.00 96 0.02 0.03 3 2 9 o o o 
[1500, 7500] 39.90 71.35 76.05 89 O.Ol 0.02 3 2 10 o o o 
[500, 10000] 39.85 68.80 71.15 93 O.Ol 0.02 2 2 6 o o o 
[1000, 10000] 39.90 63.50 65.55 80 O.Ol 0.02 2 o 5 o o o 
[ 1500, 10000 J 39.90 60.40 63.30 82 O.Ol 0.02 4 1 5 o o o 

all 39.78 90.65 69.94 120 0.04 0.58 69 62 111 o o o 
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Table 5.5: Medium-item-size instances of Degraeve and Peeters (2003), d = 50 

m int mav m~v iav imx łav tmx n, Hl H2 H3 H4 n~ 
50 [500, 2500] 49.60 170.70 53.60 71 0.03 0.04 20 20 o o o o 

[ 1000, 2500 I 49.20 155.95 64.55 83 0.03 0.04 8 8 12 o o o 
[1500, 2500] 49.00 147.00 75.05 109 0.24 0.89 2 3 17 o o o 
[500, 5000] 49.45 127.80 104.05 128 0.15 0.26 10 10 10 o o o 

[ 1000, 5000 I 49.80 121.15 92.75 108 O.OB 0.14 8 8 12 o o o 
[1500, 5000] 49.55 114.20 92.40 123 0.06 0.09 4 4 16 o o o 
[500, 7500] 49.75 104.90 120.35 156 0.05 0.10 4 3 9 o o 

[1000, 7500] 49 .70 93.70 106.30 125 0.04 0.06 2 2 14 1 o o 
[1500, 7500] 49.90 86.65 96.20 112 0.03 0.07 4 3 7 o o 1 
[500, 10000] 49.85 85.30 93.25 118 0.03 0.05 4 2 8 o o o 
[1000, 10000] 50.00 83.05 89.65 111 0.02 0.04 4 o 9 o o o 
[1500, 10000] 49.90 73.90 77.00 108 O.Ol 0.02 4 2 4 o o o 

all 49.64 113.69 88.76 156 0.06 0.89 74 65 118 1 
75 [500, 2500] 73.65 251.20 82.85 102 0.06 O.OB 14 14 6 o o o 

[1000, 2500] 73.40 232.30 88.60 101 0.05 0.06 5 5 15 o o o 
[1500, 2500] 71.85 215.55 102.25 164 2.72 8.56 3 3 17 o o o 
[500, 5000] 74.10 193.55 163.50 216 0.50 0.98 9 9 11 o o o 

[1000,5000] 74.00 181.05 143.95 175 0.29 0.46 12 12 8 o o o 
[1500, 5000] 74.15 167.65 141.75 205 0.18 0.41 10 11 9 o o 1 
[500, 7500] 74.70 154.65 181.65 232 0.20 0.50 7 7 11 o o o 

[1000, 7500] 74.50 138.80 171.25 201 0.12 0.16 6 7 5 o o o 
[1500, 7500] 74.50 128.95 153.60 178 0.09 0.15 6 3 7 o o o 
[500, 10000] 74.70 129.85 146.80 180 0.09 0.13 6 o 3 o o o 
[1000, 10000] 74.65 120.65 137.85 166 0.07 0.12 3 2 4 o o o 
[1500, 10000] 74.70 114.95 130.40 180 0.05 0.10 2 1 8 o o o 

all 74.08 169.10 137.04 232 0.37 8.56 83 74 104 o o 1 
100 [500, 2500] 98.10 336.05 104.35 119 0.08 0.12 13 13 7 o o o 

[1000, 2500] 96.30 303.40 105.95 116 0.07 0.14 4 4 16 o o o 
[1500, 2500] 95.55 286.65 128.35 210 13.50 61.84 3 3 17 o o o 
[500,5000] 98.70 263.50 204.25 260 0.81 2.06 15 15 5 o o o 

[1000, 5000] 98.65 240.15 197.50 220 0.72 1.00 9 9 11 o o o 
[1500, 5000] 98.70 225.25 189.35 269 0.48 0.73 8 8 10 o 2 o 
[500, 7500] 99.15 202.85 252.35 295 0.43 0.54 4 6 10 o o o 

[1000, 7500] 99.40 188.45 240.60 295 0.31 0.40 8 8 10 o 1 o 
[1500, 7500] 98.70 174.60 212.80 236 0.22 0.33 1 14 o 1 o 
[500, 10000] 99.40 174.70 210.00 272 0.23 0.40 o 7 o o o 

[1000, 10000] 99.45 163.90 192.15 235 0.17 0.43 3 2 4 o o o 
[1500, 10000] 99.25 153.35 174.25 208 0.12 0.16 3 2 7 o o o 

all 98.45 226.07 184.32 295 1.43 61.84 72 71 118 o 4 o 
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Table 5.6: CSP instances of Wa.scher and Gau (1996), int= all, d = all 

m ffiav m~v iav imx tav tmx n, Hl H2 H3 H4 n~ 
10 9.99 25.37 14.27 35 O.DO 0.02 449 134 192 o o o 
20 19.96 50.46 30.73 61 O.Ol 8.36 485 240 183 o 2 o 
30 29.90 75.72 48.18 105 O.Ol 0.14 503 281 161 o 1 o 
40 39.84 100.10 65.05 123 0.04 3.29 503 314 159 o 2 2 
50 49 .73 125.22 84.75 171 0.07 0.47 526 341 138 o 4 1 
all 29.88 75.37 48.60 171 0.03 8.36 2466 1310 833 o 9 3 

Table 5.7: CSP instances of Vanderbeck (1999), m = 50 

il. int ffiav m~v iav imx tav tmx n, Hl H2 H3 H4 ng 
50 (1, 2500) 49.40 185.30 47.40 71 0.03 0.06 20 18 o o o o 
50 [1, 5000) 49.65 143.05 114.05 151 0.20 0.34 13 13 7 o o o 
50 (1, 7500] 49.75 110.00 111.85 144 0.06 0.11 6 5 8 o o o 
50 (500, 2500) 49.40 166.10 56.80 77 0.03 0.04 14 14 6 o o o 
50 (500, 5000) 49.70 128.20 103.65 114 0.14 0.27 11 11 9 o o o 

100 (500, 5000) 49.70 129.25 104.40 131 0.14 0.33 8 8 12 o o o 

5.4 Impact of tighter knapsack bounds 

The results of §5.3 were obtained for the relaxed bounds of (2.9). Using the tighter bounds 
of (2.8) al!owed us to solve just two more instances at the expense of longer running 
times. To save space, the following tables and remarks list only data classes on which the 
tightening of KP bounds mattered most, giving more details for larger problem sizes. 

Concerning Tables 5.11-5.12, the good news is that tighter bounds allowed us to solve 
all the small-item-size instances of (DeP03], and all but one of the medium-item-size 
instances of (DeP03]. Unfortunately the running times grew substantially relative to Tabs. 
5.2 and 5.5. On the small-item-size instances, form ~ 40 the average running times grew 
by about 150% (mostly from increasing by about 200% on width interval (1, 5000]). On the 
medium-item-size instances, the average running times grew by 200%, 217%, 303% and 
446% for m = 40, 50, 75 and 100, increasing by 367- 531 % on width interval (1500, 2500], 
157-223% on (500, 5000], and 140- 179% on (1000, 5000]; for m = 100, they went up by 67-
156% on four other intervals. The iteration numbers were about the same. The increase 
in running times can be attributed to the knapsack solver (which made more than two 
million backtrackings on some subproblems). 

For the instances of [WaG96], the same 3997 out of 4000 instances were solved, but 
relative to Tab. 5.6, form = 40 and 50 the average running times grew by 100% and 143%. 

For the instances of [Van99], relative to Tab. 5.7, the average running times grew by 
between 67% and 200%; their sum increased by 175%. 
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Table 5.8: Industrial CSP instances of Vance (1998) 

inst. m m' t n, Hi 
1 2 7 1 0.00 HO 
2 2 8 3 0.00 Hl 
3 3 11 0.00 1 HO 
4 5 17 1 0.00 HO 
5 14 50 15 O.Ol Hl 
6 5 19 1 0.00 HO 
7 4 14 1 0.00 1 HO 
8 7 27 10 0.00 o H2 
9 11 46 12 0.00 1 Hl 

10 3 9 2 0.00 1 HO 
11 2 7 0.00 1 HO 
12 6 23 0.00 1 HO 
13 2 9 1 0.00 1 HO 
14 3 11 4 0.00 Hl 
15 7 20 8 0.00 Hl 
16 4 9 1 0.00 HO 
17 12 42 24 0.00 o H2 
18 14 44 15 0.00 Hl 
19 5 15 13 0.00 o H2 
20 11 31 21 0.00 o H2 
21 9 27 16 0.00 o H2 
22 8 25 16 0.00 o H2 
23 7 20 8 0.00 1 Hl 
24 7 22 13 0.00 o H2 
25 12 39 13 0.00 1 Hl 
26 6 18 7 0.00 1 Hl 
27 12 40 13 0.00 1 Hl 
28 18 48 1 0.00 1 HO 

Table 5.9: Industrial CSP instances of Vanderbeck (1999) 

inst. name m m' t n, Hi 
1 7pl8 7 22 13 0.00 o H2 
2 llp4 11 46 12 O.Ol Hl 
3 12p19 12 39 13 0.00 Hl 
4 14pl2 14 50 15 O.Ol 1 Hl 
5 dl6p6 16 34 17 0.00 1 Hl 
6 25p0 25 80 66 0.07 1 Hl 
7 28p0 28 102 47 0.02 o H2 
8 30p0 26 86 27 0.00 1 Hl 
9 d33p20 23 53 24 0.07 1 Hl 

10 d43p21 32 74 33 0.04 Hl 
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Table 5.10: Industrial CSP instances of Degraeve and Schrage (1999) 

name m m' n, Hi 
DSOl 41 90 62 0.05 1 Hl 
DS02 40 89 71 0.04 o H2 
D803 26 56 47 0.00 1 Hl 
D804 14 29 20 O.Ol o H3 
D805 18 33 31 0.00 o H2 
DS06 71 149 132 0.28 Hl 
D807 14 41 15 O.Ol 1 Hl 
DS08 35 58 47 0.00 1 Hl 
D809 35 86 36 0.05 1 Hl 
DSlO 46 98 102 0.06 1 Hl 
D811 42 89 43 0.00 1 Hl 
D812 53 110 97 0.03 1 Hl 
D813 22 47 30 0.00 1 Hl 
DS14 29 45 40 0.00 o HO 
D815 43 78 55 0.00 1 Hl 
D816 8 24 13 O.Ol o H2 
D817 37 lll 36 0.00 o H2 
DS18 16 54 17 0.00 1 Hl 
D819 23 67 43 0.02 o H2 
D820 11 41 18 0.04 o H2 

Table 5.11: Small-item-size instances with tight KP bounds, J = all 

m int mav m:v iav imx tav tmx n, Hl H2 H3 H4 n~ 
40 [1, 5000] 39.87 111.88 80.40 141 0.28 1.38 44 42 16 o o o 

all 39.85 105.55 70.63 141 0.10 1.38 126 93 58 o o o 
50 [1, 5000] 49.65 140.88 107.18 171 0.60 2.20 41 40 19 o o o 

all 49.75 132.16 90.49 171 0.20 2.20 131 100 57 o o o 
75 [1, 5000] 74.23 209.83 158.25 236 1.63 6.29 52 52 8 o o o 

[l, 7500] 74.67 165.52 189.22 249 0.53 1.79 28 26 16 o o o 
[1, 10000] 74.72 142.38 160.50 231 0.19 0.49 15 6 13 o o o 

all 74.36 197.32 141.57 249 0.61 6.29 152 125 40 o o o 
100 [1, 2500] 98.13 359.88 74.53 140 0.16 0.42 59 42 o o o 

[1, 5000] 98.90 280.47 165.08 281 1.34 11.15 52 49 7 o 1 o 
[1, 7500] 99.18 221.73 268.20 319 1.54 4.55 28 27 23 o o o 

[1, 10000] 99.45 191.37 225.10 301 0.51 1.68 16 9 11 o 1 o 
all 98.92 263.36 183.23 319 0.89 11.15 155 127 42 o 2 o 
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Table 5.12: Medium-item-size instances with tight KP bounds, d = 50 

m int mav m~v iav imx tav tmx n. Hl H2 H3 H4 n~ 
30 [1500, 2500] 29.50 88.50 58.50 91 0.30 0.81 12 12 8 o o o 

all 29.84 68.47 53.63 91 0.05 0.81 78 77 100 o 1 o 
40 [1500, 2500] 39.30 117.90 67.50 101 0.82 3.75 9 9 11 o o o 

[500, 5000] 39.85 103.30 82.20 101 0.18 0.32 9 9 11 o o o 
all 39.78 90.65 70.05 116 0.12 3.75 69 63 110 o o o 

50 [1500, 2500] 49.00 147.00 75.00 109 1.12 4.80 4 4 16 o o o 
(500, 5000] 49.45 127.80 103.95 128 0.40 0.76 11 11 9 o o o 

[1000, 5000] 49.80 121.15 93.15 110 0.20 0.34 8 8 12 o o o 
all 49.64 113.69 88.92 154 0.19 4.80 83 71 111 o 3 1 

75 [1500, 2500] 71.85 215.55 101.75 159 14.03 53.75 3 3 17 o o o 
(500, 5000] 74.10 193.55 164.80 216 1.43 3.15 10 10 9 1 o o 

[1000, 5000] 74.00 181.05 144.05 175 0.81 1.35 12 12 8 o o o 
[1500, 5000] 74.15 167.65 142.70 205 0.44 0.67 9 9 11 o o o 
[500, 7500] 74.70 154.65 180.45 216 0.36 0.74 11 11 7 o o o 

all 74.08 169.10 137.08 216 1.49 53.75 80 71 106 1 o o 
100 [1500, 2500] 95.55 286.65 128.05 199 85.18 413.15 3 3 17 o o o 

[500, 5000] 98.70 263.50 206.25 260 2.62 7.87 17 17 3 o o o 
(1000, 5000] 98.65 240.15 197.00 220 1.97 2.78 9 9 11 o o o 
[1500, 5000] 98.70 225.25 189.80 263 1.23 1.79 7 7 12 o 1 o 
[500, 7500] 99.15 202.85 255.25 288 0.75 1.21 4 4 12 o o o 
[1000, 7500] 99.40 188.45 238.95 293 0.52 0.83 7 9 10 o o o 

(1000, 10000] 99.45 163.90 193.25 246 0.31 1.93 2 o 6 o o o 
all 98.45 226.07 184.73 293 7.81 413.15 75 73 118 o 2 o 

5.5 Results for the bin-packing problem 

Following [DeP03], in the next three tables we present our results for the BPP. 
Table 5.13 gives our results for the BPP instances of [DeP03] (20 instances per row). 

All the 360 instances were solved (without requiring H3 and H4) . 
Table 5.14 reports results for the BINPACK instances from the OR-Library [Bea90] 

(20 instances per row). The first four uniform classes were solved by calling H4 just once. 
However, only 19 out of the 80 triplet instances were solved (with H4 helping on one 
instance) . The remaining instances had unit gaps; the "gap" column gives averages of 
relative gaps (ez* - r~kl)/f~kl We add that for the CSP instances of §5.3, the running 
times of H4 were not excessive, and H4 was called quite infrequently anyway. In contrast, 
on the triplet classes t249 and t501, the use of H4 increased the running times substantially, 
as illustrated in Table 5.15 (the influence of H3 could be ignored). Note that the triplet 
classes are quite difficult for traditional .LP relaxation [DeP03, Tab. 12]. 

Table 5.16 presents our results for the modified BPP classes of [DeP03] (20 instances 
per row). Just one out of the 180 problems was not solved (H4 helped on two problems). 
The transformation into a CSP reduced the number of items by at most 5% on average. For 
almost 500 variables, the large iteration numbers and running times are not too suprising. 
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Table 5.13: BPP instances of Degraeve and Peeters (2003) 

m w int ffiav m~v iav imx lav lmx n, Hl H2 H3 H4 n~ 
500 100 [1,100] 99.35 167.20 184.10 221 0.06 0.09 12 1 1 o o o 

[20,100] 80.75 116.00 111.50 123 0.02 0.03 10 2 o o o o 
(50,100] 51.00 52.00 56.60 63 0.00 O.Ol 15 o o o o o 

120 [1,100] 99.65 181.85 37.05 195 0.28 3.71 17 1 o o o o 
(20,100] 80.85 131.20 132.80 146 0.03 0.04 14 6 o o o o 
(50,100] 51.00 62.00 56.55 61 0.00 O.Ol 13 o o o o o 

150 [1,100] 99.45 201.55 1.00 1 0.00 O.Dl 20 o o o o o 
[20,100] 80.85 151.65 86.70 102 O.Ol 0.02 14 14 6 o o o 
(50,100] 51.00 77.00 64.80 72 0.00 O.Ol 12 o o o o o 

1000 100 [1,100] 100.00 183.65 199.90 230 0.07 0.11 12 1 o o o 
(20,100] 81.00 117.95 114.25 133 0.02 0.03 14 4 1 o o o 
(50,100] 51.00 52.00 57.35 64 0.00 O.Ol 9 o o o o o 

120 (1,100] 100.00 202.20 24.65 174 O.Ol 0.05 19 2 1 o o o 
(20,100] 81.00 132.95 143.40 167 0.03 0.04 10 3 2 o o o 
(50,100] 51.00 62.00 56.90 62 0.00 O.Ol 11 o o o o o 

150 [1,100] 100.00 226.15 7.00 121 0.00 0.02 20 1 o o o o 
[20,100] 81.00 154.90 86.65 102 O.Ol 0.02 12 12 8 o o o 
(50,100] 51.00 77.00 67.25 77 O.Ol O.Ol 10 o o o o o 

Table 5.14: BINPACK uniform and triplet instances 

name ffiav m~v iav imx lav lmx n, Hl H2 H3 H4 gap ng 

u120 63.20 88.75 48.60 89 O.Ol O.Ol 20 14 o o o 0.0% o 
u250 77.25 129.00 86.40 122 O.Ol 0.03 19 19 1 o o 0.0% o 
u500 80.80 151.05 85.85 113 O.Ol 0.04 16 16 3 o 1 0.0% o 
ulOOO 81.00 155.00 86.20 97 O.Ol 0.02 12 12 8 o o 0.0% o 
t60 49.95 58.80 40.20 56 O.Ol 0.04 o 1 19 o o 1.5% 6 
tl20 86.15 110.75 72.60 91 0.06 0.09 o o 19 o 1 2.0% 16 
t249 140.10 199.15 125.25 145 0.26 0.33 o o 20 o o 1.2% 20 
t501 194.25 315.40 166.90 194 0.63 0.89 o o 20 o o 0.6% 19 

Table 5.15: BINPACK triplet instances without H3 and H4 

name ffiav m~v iav imx lav lmx n, Hl H2 gap ng 

t60 49.95 58.80 40.20 56 0.00 O.Ol o 19 1.5% 6 
t120 86.15 110.75 72.60 91 O.Ol 0.02 o o 20 2.1% 17 
t249 140.10 199.15 125.25 145 0.04 0.06 o o 20 1.2% 20 
t501 194.25 315.40 166.90 194 0.08 0.11 o o 20 0.6% 19 
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Table 5.16: Modified BPP instances of Degraeve and Peeters (2003) 

w int ffi a v m~v i a.v imx t •• tmx ne Hl H2 H3 H4 nf 

10000 [l, 10000] 488.65 494.05 1484.40 1737 35.03 48.50 14 3 o o o o 
[2000, 10000] 485.15 490.20 800.70 916 7.07 9.89 15 1 o o o o 
[5000,10000] 474.75 474.80 457.70 480 1.16 1.36 16 o o o o o 

12000 [l , 10000] 486.95 494.55 815.90 1732 25.86 58.14 18 7 1 o o o 
[2000,10000] 484.75 492.20 1157.90 1328 15.04 21.37 18 2 o o o o 
[5000, 10000] 475.95 480.35 520.75 550 2.22 2.65 15 o o o o o 

15000 [l, 10000] 487.90 497.15 285.10 1171 7.99 67.07 17 5 o o 2 
[2000, 10000] 482.70 494.25 805.05 1144 16.11 29.28 16 16 4 o o o 
[5000, 10000] 475.25 486.95 691.50 786 5.13 6.29 13 o o o o o 

Table 5.17: Comparison of running times with Degraeve and Peeters (2003), int= all 

Tab. 5.1 Tab. 5.2 Tabs. 5.4- 5.5 
m HR LR BR LR BR LR BR 
30 0.17 0.10 0.02 0.10 0.02 0.29 0.02 
40 0.44 0.21 0.05 0.21 0.04 0.71 0.04 
50 0.74 0.38 0.08 0.37 0.08 1.45 0.06 
75 5.03 0.81 0.22 2.18 0.24 9.57 0.37 

100 10.14 2.99 0.42 2.63 0.40 21.08 1.43 

5.6 Comparisons with other procedures from the literature 

In Table 5.17 we compare the average running times of our bundle relaxation code BR 
with the two best procedures HR and LR of (DeP03] on the instances used for Tabs. 5.1, 
5.2 and 5.4- 5.5. The times for HR and LR obtained on a Pentium Pro 200 MHz were 
extracted from (DeP03, Tabs. 1- 4b]. Two points should be noted. First, both HR and LR 
employed an industrial LP solver (much more sophisticated than our dense QP solver), 
and LR additionally used subgradient optimization. Second, due to lacking knowledge, 
let's assume that the machine of (DeP03] was ten times slower than ours. Then Table 
5.17 suggests that on the small-item-size instances BR was comparable in speed with HR 
(about twice slower than LR), while on the medium-item-size instances BR could beat LR. 
Similarly, in view of Tab. 5.6 and (DeP03, Tab. 10], on the instances of [WaG96] BR was 
as fast as HR (twice slower than LR), whereas Tab. 5.7 and [DeP03, Tab. 5a] indicate that 
on the instances of [Van99] BR was comparable with HR, and sometimes faster than LR. 
On the industrial instances of [DeS99] (cf. Tab. 5.10 and [DeP03, Tab. 9]), BR behaved 
like HR (sometimes better than LR). 

When the dual objective evaluations happen to be exact, our BR code runs essentially 
like the standard bundle method used in [FeKOO] . Therefore, we now summarize our results 
for exact KP solutions (Er = O) relative to Tab. 5.2 (where Er = 10-8); similar features 
were observed on other instances. First, the iteration numbers and the performance of our 
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Table 5.18: Industrial and random CSP instances of Briant et al. (2004) 

instance source mav m~v iav imx tav tmx 

[BLM+o5, Tab. 2.1] 18.00 56.89 30.00 69 0.02 0.10 
[BLM+o5, Tab. 2.2] 49.70 129.25 108.15 141 0.15 0.40 
[BLM+o5, Tab. 2.3] 18.00 57.89 26.44 40 0.08 0.51 
[BLM+o5, Tab. 2.4] 49.70 129.60 119.35 154 0.34 0.47 

heuristics <lid not change significantly. (In other words, the errors occuring in the inexact 
case were small enough to be accommodated gracefully by our code.) Second, the running 
times increased quite dramatically: for m = 30, 40, 50, 75 and 100, the "all" average times 
grew by factors of 27.5, 60.6, 13.5, 31.7 and 33.2, respectively. 

Finally, we compare our running times with those in [BLM+o5, §2.2]. 

Remark 5.1. Our timings for u120 and u250 in Tab. 5.14 and for tl20 and t249 in Tab. 
5.15 were about the same without Hl through H4. Relative to [BLM+o5, Tab. 2.5] (where 
the machine used was about twice slower than ours), our running times were shorter at 
least 57 times for u120/u250, 284 times for t120, and 227 times for t249. Table 5.18 gives 
our results for the remaining CSP instances of [BLM+o5, §2.2]. Relative to [BLM+o5, 
Tabs. 2.1-2.4], our running times were shorter 12, 25, 32 and 27 times, respectively. 
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