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Abstract: The paper is concerned with the existence of weak 
solutions to the Cahn-Hilliard-Gurtin system coupled with non
stationary elasticity. The system describes phase separation pro
cess in elastically stressed materia!. It generalizes the Cahn
Hilliard equation by admitting a more generał structure and by 
coupling diffusive and elastic effects. The system is studied with 
the help of a singularly perturbed problem which has the form 
of a well-known phase field model coupled with elasticity. The 
established existence results are restricted to the homogeneous 
problem with gradient energy tensor and elasticity tensor inde
pendent of the order parameter. 
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1 lntroduction 

In this paper we study the existence of solutions to the Cahn-Hilliard system 
coupled with elasticity which has been proposed by Gurtin (1996). Such 
system generalizes the classical Cahn-Hilliard equation by admitting a more 
generał structure and at the same time accounts for a deformation of the 



materia!. The system describes phase separation process in a binary de
formable alloy quenched below a certain critical temperature. From the ma
terials science literature it is known that elastic effects strongly influence the 
microstructure evolution in phase separation process, especially in its later 
stages (coarsening), see reviews by Fratzl, Penrose and Lebowitz (1999), 
Fried and Gurtin (1999), and numerical simulations in Garcke, Rumpf and 
Weikard (2001), Leo, Lowengrub and Jou (1998), Dreyer and Miiller (2001) . 
The important factors are the elastic anisotropy and heterogeneity as well 
as the impact of external body forces . In particular, the elastic fields can 
be used to control and stabilize the coarsening process and thereby influence 
the materiał properties, see Leo, Lowengrub and Jou (1998) . 

The Cahn-Hilliard models accounting for elastic effects have been firstly 
derived on the basis of variational arguments by Larche and Cahn (1982, 
1985, 1992) and Onuki (1989). Having in mind severa! objections to vari
ational derivations Gurtin (1996) has proposed a thermodynamical theory 
which relies on the fundamental balance laws in conjunction with an auxil
iary balance law for the microforces and a mechanical version of the second 
law. Gurtin's theory generalizes the Cahn-Hilliard equation to the following 
system 

(1.1) Xt - 'y · (M'vw + hx1) = o, 

w - g • 'vw = -'v · (r'vx) + w'(x) + !3x1 

defined on a spatial domain n C m,n,n E JN, where x is the scalar order 
parameter, w is the chemical potentia!, Xt = 8x/8t, \ll(x) is a double-well 
potentia! whose wells characterize the phases of the materiał, M is a positive 
definite mobility matrix (special case M = ml, m > O constant) , r is a 
positive definite gradient matrix (special case r = -yl, 'Y > O constant), 
/3 > O is the viscosity coefficient, h and g are given vectors. The quantities 
M, /3, h, g can in generał depend on X, 'vx, Xt, w, 'vw, and are subjected to 
the condition 

X· [ ~ ~ ] X 2: O V X:= ('vw, Xt) E m,n x IR,. 

Eąuation (1.1) 1 represents the mass balance and (1.1)2 the microforce 
balance. The system (1.1) differs from the Cahn-Hilliard equation by the 
presence of the coupling terms with vectors h and g. The physical interpre
tation of these terms in the framework of Gurtin's theory is given in Section 
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2. In case h = O, g = O and /3 = O the system reduces to the classical 
Cahn-Hilliard equation while in case h = O, g = O and /3 > O to the viscous 
Cahn-Hilliard equation. Such equations have been extensively studied in the 
mathematical literature (for recent survey see e.g. Miranville (2003)). 

The elastic effects are taken into account by coupling (1.1) with the linear 
momentum balance (see Gurtin (1996)) 

(1.2) Utt - v' · (A(x)(c(u) - e(x))) = b 

where u is the displacement vector, c(u) is the linearized strain tensor, e(x) 
is the eigenstrain, and A (x) is the elasticity tensor. Since the mechanical 
equilibrium is usually attained on a much faster time scale than diffusion a 
quasi-stationary approximation of (1.2), i.e., neglecting the interial term Utt 

is often applied. 
The equations (1.1), (1.2) constitute the Cahn-Hilliard-Gurtin system 

coupled with elasticity which is the subject of our study. We mention that in 
Pawłow (2004) it has been shown that it is possible to reconstruct Gurtin's 
theory by using the approach based on the fundamental balance laws and the 
entropy inequality with multipliers. It turns out that the differentia! equation 
for the multiplier of the mass balance can be identified with the microforce 
balance of Gurtin's theory. In addition the approach with multipliers allows 
easily to incorporate heat conduction into the model. 

In order to place our study in the present theory of Cahn-Hilliard systems 
coupled with elasticity we review first the known results. 

Recently Dreyer and Miiller (2000, 2001) have extensively studied the 
modeling aspects of binary tin-lead solders. They proposed a specialized 
system of equation which falls into Gurtin's frame, and have examined it by 
numerical computations for experimental data. 

In Garcke (2000, 2003a) the Cahn-Hilliard system with a multicomponent 
order parameter coupled with the quasi-stationary elasticity has been anal
ysed mathematically. The existence result has been obtained in a generał 
case of heterogeneous elasticity, i.e., the order parameter-dependent elastic
ity tensor A = A(x). The order parameter-dependence of the elasticity 
tensor introduces the nonlinear coupling between the equations and makes 
the analysis much more complicated. We underline that the existence re
suit in Garcke (2000, 2003a) is based on the monotonicity argument for the 
quasi-stationary elasticity equation. Such argument does not extend to the 
nonstationary case. 

An even more difficult, but physically more adequate, multicomponent 
Cahn-Hilliard system with logarithmic free energy coupled with elasticity 
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has been recently studied in Garcke (20036) . Also in this case, due to the 
quasi-stationary elasticity equation, a higher integrability result for the strain 
has been established what allowed to consider order parameter dependent 
elasticity tensor. 

In Bonetti, Colli, Dreyer, Giliardi, Schimperna and Sprekels (2002) the 
physical model proposed by Dreyer and Miiller (2000, 2001) has been stud
ied. For system with heterogeneous, quasi-stationary elasticity the existence 
and uniqueness results have been obtained in case of one-space dimension 
(1-D) and for homogeneous elasticity in case of 2-D. In contrast to the pre
vious works the framework of Bonetti, Colli, Dreyer, Giliardi, Schimperna 
and Sprekels (2002) refers to a nondifferentiable free energy involving the 
indicator function of a closed interval within which the order parameter is 
forced to attain its values. Besides, the order parameter-dependence of the 
gradient coefficient 'Y = 'Y(X) is there taken into account, with certain struc
tural simplifications suggested in Dreyer and Miiller (2000, Appendix) . We 
mention also the paper by Bonetti, Dreyer and Schimperna (2003) where un
coupled, constrained Cahn-Hilliard equation with additional nonlinear terms 
imitating the elastic effects has been examined. 

Various variants of the Cahn-Hilliard-Gurtin system without and with 
elasticity have been extensively studied by Miranville et al. (see Carrive, 
Miranville and Pietrus (2000), Carrive, Miranville, Pietrus and Rakotoson 
(1998, 1999), Miranville (1999, 2000, 2001a, 20016, 2003)) from the point of 
view of the existence, uniqueness and long time behaviour of the solutions. 
In all these papers it has been assumed that the gradient matrix is isotropic 
r = 7I with constant 'Y > O, the mobility matrix M is constant, and in case 
of a coupled system that the elasticity tensor A is constant. 
In Miranville, Pietrus and Rakotoson (1998) the viscous Cahn-Hillard equa
tion (g = h = O, /3 = const > O) without elasticity has been studied, and in 
Miranville (2001a) coupled with quasi-stationary or nonstationary elasticity. 
In Carrive, Miranville, Pietrus and Rakotoson (1999) the classical Cahn
Hilliard equation (g = h = O, /3 = O) coupled with stationary, isotropic 
elasticity has been considered. The analysis in that paper is based on the 
fact that in such a case the equation for the order parameter is independent 
of the displacement u. More generał case without isotropy assumption has 
been investigated in Carrive, Miranville, Pietrus (2000). 
The Cahn-Hilliard-Gurtin system (1.1) without elasticity in a special case 
h = O and constant vector g i, O has been studied in Miranville (1999), 
and in case of constant vectors g i, O and h cp O under periodic boundary 
conditions in Miranville (2003) . 
In Miranville (2000, 20016) the Cahn-Hilliard-Gurtin system (g i, O, hi, O) 
coupled with quasi-stationary elasticity has been analysed. The considera-
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tions in Miranville (2000) make use of the fact that in case of quasi-stationary 
elasticity equations for the order parameter and the displacement can be un
coupled. 
In Miranville (2001b) the problem has been studied under geometry assump
tions and a special structure of vectors g and h. Namely, the domain has 
been assumed to be a two-dimensional (2-D) or a three-dimensional (3-D) 
parallelepiped, and mixed periodic-Neumann boundary conditions have been 
imposed. The vectors g and h have been assumed constant with vanishing 
components in xr direction in 2-D case and vanishing components in x3-

direction in 3-D case. 
We point out that in the above mentioned papers by Miranville et al. 

system (1.1) has been reformulated as a single equation for the order param
eter X· This is in contrast to our approach in which we treat x and w as 
independent variables. 

The goal of the present paper is to study the existence of solutions to the 
Cahn-Hilliard-Gurtin system coupled with elasticity in the following cases 
that not have been, or only partially, addressed in previous works: 

(i) The presence of the coupling terms with vectors g and h; 
(ii) The nonstationary elasticity equation. The vanishing-inertial term 

analysis, i.e., examination of the time re-scaling limit to the quasi
stationary problem; 

(iii) The mobility tensor M(x) depending on the order parameter (anisotropic, 
heterogeneous diffusion); 

(iv) The gradient tensor r(x) in free energy depending on the order param
eter ( anisotropic, heterogeneous interfacial structure); 

(v) The elasticity tensor A(x) depending on the order parameter (anisotropic, 
heterogeneous elasticity). 

We add also that as a by-product of our analysis we obtain 

( vi) the existence result for a phase-field model co u pled with elasticity and 
its convergence to the Cahn-Hilliard-Gurtin system with the elasticity. 

We point out that our considerations are restricted to a scalar, unconstrained 
order parameter. More advanced models should take into account the con
straints on the order parameter like in Bonetti, Colli, Dreyer, Giliardi, Schim
perna and Sprekels (2002). 

We formulate now the initial-boundary-value problem (P) we are con
cerned with: 

5 



(1.3) 

(1.4) 

(1.5) 

Utt - v' · W;,(e(u),x) = b, 

uit=O = Uo, udt=O = u1, 
u= o, 

Xt - v' · (M(x)v'w + hx1) = O, 

Xlt=O = Xo, 

n· (M(x)v'w + hx1) = o, 

w - g · v'w + v' · (r(x)v'x) - !v'x · r'(x)v'x 
2 

- w'(x) - W;x (e(u),x) -/3x1 = O, 

n • (r(x)v'x) = o, 

in nr= n x (0 ,T), 
in n, 
on ST= S x (O ,T) , 

in nr, 
in n, 
on sr, 

in nr, 
on sr, 

where W(e(u), x) is given by 

(1.6) 
1 

W(e(u),x) = 2(e(u) -e(x)) · A(x)(e(u) -e(x)) , 

SO 

(1.7) W;,(e(u),x) = A(x)(e(u) - e(x)), 

1 
W;x(e(u), x) = -e'(x) ·A(x)(e(u)-e(x))+2(e(u)-e(x))·A'(x)(e(u)-e(x)). 

In quasi-stationary version of (P) the elasticity system (1.3) is replaced 
by the elliptic problem 

(1.8) - v' · W;,(e(u) , x) = b in nr, 
u= o, on sr. 

Above n C JR.n, n = 2 or 3, is a bounded domain with a smooth boundary 
S, occupied by a solid body in a reference configuration, with constant mass 
density p = I; n denotes the outward unit norma! to S ; T > O is an arbitrary 
fixed time. 

The unknown variables are the fields of the displacement u : nr --+ JR.n, 
the scalar order parameter x : nr --+ JR., and the chemical potentia! difference 
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between the components (shortly referred to as the chemical potentia!) w : 
nr --+ IR. In case of a binary a-b alloy the order parameter is related to 
the volumetric fraction of one of the two phases, characterized by different 
crystalline structures of the components, for example x = O corresponds to 
phase a and X = 1 to phase b. The second order symmetric tensor 

1 
c(u) = 2(v'u + (v'uf) 

denotes the linearized strain (for simplicity we write c instead of c(u)), 
b : nr --+ !Rn is the external body force. 

The free energy density underlying system {1.3)-(1.5) has the Landau
Ginzburg-Cahn-Hilliard form accounting for the elastic effects 

(1.9) 
1 

J(c, x, v'x) = W(c, x) + w(x) + 2v'x · r(x)v'x, 

where W(c, x) is the homogeneous elastic energy, w(x) is the exchange en
ergy, and the last term with positive definite tensor r(x) = (r;i (x)) is the 
order parameter gradient energy. 

The standard form of the elastic energy W(c, x) is given by (1.6) where 
A(x) = (Aijkl(X)) is the fourth order elasticity tensor depending on the 
order parameter, and E:'(x) = (l';j (x)) is the symmetric stress free strain 
(eigenstrain). 

The exchange energy w(x) characterizes the energetic favorability of the 
individual phases a and b. The standard form is a double-well potentia! with 
equal minima at X= O and X= 1: 

(1.10) 

Furthermore, M(x) = (Mii(X)) is the mobility matrix, f3 2: O is the 
diffusional viscosity, and vectors g = (g;), h = (h;) represent the coupling 
effects; for usual isotropic materials g = O and h = O. 
By thermodynamical consistency the coefficients matrix 

(1.11) B=[M h] gr (3 

has to satisfy the condition 

7 



(1.12) X · BX 2 O V X= (v'w, Xi) E IR,n x IR,. 

If Bis independent of X then (1.12) means the positive semi-definiteness of 
B. In generał, M, g, h, /3 can depend on v'w, Xt, e:, X· Here we shall assume 
that M = M(x) is positive definite, /3 2 O is a constant, vectors g and h are 
constant, and the coefficients matrix B is positive definite in the sense that 
there exist constants fM > O and fp > O such that 

(1.13) X. BX 2 fivtlv'wl 2 + fplxil2 V X= (v'w, xt) E IR,n X IR,. 

We point out that (1.13) represents one of the two main structural postulates 
we impose in this paper. The second postulate requires the following !ower 
bound for the free energy 

(1.14) f(e:,x, v'x) 2 c(le:1 2 + lxn - c, 

where r > 2 and c > O are constants. Under assumptions formulated in 
Section 3 the Landau-Ginzburg free energy (1.9) will satisfy condition (1.14) . 

Finally, we mention that the functions Uo : l1 -t IR,n, U1 : l1 -t IR,n , 
xo : l1 -+ IR, denote the initial conditions for the displacement, velocity 
and the order parameter. The boundary conditions in (1.3)-(1.5) represent 
respectively the prescribed displacement, the mass isolation and the natura! 
boundary condition associated with Landau-Ginzburg energy (1.9). 

To analyse problem (P) in a generał case (with coupling terms g, h) 
we introduce first a singularly perturbed problem (PY with a parameter 
v E (O, 1] which we Jet to decrease to zero. In this case we have to assume 
that viscosity coefficient is a positive constant /3 > O. The special case with 
vectors g = h = O and viscosity coefficient /3 = O (standard Cahn-Hilliard 
case) can be analysed directly without the use of (PY . 
We formulate now problem (PY 
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(1.15) 

(1.16) 

(1.17) 

urt - V· W1,(c:(uv),xv) = b, 
uvlt=O = Uo, urlt=O = U1, 

UV= o, 

vwr + xr - V· (M(xv)Vwv + hxr) = O, 

wvlt=O = Wo, xvlt=O = Xo, 

n· (M(xv)Vwv + hxr) = O, 

wv - g · Vwv +V· (r(xv)Vxv) - !vxv · r'(xv)Vxv 
2 

in nr, 
in n, 
on sr, 

in nr, 
in n, 
on sr, 

- \J!'(xv)- Wlx"(c:(uv),xv)-/3xr = O, in nr, 
n. (r(xv)vxv) = o, on sr, 

where the data are as in (P) and w0 E L2 (n) is given. 
It should be pointed out that in case /3 > O problem (Pt has the structure 

of the well-known phase field model of solidification coupled with elasticity. 
In this context w can be identified with temperature and x with the phase 
ratio. In view of such a correspondence the existence results for (Pt and 
its singular limits for v ---+ O are of an independent theoretical interest. We 
mention that similar limits v, f3 ---+ O for phase field systems without elasticity 
have been studied by severa! authors, e.g., Lauren~ot (1994), Stoth (1995). 

We consider also a time re-scaled problem (P)", a E (O, l], which has the 
form of problem (P) with the term Utt in elasticity equation (1.3) replaced 
by auu , By letting the parameter a to decrease to zero we shall establish the 
existence of solutions to the Cahn-Hilliard system (1.4), (1.5) coupled with 
quasi-stationary elasticity (1.8) . 

The main results of the present paper concern the existence of weak so
lutions to problems (Pt and (P) in the homogeneous case with constant 
tensors r and A . The problems are studied by means of the Faedo-Galerkin 
approximation. We point out that the existence results for the approximate 
problems refer to the heterogeneous case. The restriction to constant tensors 
r and A is needed only at the stage of passing to the limit in the approxi
mate problems. The origin of the difficulties are the terms Vx • r'(x)Vx and 
(c:(u) - e(x)) • A'(x)(c:(u) - e(x)) in the weak formulation of (1.5). 

In a separate paper (Bartkowiak and Pawłow (2004)) we shall apply 
the same Faedo-Galerkin approximations to prove the existence of measure-
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valued solutions to problem (P) in heterogeneous case. The idea of such solu
tions originates from the papers by Neustupa (1993), Kroner and Zajączkowski 
(1996) where it has been applied to the Euler and Navier-Stokes equations. 

The paper is organized as follows. In Section 2 we present a thermo
dynamical basis of problem (P). In particular we give a generał scheme of 
deriving energy estimates which later is used in the analysis of the Faedo
Galerkin approximations. In Section 3 we formulate the assumptions and 
state the main results on the existence of weak solutions for the following 
problems in homogeneous case: (Pt (Theorem 3.1), (P) (Theorem 3.2), (P) 
in the special case g = h = O, (3 = O (Theorem 3.3), (P) in the quasi
stationary case and g = h = O, (3 = O (Theorem 3.4). In Section 4 we 
study the Faedo-Galerkin approximations for (Pt. In Section 5 we study 
the Faedo-Galerkin approximations for (P) in the special case g = h = O, 
(3 = O. Sections 6-9 contain the proofs of Theorems 3.1-3.4. 

We use the following notations: 
• x E JR n, n = 2 or n = 3, the materia! point, /1; = i!,, ft = fi the 

materia! space and time derivatives, 
_ ( ··)·. W ( ) _ (&W(e,x))·. W ( ) _ &W(e,x) • e - c,,,J i,J=l,. .. ,n, /e e, X - 8E;j 1,1=1, .. ,n, lx e, X - 8x ' 

• I''( ) = (r'( ))·. r'( ) = dr,;(x) X ,,.1 X 1.,1=1, ... ,n, 11 X dx · 

For simplicity, whenever there is no danger of confusion, we omit the argu
ments (e, x). Also the specification of tensor indices is omitted. 
Vector and tensor-valued mappings are denoted by bold letters. 
The summation convention over repeated indices is used, as well the notation: 

• for vectors a = (a;), a = (ii;), and tensors B = (B;j), 13 = (B;j), 
A = (Aijk1) we write a· a = a;ii;, B · 13 = B;iBij, AB = (Aijk1Bk1), 
BA= (B;jAijki), 

• lal= (a;a;)½, IBI= (B;jBij)½, 
• v' and v' • denote the gradient and the divergence opera tors with respect 

to the materia! point x E ]Rn. For divergence of a tensor field we use the 
convention of the contraction over the last index v' · e(x) = (c:;jjj(x)). 

We use the standard Sobolev spaces notation Hm(n) = Wt(O.) form E IN. 
For simplicity we write 

• L2(0.) = (L2(0.))n, Va= H5(0.) = (HJ(O.)r, n= 2 or 3, 
• (·, ·h,(n), (·, ·)L,(fl) denote the scalar products in L2 (0.) and L2(0.) . 
• We denote by V' the dual space of V= H 1(0.) and by < ·, · >v,,v the 

duality pairing between V and V'. 
• Similarly Vb denotes the dual space of Va and<·,· >v~,Vo the duality 

pairing between Va and Vb. 
Throughout the paper c denotes a generic positive constant different in var-
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ious instances. 

2 The thermodynamical basis 

We present briefly he thermodynamical basis of system (1.3)-(1.5) accord
ing to the derivation in Pawłow (2004), and next compare it with Gurtin's 
framework. 

Equations (1.3)t, (1.4)t express the balance of linear momentum and the 
balance of mass for a component : 

(2.1) Utt - 'v . s = b, 

Xt + 'v •j = O, 

where S and j are the referential stress tensor and the mass flux. Equation 
(1.5)i defines the chemical potentia! w which is identified with the entropy 
inequality multiplier conjugated with the mass balance (2.1)2. This multiplier 
is in addition to u and x treated as an independent variable. 

For models governed by the first order gradient free energy density f = 
f (c, X, 'vx) the en tropy inequality imposes the following constraints on S, w 
and j: 

(2 .2) S - f1~(c, X, 'vx) = O, 

(2.3) 
bf 

w - bx (c, X, 'vx) +a= O, 

where 

bf 
bx (c, X, 'vx) = hx(E:, X, 'vx) - 'v · !;vx(c, X, 'vx) 

denotes the first variation of / with respect to X, and a is a scalar field . 
The vector J := (j, a) (thermodynamical flux) is subject to the dissipation 
inequality 

(2.4) -X · J(X, w)= -('vw · j + Xta) 2'.: O V (X,w), 

11 



where X := ('vw, Xt) (thermodynamical force), and w denotes the vector of 
state variables, for instance including E: and X- According to Gurtin (1996, 
Appendix B) a generał solution of inequality (2.4) is given by 

(2.5) J(X,w) = -B(X,w)X 

with the matrix B consistent with (1.11), (1.12). Hence 

(2.6) j = -(M'vw + hx1), 

a= -(g · 'vw + !3xt) -

Combining relations (2.1)-(2.3), (2.6) and assuming that J(E:, X, 'vx) is given 
by (1.9), we arrive at the field equations in (1.3)-(1.5). 

It is easy to check that system of balance laws (2.1) with constraints (2.2), 
(2.3) and subjected to (2.4) satisfies the following free energy inequality which 
assures its thermodynamical compatibility 

(2 .7) ~(j(E:, X, 'vx) + ~lutł2) + 'v · (-uiS + wj - frvxXt) 

+Au · (utt - 'v · S) 

where 

(2.8) 

+ >-x (Xt + 'v · j) 

+ >-w(w - f;x + 'v ·!;'<lx+ a) 

+ As · (S - f;,) 
= 'vw · j + xia ~ O for all fields u, X, w 

are multipliers conjugated respectively with linear momentum balance, mass 
balance, and the equations for the chemical potentia! and the stress. 

As an immediate consequence of (2.7) it follows that solutions of balance 
laws (2.1) with constraints (2.2), (2.3) satisfy the following energy identity 
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(2.9) 
d { l 
dt ln (f (e, X, v'x) + 2/ud2) dx+ 

1[-(Sn) ·Ut+ wn -j - Xtll · f;vxl dS 

= 1 (v'w · j + Xta) dx + 1 b · Ut dx. 

We point on two important consequences of the identity (2.9). The first 
one is concerned with the generał thermodynamical property known as the 
Lyapunov relation. Namely, in view of the dissipation inequality (2.4), if the 
external force b = O, and if the boundary conditions on S imply that 

(2.10) (Sn) · Ut = O, w n · j = O, Xtll · f1vx = O, 

then the Lyapunov relation follows from (2 .9): 

(2.11) 
d { l 
dt ln (f(e,X, v'x) + 2/ud2) dx :s; O. 

It states that the total energy is non-increasing on solutions paths. We note 
that the boundary conditions in the system (1.3)-(1.5) are consistent with 
(2.10). The second consequence of (2.9) which is of key mathematical im
portance are energy estimates. They result from (2.9) under the structural 
assumption of the free energy !ower bound (1.14), and the positive definite
ness (1.13) of the matrix B. The presented above generał scheme of deriving 
energy estimates will be used in Section 4. 

Finally we comment on the relations with Gurtin's (1996) framework. 
The system (2.1) with constraints (2 .2), (2.3) and subjected to the inequal
ity (2.4) coincides (up to neglecting the term Utt in (2.1)) with equations 
resulting from Gurtin's theory (see Gurtin (1996), Sections 3, 4). We point 
out that in Gurtin's theory the underlying laws are the linear momentum 
and the mass balance given by (2.1), and in additon the following microforce 
balance 

(2.12) 
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where e is the microstress, 1r is the interna! microforce and 'Y external micro
force. By assuming as constitutive variables (e, X, v'x, Xt, w, v'w) (we use our 
notation) and applying a mechanical version of the second law the following 
relations have been obtained in Gurtin (1996): 

f = J(e,X, v'x), S = J;,, ~ = f;v,, 
7r = W - f;x + 1rdis, 

j = -(Mv'w + hxt), 

7rdis = -(g · v'w + f3xt) 

where the coefficients M, h, g , (3 comply with {1.11), (1.12). The above re
lations show that equation (2.3) for w can be interpreted as a microforce 
balance while the quantity a as a dissipative part of the interna! microforce. 

3 The assumptions and the main results 

We list the assumptions under which the Faedo-Galerkin approximations of 
problems (P)v and (P) are studied. These assumptions refer to the heteroge
neous case involving tensors r(x) and A(x) depending on X· The existence 
results for the original problems (P)v and (P) will be proved only in case of 
constant tensors r and A. 

(Al) O c IR.n, n= 2 or 3, is a bounded domain with C 1 boundary S. 
The following assumptions concern the components of the Landau-Ginzburg 
free energy 

f(e,X, v'x): 5 2 X IR. X IR.n • JR 

given by (1.9), where 5 2 denotes the set of symmetric second order tensors 
in nr. We assume that 

(A2) The elasticity tensor A(x) = (Aijki(x)) : 5 2 • 5 2 is a linear 
mapping such that 

(i) is of class C 1•1 with respect to x: Aijk1(·) E C 1(IR.) with A;ik1(·) Lips
chitz continuous, 

(ii) satisfies the symmetry conditions Aijk1(·) = Ajik1(·) = Aklij(·), 
(iii) is positive definite and bounded uniformly with respect to x there 

exist constants O < fA < CA such that 

fAiel 2 :::; e · A(x)e:::; cAlel 2 V e E 5 2 and x E JR, 
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(iv) the mapping A'(x) = (A;jki(x)) : 5 2 --t 5 2 is uniformly bounded with 
respect to x: there exists a constant cA' > O such that 

We mention that we do not require that A(x) is isotropic. 
(A3) The eigenstrain e(x) = (l;j(x)) E 5 2 is 

(i) of class C1•1 with respect to x : E;j( ·) E C1 (JR) with t:j( ·) Lipschitz 
continuous, 

(ii) satisfies growth conditions: there exists a constant c > O such that 

/e(x)I ś c(lxl + 1), /e'(x)I ś c V x E JR. 

In view of the expressions (1.6), (1.7), assumptions (A2), (A3) imply 
that W(e:, x), W1,(e:, x) and W1x(e:, x) are Lipschitz continuous functions 
with respect to e:, X, satisfying the growth conditions 

(3.1) /W(e:, x)I ś c(le:1 2 + x2 + 1), 

(3.2) IW1,(e:,x)I ś c(/e:/ +lx/+ 1), 

/W1x(e:, x)I ś c(/e:/ 2 + x2 + 1), V (e:, x) E 5 2 x JR. 

(A4) The double-well potentia! W( ·) : JR --t JR satisfies 
(i) is of class C 1•1 : w(•) E C 1(JR) with w'(·) Lipschitz continuous, 

(ii) the bound from below: there exist constants c1 > O, c2 2: O and a 
number r > 2 such that 

w(x) 2'. ctlxlr - C2 'ef XE JR, 

(iii) the growth conditions: there exists a constant c > O such that 

w(x) ś c(lx/~+1 + 1), 

w'(x) ś c(/xl~ + 1), V x E JR, 

where qn is the Sobolev exponent for which the imbedding of H 1(rl) into 
Lą. (O) is continuous, i.e., Qn = n2~ 2 for n 2'. 3 and Qn is any finite number for 
n= 2. We note that w(x) defined by (1.10) satisfies (A4)(ii): 

1 4 1 
w(x):::: 8x - 2, 
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and obviously (A4)(iii) . We remark that the growth condition (A4)(iii) on 
'1t'(x) is needed in the proof of the convergence of the Faedo-Galerkin ap
proximations (see Lemma 6.1). 

(A5) The gradient energy tensor r(x) = (f;1(x)) : IRn • IRn is a linear 
mapping such that 

(i) is of class C1•1 with respect to x: f;1( ·) E C1(IR) with r:1(-) Lipschitz 
continuous, 

(ii) is symmetric rij(·) = rji(-), 
(iii) is positive definite and bounded uniformly with respect to x : there 

exist constants O < fr < er such that 

(iv) the mapping r'(x) = (r:/x)) : IRn • IRn is uniformly bounded with 
respect to x: there exists a constant er, > O such that 

We note that in view of (A2)(iii), (A4)(ii) and (A3)(ii), using Young's in
equality and the fact that r > 2, 

(3 .3) 
1 

W(e, x) + w(x) 2': 2f.Ale - e(x)l2 + cilxlr - c2 

2': ~f.Alel2 - f.Ae. e(x) + cilxlr - C2 

2': ~f.Alel2 - fAle(x)l2 + c1lxlr - C2 

2': ~f.Alel2 - clxl2 + ciixlr - C 

2': c(lel2 + lxn - C V (e, x) E 52 X IR 

with some constant c > O. Consequently, taking into account (A5)(iii) we 
can see that the free energy satisfies the following bound from below 

(3.4) /(e, X, v'x) 2': c(lel2 + lxlr + lv'xl2) - c V (e, X, v'x) E 52 x IR x IR n 

with some constant c > O. This is the first main structural postulate that 
we use in derivation energy estimates (see Section 4). 
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The next two assumptions concern the mobility matrix and the coupling 
terms. 

{A6) The mobility matrix M(x) = (M;j(x)) : IRn --t IRn is a linear 
mapping such that 

(i) is of class C 0•1 with respect to x : M;i(·) E C0 (IR) are Lipschitz con
tinuous, 

{ii) is symmetric M;j = Mj;, 

{iii) is positive definite and bounded uniformly with respect to x : there 
exist constants O < fM < CM such that 

{A 7) The coupling vectors g = (g;), h = (h;) are constant, the viscosity 
coeflicient is a positive constant /3 > O, and the coeflicients matrix 

B(x) = [ ~ ~] 

is positive definite in the sense that there exist constants fM > O and f~ > O 
such that 

(3 .5) X· B(x)X = Vw · M(x)Vw + Xt(g + h) · Vw + /3x: 

2: f~IVwl 2 + fpX: V X = (Vw, Xt) E IRn X IR. 

The condition (3.5) is the second main structural postulate used in derivation 
of energy estimates. 

In the standard Cahn-Hilliard case assumption (A7) is replaced by 
(A 7)' The vectors g = h = O, the coeflicient /3 = O, and the matrix M(x) 

is positive definite uniformly with respect to X, i.e., satisfies (A6)(iii). 
The last assumption concerns the data of the problem. 
{A8) The initial data u0 , u 1, Xo, and w0 in case of problem (PY, and 

the force term b satisfy 

We note that in view of growth conditions (3.1) on W(e, x), (A4)(iii) on 
w(x), and the uniform boundedness (A5)(iii) on r(x), it follows that the 
total free energy corresponding to the initial data is bounded 
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(3.6) 1 fo /(c(uo), Xo, v'xo)I ~ c(llc(uo)lli,(n) + llxoll1,(n) + 1) ~ c. 

We formulate naw the main results of the paper which are restricted to 
the homogeneous problem with constant tensors A and r. The first result 
states the existence of weak solutions to problem (P)". 

THEOREM 3.1. Let the assumptions (AJ)-';-(A6}, (A7}, (AB) be satisfied, 
and in addition tensors r and A are constant. Then there exist functions 
(u", x", w") such that 

(i) u" E L00 (0, T; Vo) , ur E L00 (0, T; L2(fl)), uu E L2(0, T; V~), 
u"(O) = Uo, ur(D) = U1, 

(ii) x" E L00 (0, T; H 1(fl)), xr E L2(W), x"(O) = Xo, 
(iii) 1Awv E L00 (0, T; L2(fl)), w" E L2(D, T; H 1(l1)), 
which satisfy ( P)" in the f ollowing weak sense: 

(3.7) 1T < ur1, TJ >v, 0 ,v0 dt + { A(f.(u") - e(u")) · c(TJ) dxdt 
o Jnr 

= { b · TJ dxdt \:/ TJ E L2(0, T; Vo), Jnr 

(3.8) - { 11w"Ę1 dxdt + { [xr( + (M(x")v'w" + hxr) · v'Ę] dxdt Jnr Jnr 
= li J Wo((O) dx \;/ Ę E C 1 ((O, TJ; H 1(l1)) with Ę(T) = o, 

(3.9) { (w" - g · v'wv)( dxdt - { rv'xv · v'( dxdt Jnr Jnr 
- r [w'(xv) - e'(xv). A(c(u") - e(xv)) + ,BxrK dxdt = o Jnr 

\;/ ( E L2(0,T;H1(l1)). 

M oreover, (u", xv, wv) satisfy a priori estimates 

(3.10) lluvl/L=(O,T;Vo) + /lurl!L=(O,T;L,(fl)) 
+ /luri/lL,(O,T;V~) + llxv/lL=(O,T;H1(fl)) + llxrl!L,(flT) 

+ 11½ 1/wvl/L=(O,T;L,(fl)) + l!wvl!L,(O,T;H 1 (fl)) ~ C =f c(v) 
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with constant c depending only on the data. 

The solutions to problem (P) arise as limits of solutions to problems (Pt. 

THEOREM 3.2. Let the assumptions of Theorem 3.1 be satisfied. Then there 
exists a triple ( u, X, w) with 

(i) u E L 00 (0, T; Vo), Ut E L 00 (0, T; L2(!1)), Utt E L2(0, T; V~), 
u(O) = uo, Ut(O) = u1, 

(ii) XE Loo(O, T; H 1(!1)), Xt E L2(W), x(O) = Xo, 
(iii) w E L2 (0,T;H 1(!1)), 
which for a subsequence v ---+ O is a limit of solutions ( uv, xv, wv) to problem 
(Pt , and (u, X, w) satisfy (P) in the following weak sense: 

(3.11) 

(3 .12) 

(3.13) 

1T < Utt, TJ >vó,Vo dt + r A(.ę_(u) - e(x)). e(TJ) dxdt 
o inr 

= ( b · 77 dxdt V 77 E L2(0,T;Vo), inr 

( [Xt~ + (M(x)'vw + hxt) · 'v~] dxdt = O inr 
V~ E L2(0, T; H1(!1)), 

f (w - g . 'vw)( dxdt - ( r'vx · 'v( dxdt inr inr 
- r [w'(x) - e'(x). A(e(u) - e(x)) + !3xtK dxdt = o inr 

V ( E L2(0, T; H 1 (!1)) . 

Moreover, a priori estimates hold 

(3.14) llullL=(o,T;V0 ) + llutllL=(O,T;L,(n)) 

+ lluttllL,(o,r,v0) + llxllL=(o,T;H1(n)) + llxtllL,(nr) 

+ llwllL,(o,T;H1(n)) ::; c 

with constant c depending only on the data. 
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The next result concerns the special case of problem (P) with g = h = O 
and f3 = O which corresponds to the standard Cahn-Hilliard system coupled 
with elasticity. 

THEOREM 3.3. Let the assumptions {A1}..,.-{A6}, (A7)', {AB) be satisfied, 
and in addition tensors r and A are constant. Then there exist functions 
(u, X, w) such that 

(i) u E Loo(O, T; Vo), Ut E L00 (D, T; L2(0)), Utt E L2(D, T; V~), 
u(O) = uo, Ut(O) = u1, 

(ii) XE L00 (0, T; H 1(fl)), Xt E h(O, T; V'), x(O) = Xo, 
(iii) w E L2 (0, T; H 1(0)), 
which satisfy (P) in the sense of identities {3.11}, {3.13} {with g = O} and 
{3.12} replaced by 

(3.15) 

1T < Xt, ( >V',v dt + [ M(x)'vw · 'v( dxdt = O V ( E L2(D, T; H 1 (fl)). 
o Jnr 

M oreover, ( u , X, w) satisfy a priori estimates 

(3.16) llullLoo(O,T;Vo) + lludlLoo(O,T;L2(f!)) + lluul!L2(0,T;V0) 

+ llxl1Loo(D,T;H 1(f!)) + llxtllL,(O,T;V') + llwllL,(O,T;H1(f1)) ::; C 

with constant c depending only on the data. 

REMARK 3.1. As common, we can introduce also modified weak formula
tions of problems (PY and (P) with the identity {3. 7) corresponding to the 
elasticity system replaced by 

(3.17) 

- [ u~ · T/t dxdt + [ A(~(uv) - e(xv)) · e(r,) dxdt Jnr Jnr 
= [ b · TJ dxdt + [ u 1 · r,(O) dx V TJ E C 1 ([0, Tj; V 0) with r,(T) = O, Jnr Jn 

and the analogous modification of {3.11}. 
By virtue of the identity 
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1T < <Pt, T/ >v•,v dt = -1T (</;, T/th2 (n) dt - (</;o, T/(D))L2 (n) 

V</; E L2 (0, T; V) n H 1(0, T; V') with </;(O)= </;0 , and 

T/ E L2 (0, T; V) n H 1 (0, T; L2 (0)) with T/(T) = O, 

the existence results of Theorems 3.1-3. 3 hold true for the above mentioned 
modified formulations. 

The last result concerns the existence of weak solutions to the quasi
stationary version of problem (P). We consider a time re-scaled problem 
(P)" , a E (O, 1] with the term Utt replaced by O<Utt· For simplicity we confine 
ourselves to the situation of Theorem 3.3, i.e., g = h = O, (3 = O and constant 
tensors r, A. 

Let (u" , x", w") denotes a weak solution to (P)" in the sense of Theorem 
3.3 with the modification in Remark 3.1, which satisfies the identities 

(3.18) 

- a f uf· "lt dxdt + f A(e(u") - e(x")) · e('T/) dxdt Jnr Jnr 
= f b · 'T/ dxdt + a f u 1 · 'T/(0) dx V 'T/ E C 1([0, Tj; V 0 ) with 'T/(T) = O, Jnr Jn 

(3.19) 

(3.20) 

[T < xf,Ę >V',v dt + f M(x")Vw" · VĘ dxdt = O 
Jo lnr 

V Ę E L2(0, T; H 1(r!)), 

f w"( dxdt - f rVx" · V( dxdt lnr Jw 
- r [\J!'(x") - e'(x"). A(e(u") - e(x"))K dxdt = o Jnr 

V ( E L2(0,T;H1(r!)) . 

An inspection of the proof of Theorem 3.3 shows that the following uni
form in a estimate holds true 
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(3.21) llu"IIL=(o,T;V0 ) + a,½ lluf llL=(O,T;L,(!1)) 

+ allu~IIL,(o,r;v~J + llx"IIL=(o,r;H'(nJJ + llxfllL,(o,r;v') 

+ llw"IIL,(O,T;H1 (!1)) ~ c -f c(a) 

with constant c depending only on the data. Due to this estimate we can 
pass to the limit with a • O in (3.18)-;- (3.20) to conclude 

THEOREM 3.4. Let the assumptions of Theorem 3.3 be satisfied. Then there 
exists a triple (u, X, w) with 

(i) u E L 00 (0, T; Vo), 
(ii) XE Loo(O, T; H 1 (D)), Xt E L2(0, T;V'), x(D) = Xo, 

(iii) w E L2 (0, T; H 1(D)), 
which for a subsequence a • O is a limit of solutions (u", x", w") to problem 
(P)"', and (u, X, w) satisfy the quasi-stationary version of (P) in the sense 
of identities 

(3.22) 

{ A(c(u) - e(x)) - c('T/) dxdt = { b - 'T/ dxdt \:/ 'T/ E L2(0, T; V 0), Jnr Jnr 
together with (3.15) and (3.13} (with g = O, /3 = OJ. Moreover, (u,x,w) 
satisfy estimates 

(3.23) Jlul!L=(O,T;Vo) + llxllL=(O,T;H1 (!1)) + ll xd lL,(O,T;V') + llwllL,(O,T;H 1(!1)) ~ c 

with constant c depending only on the data. 

The above result coincides with that obtained in Garcke (2000, 2003a) 
where mare generał problem with multicomponent order parameter has been 
considered. 

4 The Faedo-Galerkin approximation (Py,m 

4.1 Approximate problems 

Let {vj}jEIN be an orthonormal basis ofV0 and {zj}jEIN be an orthonormal 
basis of H 1 (D). Without loss of generality we assume that z1 = l. Further, 
form E IN, we set 
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Vm = span{v1 , . .. ,vm}, Vm = span{z1 , ••• ,zm}, 

00 

Voo= LJ Vm, V00 = LJ Vm. 
m;:::;l m=l 

First we introduce the Faedo-Galerkin approximation of (P): 
Problem (P)m . For any m E lN find a triple of functions (urn, xm, wm) of 

the form 

( 4.1) 
m 

um(x, t) = I>;n(t)v;(x), 
i=l 
m 

xm(x, t) = L c;"(t)z;(x), 
i=l 

m 

wm(x, t) = L d;"(t)z;(x) 
i=l 

satisfying for a.e. t E [O, TJ: 

(4.2) (u;;',77m)L,(n) + (W;E(c(um),Xm),c(77m))L2 (n) 

= (b, 77m)L,(n) V 77m E V m, 

(4.4) (wm - g · 'vwm,(mh,(n) - (r(xm)'vxm, 'v(m)L,(n) 

- (~'vxm . r'(xm)'vxm + ill'(xm) 
2 

+ W;x(c(um), Xm) + (3x'(', (mh,(n) = O V (m E Vm, 

where u;;', u1 E V m, x;;' E Vm satisfy for m • oo 
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(4.6) ur-; Uo strongly in Vo, 

ur -t UJ strongly in L2(n), 
xr -. Xo strongly in H1(0) . 

Similarly we introduce the Faedo-Galerkin approximation of (PY. 
Problem (Py,m. For any II E (O, 1], m E lN, find a triple of functions 

(uv,m, xv,m, wv,m) of the form 

(4.7) 
i=l 
m 

i=l 

wv,m(x, t) = L ct;''m(t)z;(x) 
i=l 

satisfying for a.e. t E [O, TJ: 

(4.8) (u~;m, 7Jm)L,(O) + (W1,(e(uv,m), xv,m) , e(77m))L, (O) 

= (b, 7Jm)L,(O) \/ 1Jm E V m, 

(4.9) v(w~•m,Ęm)L,(0) + (X~'m,Ęm)L,(n) 
+ (M(xv,m)vwv,m + hx~·m, VĘm)L,(nJ = O VC E Vm, 

where ur, ur E Vm, xo' E Vm satisfy (4.6), and w;;-' E Vm are such that 

( 4.12) w[{' -. Wo strongly in L2(rl) as m-. oo. 

24 

• 



4.2 Existence of solutions to (P)"·m 

We prove first the loca! in time existence. 

LEMMA 4.1. Assume that w1,(c, x), w1x(c, x), M(x), r(x), r'(x) , iv'(x) 
are Lipschitz continuous functions of their arguments, and /3 = const > 
O. Then problem (Py,m has a unique solution (uv,m,Xv,m,wv,m) on a time 
interval [O, yv,m] with yv,m > O depending on v, m. 

Proof. For simplicity we omit the upper indices v, m, writing (u, X, w) = 
(uv,m, xv,m, wv,m). Further, we denote by e, c, d, the vectors e = (e~·m, .. . , e:;;m), 
C == (c~,m, ... , C~m), d == (d~•m, ... , d~m) . 

From (4.8)-(4.11) we obtain an initial value problem for the system of 
ODE's for e, c, d: 

( 4.13) 8zei = -1 W1,(c(t e;v;), t ciz;) · c(vi) dx 

+ 1b·vidx=F](e,c), 

(4.14) v8tdj = -81Cj - tatCi 1 Z; h . 'vzj dx 

-tdi 1 (M(tckzk)'vz;) · 'vzi dx = F}(c,8tc,d), 

(4.16) ej(O) = (ur, Vj)L,(!1), 8iej(0) = (uf, Vj)L,(!1), 

Cj(O) = (xr, Zjh2(!1), dj(O) = (w;;', Zjh2(!1), 
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which has to hold for j = 1, ... , m. 
Substituting OtCj from (4.15) into (4.14) (/3 > O) and introducing vec

tor f = (81e1, ... , Otem), we rewrite (4.13)-(4.16) in the form of the Cauchy 
problem for the first order system: 

(4.17) Ot€j = fi, 
otfj = F}(e, c), 

1 3 1~ 3 1 v81dj = -(3Fj (e, c, d) - -(3 L, F; (e, c, d) z;h · "vzj dx 
•=I O 

- td; i (M(tckzk)"vz;) · "vzj dx = F/(e,c,d), 

/381cj = F/(e,c,d), 

ej(O) = (u;;', vj)L,(O), Ji(O) =(uf' vj)L,(O), 

di(O) = (w;;', zi)L,(n), ci(O) = (x;;', zi)L,(n), 

for j = 1, ... , m. 
By assumption the right-hand sides F}, Ff, FJ, are Lipschitz continuous 

functions with respect to e, c, d. Hence, by virtue of the Cauchy theorem for 
ODE's it follows that the initial value problem (4.17) has a unique solution 
(e,f,c,d) on an interval [o,rv,m]. In view of the representation (4.7) this 
~a~~~~~~~- • 
LEMMA 4.2. Assume that the free energy f (E:, X, "vx) satisfies structure con
dition {3.4), and the coefficients matrix B(x) satisfies structure condition 
{3.5). Moreover assume that the data comply with (AB) so that the bound 
{3.6} hold true. Then there exists a solution (uv,m, xv.m, wv,m) to problem 
(Pt•m on the interval [O, Tj, satisfying the following energy estimates: 

(4.18) llu~•m//L=(O,T;L,(fl)) + v½ llwv,ml/L=(O,T;L,(fł)) 
+ IIE:(uv,m)IIL=(O,T;L,(fł)) 

+ llxv,m"L=(O,T;L,(fł)) + ll"vxv,m"L=(O ,T;L,(fł)) 

+ 1/"vwv,mllL,(fłT) + llx~·mllL,(fłT) ~ C =f c(v, m), 

where constant c is dependent only on the data uo, u1, Xo, wo, b, and on the 
constants in the structure conditions. 
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Proof. We derive the energy identity for solutions of (Py,m_ To this purpose 
we follow the idea presented in Section 2 (see (2.7)). 
For simplicity we write (u, X, w)=(uv,m, Xv,m, wv,m). Fort E (O, yv,m], setting 
in (4.8)-(4.lQ) rr = Ut, (m = W, (m = -Xt as test functions, we get 

1 d 2 

2 dtl/udiL,(fl) + (W1,(g(u), x), g(ut))L,(fl) = (b, Ut)L,(n), 

11 d 2 

2dtllwllL,(n) + (Xt, w)L,(o) + (M(x)v'w + hxt, v'w)L,(n) = O, 

.BllxtllL(nJ + ~ h [~v'x · r(x)v'x + iv(x)] dx + (W1x(g(u),x),Xth,(n) 

- (w - g · v'w, Xt)L,(O) = O. 

Summing up the above equations, noting that the terms (Xt, w)L,(n) cancel 
out, we arrive at the energy identity 

( 4.19) 

Integration of (4.19) over (O, t) fort E (O, yv,m] gives 

1 2 11 2 r 
(4.20) 2 iiut(t)IIL,(n) + 2 ilw(t)IIL,(fl) + Jo f(g(u(t)),x(t), v'x(t)) dx 

+ { X . B(x)X dxdt' ln, 
= ~1/ufilL(n) + illw;;"IIL(o) + h (J(g(u;;-1), x;{', v'x;{')) dx 

+ r b . Ut dxdt'. 
Jo, 

The left-hand side of ( 4.20) is estimated from below with the help of struc
ture conditions (3.4) and (3.5). In view of convergences (4.6), (4.12) and es
timate (3.6), the sum of the first three terms on the right-hand side of (4.20) 
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is estimated from above by a constant depending on lluollH'(!1), lluillL2(n), 
llxollH'(n), llwollL2 (!1)· The last term is estimated with the help of Young's 
inequality by 

11, b · Ut' dxdt'I '.S {-llut,IIL(o,t;L2 (!1)) + llbllL(o,t,L,(!1))• 

so that the term with Ut is absorbed by the left-hand side of (4.20). Conse
quently, we arrive at the estimate 

(4.21) ½llut(t)IIL(n) + illw(t)IIŁ,(n) 
+ c(lle(t)IIL(n) + llx(t)IIL<nJ + IIVxllL(n)) - c 

+ f~llv'wllL(n') + fpllXt'IIŁ,(n') :Sc cf c(v, m) fort E (O, Tv,m] 

with constant c depending only on the data u0 , u1 , Xo, w0 and b. 
From (4.21) it follows that for fixed v E (O, l], the functions e, 8te, c and 

d are uniformly bounded with respect to m over the interval [O, Tv,m] . This 
means that uv,m(x, Tv,m), ur·m(x, Tv,m), xv,m(x, Tv,m), wv,m(x, Tv,m) can be 
taken as the initial conditions for the next time interval. In such a way the 
solution of problem (Pt•m can be extended onto the time interval [O, Tj in 
a finite number of steps. Hence, the estimate (4.21) holds true on [O, TJ. 
Thereby the assertion is proved. O 

4.3 Additional estimates for (P)"·m 

Firstly, we shall note that by virtue of Korn's inequality (see e.g. Duvaut 
and Lions (1972), Chap Il, Theorem 3.3) it follows from (4.18) that 

Further, (4.18) implies that 

( 4.23) 

Hence, by Sobolev's imbedding, 

(4.24) 
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We shall prove now an additional estimate on wv,m_ 

LEMMA 4.3. Let the assumptions of Lemma 4-2 be satisfied. Moreover as
sume that W1x(e, x) satisfies growth condition (3.2}, w'(x) satisfies 

Jw'(x)I :S c(lxląn + I) 

with some constant c > O, tensor r'(x) satisfies the uniform in x bound 
{A5)(iv), and gis constant. Then 

(4.25) 

where constant c depends only on the data, n and time T. 

Proof. For simplicity we write (u, X, w)= (uv,m, xv,m, wv,m). Firstly we note 
that 

(4.26) 1 lw/2 dx = 1 /w -1 w dx + 1 w dxl 2 dx 

:S 2 fo 1w - h w dxl 2 dx + 2 meas Ol h w dxl 2 

:SC fo i'vw/2 dx + 2 meas n/ 1 w dxl 2 , 

where in the last line we have applied the Poincare inequality. Hence, 

(4.27) hr /w/ 2 dxdt :SC hr /'vw/ 2 dxdt + 2 meas n 1T 11 w dxr dt. 

The first term on the right-hand side of ( 4.27) is bounded by virtue of energy 
estimate (4.18). We proceed to estimate the second term in (4.27). Setting 
(m = 1 in (4.10) (admissible by assumption) it follows that 

{ wdx= { g-'vwdx+~ { 'vx-r'(x)'vxdx+ { w'(x) dx 
Jn ln 2 }n Jn 
+ 1 W1x(e(u), x) dx + fJ 1 Xt dx. 
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Hence, 

1T 11 w dxl 2 dt:::; c [1T 11 g · Vwl2 dt + 1r 11 'vx · r'(x)Vx dxl 2 dt 

+ 1T I 1 w'(x) dxl 2 dt + 1T I 1 W;x(e(u), x) dxl 2 dt 

+(321T 11 Xt dxl 2 dt] = R1 + R2 + R3 + R4 + Rs, 

In view of the assumptions, recalling estimates (4.18) and (4.24) we have 

R3::; cT ess suptE[o,rJ(1 !W'(x)I dx) 2 

::; cT ess SUPtE(O,TJ(llx(t)ll1-:.(nJ + 1)2 ::; c, 

R4 ::; cT ess SUPtE(D,T](1 IW1x(e(u), x)I dx) 2 

::; cT ess SUPtE[o,rJ(lle(u(t))lli,(n) + llx(t)IIŁ,(n) + 1)2 ::; c, 

Consequently, 

( 4.28) 1T 11 w dxl 2 dt :::; c, 

and, in view of (4.27), 
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( 4.29) l /wl 2 dxdt:::; c. 

This yields estimate (4.25). 
o 

Using standard duality arguments we shall estimate time derivative uu. 

LEMMA 4.4. Let the assumptions of Lemma 4.2 be satisfied and W1,(c:, x) 
satisfies growth condition {3.2}. Then 

( 4.30) 

Proof. We use in ( 4.8) the test function T/m = PmT/ for T/ E L2 (0, T; V 0), 

where Pm denotes projection of L2(0) onto V m• Taking into account that 

writing for simplicity (u, X, w)= (uv,m, xv,m, wv,m), we get 

(4.31) I ( Uu · 11dxdtl=I ( Ut1·Pm11dxdtl lnr lor 
= I - ( W1,(c:(u), x) · c:(PmT/) dxdt + ( b · PmT/ dxdt/ lnr lor 
:::; IIW1,(c(u),x)IIL,(W)llv'Pm11l!L,(or) + llbllL,(Or)IIPmT/IIL,(Or) 
:::; c(/lc(u)IIL,(Or) + llxllL,(Or) + /lb/lL,(Or) + l)IIPm11IIL,(O,T;Vo) 
:::; cl/111/L,(o,T;Vo) \/ T/ E L2(0, T; Vo), 

where in the last inequality we have used (4.22) and (4.24). This shows the 
assertion. O 

5 The Faedo-Galerkin approximation (P)m in 
case g = h = O, /3 = O 

In this section we study the approximate problem (Pr in the special case 
g = h = O, /3 = O. 
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LEMMA 5.1. Assume that g = h = O, (3 = O, and W;E(E:, x), W;x(E:, x), 
M(x), r'(x), iJi'(x) are Lipschitz continuous Junctions of their arguments. 
Then problem (Pr has a unique solution (um, Xm, wm) on a time interva/ 
[O, Tm] with Tm > O depending on m. 

Proof. We proceed as in Lemma 4.1. Let e, c, d denote the vectors e = 
(ef, ... ,e;::), c = (cf, ... ,c;::), d = (df, ... ,d;:!). From (4.2)-(4.5) (with g = 
h = O, /3 = O) we obtain an initial value problem for the system of ODE's 
for e, c, d which includes (4.13) and 

(5.2) dj = t C; l (r(t ckzk)'v z;) · 'v Zj dx 

11 m m m 

+ 2 (L c;'vz;) · r'(L ckzk)(L~ c;'vz;)zj dx 
n i=l k=I i=I 

+ l iJi'(t c;z;)zj dx 

+ l W;x(E:(t e;v;), t c;z;)Zj dx = G;(e, c), 

Substituting di from (5.2) into (5.1), and introducing vector f = (81ef, ... , 8,e;::), 
we rewrite (4.13), (5.1)-(5.3) in the form of the Cauchy problem for the first 
order system: 

(5.4) 8,ej = fi, 
odi= F](e,c), 

OtCj = - f G~(e, c) 1 (M(f ckzk)'vz;) · 'vzj dx = GJ(e, c), 
i=l n k=l 

32 



for j = 1, ... , m. 
By assumption the right-hand sides are Lipschitz continuous functions 

with respect to e, c. Hence, the initial value problem (5.4) has a unique 
solution on an interval [O, Tm). This shows the assertion. 

• 
By repeating the proof of Lemma 4.2 we can extend the loca! solution 

onto the whole interval [O, Tj. As a result we have 

LEMMA 5.2. Let the assumptions of Lemma 5.1 be satisfied. Further, assume 
that the free energy satisfies structure condition (3.4), the matrix M(x) sat
isfies the uniform in X positive definitness condition ( A6)( iii), and the data 
comply with (AB) so that the bound (3.6) holds true. Then there exists a so
lution (um, Xm, wm) to problem (Pr on the interval [O, Tj, satisfying energy 
estimates 

(5.5) llu;"IIL= (O,T;L2(!1)) + llg(um)IIL=(O,T;L2(!1)) + ll xm llL=(O,T;L,(!1)) 

+ll'vxmllL=(O,T;L2(!1)) + ll'vwmllL2(!1T) :'.'::'. CI c(m) 

with constant c depending only on the data. 

Similarly as in ( 4.22)-( 4.24), we conclude from (5.5) the estimates 

The next lemma provides an additional estimate in L2 (0, T; H 1(D)) -
norm for wm. 

LEMMA 5.3. Let the assumptions of Lemma 5.2 be satisfied. Moreover, as
sume that W;x(€, x) satisfies growth condition (3.2}, w'(x) satisfies 

W(x)I :'.'::'. c(lxlą" + 1) 

with same constant c > O, and tensor I''(x) satisfies the uniform in X bound 
(A5)(iv}. Then 
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(5.8) 

with constant c depending only on the data. 

Proof. Setting (m = 1 in ( 4.4) ( with g = O, /3 = O) gives 

Recalling the assumptions we have 

(5 .9) I r wm dxl ~ !er- r 1vxm12 dx + C r (lxmląn + 1) dx ln 2 Jn Jn 
+ C In (/e(um)l2 + lxm/2 + 1) dx 

~ c(IIVxmllL(o,T;L,(n)) + llxmllt,,(o,T;Ląn(n))) 
+ lle(um)IIL(o,T;L,(n)) + 1) ~cf= c(m), 

where in the last inequality we have used estimates (5.5) and (5.7). By the 
Poincare inequality, estimate (5.5) on v'wm and (5.9) yield (5.8). • 

Using duality arguments, similarly as in Lemma 4.4, we estimate time 
derivatives uZt' and x;". 

LEMMA 5.4. Let the assumptions of Lemma 5.2 hold true, W;,(e, x) satisfies 
growth condition (3.2}, and the matrix M(x) satisfies the uniform in X bound 
(A6}(iii}. Then 

(5.10) llu;;'IIL,(O,T;V~) ~ cf= c(m), 

(5 .11) llxr'IIL,(o,T;V') ~ cf= c(m). 
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Proof. Estimate (5.10) follows by the same arguments as in Lemma 4.4. To 
show (5.11) we use Ęm = PmĘ for Ę E L2 (0, T; H 1(0)) as test function in (4.3) 
(with h = O), where Pm denotes the projection of L2 (0,) anto Vm. Then 

I r x;"Ę dxdtl = I r x;" PmĘ dxdt/ Jnr Jnr 
= I r (M(xm)v'wm) . v'(PmĘ) dxdt/ Jnr 

'.S (1T /M(xm)vwm/2 dxdt) ½ (1T /v'(Pmfl/ 2 dxdt) ½ 

:S cM/lv'wm/lL,(nT) 1/v'(PmOIIL,(nT) 
:S cl/v'ĘI/L,(nr) V Ę E L2(0, T; H 1(O)), 

where in the last inequality we have used estimate (5.5). This shows (5.11). 
o 

6 Proof of Theorem 3.1: Passage to the limit 
in (Py,m with m--+ oo 

From estimates (4.18), (4.22)-(4.25), (4.30) it follows that there exists a triple 
(uv, Xv, wv) with 

(6 .1) uv E L00 (0, T; Vo), ur E L00 (0, T; L2(O)), urt E L2(0, T; V~), 

XV E Loo(0, T; H1(O)), xr E L2(Or), 

wv E L2(0, T; H 1(O)), 1Awv E L00 (0, T; L2(O)), 

and a subsequence of (uv,m, xv,m, wv,m) of solutions to (Pt·m (which we stili 
denote by the same indices) such that as m • oo: 

(6.2) uv,m • uv weakly-* in L00 (0, T; Yo), 

ur·m • ur weakly-* in L00 (0, T; L2(O)), 
ur;m • uri weakly in L2(0, T; V~), 
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(6.3) xv,m-+ XV weakly-* in Loo(O, T;H 1(n)), 

x~·m-+ xr weakly in L2(nr), 

(6 .4) wv,m-+ wv weakly in L2 (0, T; H 1(n)), 

v½wv,m-+ v½wv weakly-* in L00 (0, T; L2(n)) . 

Then by the standard compactness results (see Simon (1987) Corollary 4) it 
follows in particular that 

(6.5) 
uv,m-+ UV strongly in L2(0, T; Lą(n)) n C([O, T]; Lą(n)) and a.e. in nr, 

u~,m-+ ur strongly in C([O,T];V~), 

(6.6) 
xv,m-+ XV strongly in L2(0, T; Lą(n)) n C([O, T]; Lą(n)) and a.e. in nr, 

where q < qn. Hence, 

(6.7) uv,m(O) =u;;'-+ uv(O) strongly in Lą(n), 

u~'m(O) =ur'-+ ur(o) strongly in V~, 
Xv,m(o) = x;;' -+ xv(O) strongly in Lą(n), 

what together with convergences (4.6) implies that 

(6.8) 

The relations (6.1) and (6.8) imply assertions {i)-(iii) of Theorem 3.1. 
Now we introduce the following weak formulation of problem (Py,m: 
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(6.9) 1T < U~im, 1] >v~.Vo dt 

+ 1T (A(xv,m)(e(uv,m) - €"(xv,m)), e(77))L,(O) dt 

= 1T (b, 7J)L,(O) dt V 1] E L2(0, T; V m) , 

(6 .10) 1T[-(vwv,m,eth,(n) + (xtm,Ę)L,(n) 
+ (M(xv,m)v'wv,m + hx~·m, v'Ę)L,(n)] dt 

= (vwg', Ę(O))L,(n) V Ę E C 1([0, TJ, Vm) with Ę(T) = O, 

(6.11) 1T [(wv,m - g. v'wv,m, (h,(n) - (r(xv,m)vxv,m, v'()L,(O) 

1 
- (2v'Xv,m . r'(Xv,m)v'Xv,m,()L,(n) - (llt'(Xv,m),()L,(0) 

+ (€"'(xv,m). A(xv,m)(€"(uv,m) -€°(Xv,m)),()L,(n) 
1 _ 2 ((e(uv,m) _ €°(Xv,m)) . A'(xv,m)(e(uv,m) _ €°(Xv,m)), ()L,(n) 

- (,Bx~·m, ()L,(nJ] dt = O V ( E L2(0, T; Vm)-

The goal is to pass to the limit in (6.9)-(6.11) with m---+ oo. Firstly we 
comment on the nonlinear terms in (6.11) with the highest space derivatives 
of Xv,m and uv,m: 

From (6.2), (6.3) it follows that as m---+ oo, 

(6.12) e(uv,m)---+ e(uv) weakly-* in L00 (0, T; L2(0)), 

v'xv,m---+ v'xv weakly-* in L00 (0, T; L2(0)) . 
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Clearly, the convergences (6.12) are not suffi.cient to pass to the limit with 
m --t oo in the above mentioned terms. Because we are unable to establish 
any strong convergences of E:(uv,m) and v'xv,m, we shall restrict ourselves to 
the study of homogeneous problem with constant tensors r and A. In such 
a case (6.10) remains unchanged, and (6.9), (6.11) reduce to the form 

(6.13) 1T < U~im, T/ >v~,Vo dt + 1T (A(E:(uv,m) - e(xv,m), E:(Tf))L,(!1) dt 

= 1T (b,Tf)L,(!1) dt V T/ E L2(0,T;Vm), 

(6.14) 1T [(wv,m - g. v'wv,m, OL,(!1) - (rv'xv,m, v'()L,(!1) 

- (w'(xv,m), ()L,(n) + (l"'(xv,m). A(E:(uv,m) - e(xv,m), ()L,(nJ 

- (/Jx~•m, ()L,(nJ] dt = O V( E L2(0, T; Vm) -

To pass to the limit with m --t oo in (6.10), (6.13), (6.14) we follow the 
standard procedure (see e.g. Duvaut and Lions (1972)) . Namely, we fix 
m = m0 E IN in the spaces of test functions T/, (, (, and take subsequences 
(6.2)-(6.4) with m 2'. mo. 

Clearly, by virtue of the weak convergences (6.2)-(6.4), the linear terms in 
(6 .10), (6.13), (6.14) converge to the corresponding limits. The convergence 
of the remaining nonlinear terms follows from the following 

LEMMA 6.1. Assume that tensors rand Aare constant, e(x) satisfies {A3){i){ii), 
w(x) satis fi es ( A4}{i){iii), the matrix M(x) satisfies ( A 6 ){i) and the uniform 
in x bound {A6}{iii) . Then for a subsequence m --t oo, 

(6.15) 
w'(xv,m) --t w'(xv) weakly-* in L00 (0, T;L2(fł)), 
A(E:(uv,m) - e(xv,m)) --t A(E:(uv) -e(xv)) weakly-* in L00 (0, T; L2(rl)), 
e'(xv,m). A(E:(uv,m)-e(xv,m)) --te'(xv) · A(E:(uv)-e(xv)) weakly-* in L00 (0 , T;L2(fł)), 

M(xv,m)v'wv,m --t M(xv)v'wv weakly in L2 (rlr). 

Proof. We use convergences (6.2)-(6.6). In view of the bounds 
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lle(xv,m)IIL=(O,T;L,(fl)} ~ c(llxv,mllL=(O,r;L,(fł)) + 1) ~ci- c(v,m), 

lliv'(xv,m)IIL=(O,r;L,(fl)) ~ c(llxv,m11l.,(O,r;L,n(fl) + 1) ~Ci- c(v, m), 

and the convergence xv,m -t xv a.e. in nr, we can apply the classical con
vergence result (see e.g. Lions (1969), Chap.I , Lemma 1.3) to conclude that 
(6.15)i holds, and 

Hence, recalling (6.12)i, convergence (6.15)2 follows. Further, due to assump
tion one'(·), we have 

e'(xv,m) -t e'(xv) strongly in L2(nr) and a.e. in nr. 

Therefore, in view of (6.12) and (6.16), we can conclude convergence (6.15)3. 
Similarly, by assumption on M(·), 

M(xv,m) -t M(xv) a.e. in nr, 

so that convergence (6.15)4 holds true. 

• 
Consequently, under assumptions of Lemma 6.1. we can pass to the limit 

in (6.10), (6.13), (6.14) for a subsequence m0 ~ m -t oo, to conclude that 

(6.17) 

lr < urt,11 >v~,Vo dt+ lr (A(e(uv)-e(xv)),e(11)L,(fł) dt 

= lr (b, 77)L,(fl) dt \/ 17 E L2(0, T; V m0 ), 

lr [-(vwv, (th,(n) + (xr, (h,(n) + (M(xv)vwv + hxr. v'Ę)L,(n)] dt 

= (vwo, ((O)h,cn) V ( E C 1((0, T]; Vm0 ) with ((T) = O, 

1T [(wv - g. v'wv, (b(n) - (rvxv, v'()L,(fl) - (iv'(xv), ()L,(n) 

+ (e'(xv). A(e(uv) - e(xv)), ()L,(fl) - (.Bxr, (h,(n)] dt = o 
V ( E L2(0, T; Vm0 ). 
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Now, passing to the limit with m0 -t oo and taking into account the density 
of Y 00 in HA(l1) and V00 in H 1(!1), we arrive at the identities (3.7)-(3.9). A 
priori estimates (3.10) are consequences of the uniform in v and m estimates 
(4.18), (4.22)-(4.25), (4.30) and the weak convergences (6.2)-(6.4). 
Thereby the proof of Theorem 3.1. is completed. O 

7 Proof of Theorem 3.2: Passage to the limit 
in (PY with v-+ O 

Due to estimates (3.10) it follows that there exists a triple (u, X, w) with 

(7.1) u E L00 (0, T; Yo), Ut E L00 (0, T; L2(!1)) , Utt E L2(0, T; Y~), 

XE Loo(O,T;H1(!1)),Xt E L2(!1r), 

w E L2(0, T; H 1 (!1)), 

and a subsequence of ( uv , xv, wv) of solutions to (PY ( denoted by the same 
indices) such that as v -t O: 

(7.2) 

(7.3) 

(7.4) 

uv -tu weakly-* in L 00 (0, T; Yo), 

ur -t u1 weakly-* in L 00 (0, T; L2(!1)), 

ur1 -t Utt weakly in L2(0, T; Y~), 

Xv -t X weakly-* in L00 (0, T; H 1(!1)), 

xr -t Xt weakly in L2(!1r), 

wv -t w weakly in L2 (0, T; H 1(!1)), 

vwv -t O strongly in L00 (0,T,L2(!1)). 

Furthermore, by the compactness results, similarly as in (6.5), it follows that 
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(7.5) uv • u strongly in L2(0, T, Lą(rl)) n C([O, TJ; Lą(rl)) and a.e. in OT, 

ur • Ut strongly in C([O, Tj, V~), 

xv • x strongly in L2(0, T, Lą(O)) n C([O, TJ; Lą(rl)) and a.e. in OT, 

where q < qn. Hence, the convergences 

imply that 

(7.6) 

uv(O) • u(O) strongly in Lą(rl), 

ur(o) • Ui(O) strongly in V~, 

xv(O) • x(O) strongly in Lą(rl), 

u(O) = uo , ui(O) = u1, x(O) = Xo-

Due to convergences (7.2)-(7.5) it follows by repeating the arguments of 
Lemma 6.1 that for a subsequence v • O, 

(7.7) 
w'(xv) • w'(x) weakly-* in L00 (0, T; L2(rl)), 
A(e(uv) - e(xv)) • A(e(u) - e(x)) weakly-* in L00 (0, T; L2(rl)), 
e'(xv) · A(e(uv) - e(xv)) • e'(x) · A(e(u) - e(x)) weakly-* in L 00 (0, T; L2(rl)), 

M(xv)Vwv • M(x)Vw weakly in L2(rlT) . 

In view of the convergences (7.2)-(7.5) and (7.7) can pass to the limit in the 
identities (3.7)-(3.9) to conclude that (u, X, w) satisfy (3.11)-(3.13). A priori 
estimate (3 .14) results directly from (3 .10). The proof is completed. O 

8 Proof of Theorem 3.3: Passage to the limit 
in (Pr with m--+ oo 

By virtue of estimates (5.5)-(5.11) it follows that there exists a triple (u, X, w) 
with 
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u E L00 (0, T; Vo), Ut E L00 (0, T; L2(n)), lltt E L2(0, T; V~), 
XE Loo(O, T; H 1 (n)), Xt E L2(0, T;V'), 
w E L2(0, T; H 1(n)), 

and a subsequence (um, xm, wm) of solutions to (P)m (denoted by the same 
indices) such that as m --+ oo: 

(8.1) 

(8.2) 

(8.3) 

um--+ u weakly-* in L00 (0, T; Vo), 
u;"--+ Ut weakly-* in L00 (0,T;L2 (n)), 
uri' --+ Utt weakly in L2(0, T; V~), 

Xm--+ X weakly-* in L00 (0, T; H 1(n)), 
x;" --+ Xt weakly in L2(0, T; V'), 

Further by the compactness results, 

(8.4) 
um ---tu strongly in L2 (0, T, Lą(n)) n C( [O, Tj; Lą(n)) and a.e. in nr, 

u;" --+ Ut strongly in C( [O, TJ, V~), 

xm--+ X strongly in L2(0, T, Lą(n)) n C([O, TJ; Lą(n)) and a.e. in nr, q < Qn• 

Therefore, owing to the convergences ( 4.6), it follows that 

(8.5) u(O) = uo , ut(O) = u1, x(O) = Xo• 

Moreover, by the same arguments as in Lemma 6.1, we can conclude that for 
a subsequence m --+ oo: 
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(8.6) 
w'(xm) -t w'(x) weakly-* in L00 (0, T; L2(l1)), 

A(c(um) - e(xm)) -t A(c(u) - e(x)) weakly-* in L00 (0, T; L2(l1)), 

e'(xm) · A(c(um) - e(xm)) -t e'(x) · A(c(u) - e(x)) weakly-* in L00 (0, T; L2(l1)), 

M(xm)'vwm -t M(x)'vw weakly in L2(l1r). 

In view of convergences (8.1)-(8.3) and (8.6) we can pass to the limit with 
m -t oo in the weak formulation of (P)m (in a similar fashion as in the proof 
ofTheorem 3.1) to conclude that identities (3.11), (3.13)(with g = O, /3 = O) 
and (3.15) are satisfied. The proof is completed. • 

9 Proof of Theorem 3.4: Passage to the limit 
in (Pf with a-+ O 

Let (u0 , x0 , w0 ) be a weak solution to (P)° in the sense of identities (3.18)
(3.20). Due to uniform in a estimates (3.21) it follows that there exists a 
triple (u, X, w) with 

u E L00 (0, T; Va), 

XE L00 (0, T; H 1(l1)), Xt E L2(0, T; V'), 
w E L2(0, T; H 1 (l1)), 

and a subsequence (u0 ,x0 ,w0 ) of solutions to (P) 0 (denoted by the same 
indices) such that as a -t O: 

(9.1) u0 -tu weakly-* in L00 (0,T;Vo), 

auf -t O strongly in L00 (0, T; L2(l1)), 

X0 -t X weakly-* in L00 (0, T; H 1(l1)), 

xf -t Xt weakly in L2(0, T; V'), 
w 0 -t w weakly in L2(0, T; H 1(l1)). 

Hence, by the compactness results, 
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(9.2) x0 -+ x strongly in L2 (0, T; Lą(D)) n C([0, Tj; Lą(D)) 

and a.e. in nr, q < qn, 

what, since x0 = Xo, implies that 

(9.3) x(O) = Xo • 

In view of (9.1) and (9.2), recalling the arguments of the proofofTheorem 3.3, 
we can see for a subsequence a -+ O the convergences (8.6) with ( u 0 , x0 , w 0 ) 

in place of (um,Xm,wm) hold true. Combining the above convergences, in 
particular taking into account (9.lh, we can pass to the limit with a-+ O in 
the identities (3.18)-(3.20) to conclude the assertion. O 
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