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Abstract 

We give a proximal bundle method for minimizing a convex function f over a closed 
convex set. It only requires evaluating f and its subgradients with an accuracy 
E > O, which is fixed but possibly unknown. It asymptotically finds points that are 
E-optimal. When applied to Lagrangian relaxation, it allows for E-accurate solutions 
of Lagrangian subproblems, and finds €-optima! solutions of convex programs. 

Key words. Nondifferentiable optimization, convex programming, proximal 
bundle methods, approximate subgradients, Lagrangian relaxation. 

1 Introduction 

We consider the convex constrained minimization problem 

f. := inf{ f (x) : x E S }, (1.1) 

where S is a nonempty closed convex set in the Euclidean space ]Rn with inner product 
(-, ·) and norm I · I, and f : lRn -> JR is a convex function. We assume that for fixed 
acc·uracy tolerances EJ 2'. O and E9 2'. O, for each y ES we can find an approximate value fy 
and an approximate subgradient gy of f that produce the approximate linearization of f: 

Jy(-) := fy + (gy, · - y) :S !(·) + E9 with ]y(y) = fy 2'. f(y) - Ej, (1.2) 

Thus fy E [f(y) - Ej, f(y) + E9 ] estimates f(y) , while 9y E 8,f(y) for the total acwracy 
tolerance E :=Ef+ E9 , i.e., gy is a member of the E-subdifferential off at y 

8,f(y) := {g: f( ·) c". f(y)-E+ (g,· -y)}, 

The above assumption is realistic in many applications. For instance, if f is a max-type 
function of the form 

f(y) := sup{Fz(Y): z EZ}, 
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where each Fz : IRn -> IR is convex and Z is an infinite set, then it may be impossible to 
calculate J(y). However, we may stili consider the following two cases. In the first case 
of controllable accuracy, for each positive E one can find an E-maximizer of (1.3), i.e. , an 
element Zy E Z satisfying Fzy(y) 2'. f(y) - E; in the second case, this rnay be possible only 
for same fixed (and possibly unknown) E < oo. In both cases we may set j~ := Fz.(Y) and 
take g 11 as any subgradient of Fzv at y to satisfy (1.2) with Ef := E, c9 := O; then E = E. 

A special case of (1.3) arises in Lagrangian relaxation [Ber99, §5.5.3], [HUL93, Chap. 
XII], where problem (1.1) with S := IR~ is the Lagrangian dual of the prima! problem 

sup 1/Jo(z) s.t. 1/!i(z) 2'. O, j = 1: n, z E Z, (1.4) 

with Fz(Y) := 1/Jo(z) + (y, 1/J(z)) for 1/J := (1/!1, ... , 1/Jn) , Then, for each multiplier y 2'. O, 
we only need to find z11 E Z such that f 11 := F,. (y) 2'. J(y) - c in (1.3) to use 911 := 
'ljJ (z11 ). For instance, if (1.4) is a sernidefinite program with each 1/Ji affine and Z being 
the set of symmetric positive semidefinite matrices of order m with unit trace, then f(y) 
is the maximum eigenvalue of a syrnmetric matrix M(y) depending affinely on y [TodOl, 
§6.3], and Zy can be found by computing an approximate eigenvector corresponding to the 
maximum eigenvalue of M(y) via the Lanczos method [HeKOl, HeROO] . 

This paper extends the proximal bundle method of [Kiw90] and its variants (HinOl, 
ScZ92], [HUL93, §XV.3] to the inexact setting of (1.2) with unknown EJ and Eg· Our 
extension is natura! and simple: the original method is run as if the linearizations were 
exact until a predicted descent test discovers their inaccuracy; then the method is restarted 
with a decreased proximity weight. Since our descent test (or similar ones) is employed 
as a stopping criterion by the existing implementations of proximal bundle methods, our 
analysis also sheds light on their behavior in the inexact case (cf. §4.5). 

We show that our method asymptotically estimates the optima! value J. of (1.1) with 
accuracy E, and finds c-optimal points. In Lagrangian relaxation, under standard convexity 
and cornpactness assumptions on problem (1.4) (see §5), it finds c-optimal prima! solutions 
by combining partia! Lagrangian solutions, even when Lagrange multipliers don't exist. 
This seems to be the first such result on prima! recovery in Lagrangian relaxation. 

We now comment briefly on other relations with the literature. 
The setting of (1.2) subsumes those in [HinOl, Kiw85, Kiw95a]. Indeed, suppose that 

for same tolerances Ef 2'. O, Ej 2'. O and Eg 2'. O, for each y E S we can find same 

/y E [ f (y) - Ef, J(y) +Ej] and 9v E a,gf(y). (1.5) 

Then (1.2) holds with EJ := Ef and cg :=Ej+ tg. We add that if = ij = i9 in [Kiw85], 
[HinOl] uses Ef = Ej = O, i.e., exact values fy = J(y), whereas [Kiw95a] employs (1.2) 
with c9 = O (corresponding to Ef := i9 :=EJ= c and Ej := O in (1.5)). 

First, our method is more widely applicable than those in [HinOl, Kiw85, Kiw95a], since 
[Kiw85, Kiw95a] assurne that the i-tolerances in (1.5) are controllable and can be driven 
to O, whereas [HinOl] needs exact /-values. Thus only our method can handle Lagran
gian relaxation with subproblem solutions of unknown accuracy. Second, our convergence 
results are stronger than those in [HinOl], since they handle constraints and practicable 
stopping criteria (cf. §4.2). Third, our method is much simpler than that of [HinOl] . 
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The paper is organized as follows. In §2 we present our proximal bundle method. Its 
convergence is analyzed in §3. Severa! modifications are given in §4. Applications to 
Lagrangian relaxation of convex and nonconvex programs are studied in §5. 

2 The inexact proximal bundle method 

We may regard (1.1) as an unconstrained problem/. = min Is with the essential objective 

Is:= I+ is, (2.1) 

where is is the indicator function of S (is(x) = O if x ES, oo if x r/:. S). 
0ur method generates a sequence of trial points {yk}~1 C S for evaluating the ap

proxirnate values /; := fv•, subgradients gk := 9v• and linearizations /k := fv• sucb 
that 

/k(·) = f; + (l, · - i) :S /(·) + t 9 with fk(i) = J; 2: f(yk) - EJ, (2.2) 

as stipulated in (1.2). Iteration k uses the polyhedral cutting-plane model off 

AO:=maxfi(·) with kEJkc{l, ... ,k} 
jEJk 

(2.3) 

for finding 
(2.4) 

where tk > O is a stepsize that controls the size of łyk+! -xkl and the prox center xk := yk(L) 
has the value f! := J;(ll for some k(l) :S k (usually f! = minJ=1 Jl), Note that, by (2.2), 

(2.5) 

However, we may have J; < Jk(xk) = <Pk(xk) in (2.4), in which case the predicted descent 

(2.6) 

rnay be nonpositive; then tk is increased and yk+1 is recomputed to decrease }k(yk+I) until 
Vk > O (specific tests on Vk for increasing tk are discussed below and in §4.3). A descent 
step to xk+I := yk+I with g+1 := g+1 occurs if g+1 :S J; - 1wk for a fixed K, E (O, 1). 

0therwise, a null step xk+1 := xk improves the next model Jk+I with fk+I (cf. (2.3)) . 
For choosing Jk+I, note that by the optimality condition O E 8</)k(yk+I) for (2.4), 

3p} E 8A(i+1) such that p~ := -(yk+1 - xk)/tk - p} E 8is(yk+1) (2.7) 

and there are multipliers vj, j E Jk, also known as convex weights, sucb that 

P1 = L vjg1, L vj = 1, vj 2: O, vj [Jk(Yk+ 1 ) - !J(yk+I)] = O, j E Jk. (2.8) 
jEJk jEJk 

Let Jk := {j E Jk: vj f= O}. To save storage without impairing convergence, it suffices to 

choose Jk+I =:, Jk U {k + 1} (i.e., we may drop inactive linearizat ions fi with vj = O that 
do not contribute to the trial point yk+1). 
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Figure 2.1: Predicted descent domination: vk 2". -ak {c? ½tk1Pkl 2 2". -ak. 

The subgradient relations in (2.7) enable us to derive an optimality estimate from the 
following aggregate linearizations of A and J, is, J~ := Jk + is and f s, respectively: 

A(·):= A(Yk+ł) + (P},. - l+1) ~ AO ~ J(-) + Eg, 

~(·):=(Pt · -l+1) ~ is(-), 

(2.9) 

(2.10) 

J~ := A+~ ~ J~ := Jk + is ~ fs + E9, (2.11) 

where the finał inequalities follow from (2.1)-(2.3). Adding (2.9)-(2.10) and using (2.11) 
and the linearity of 

(2.12) 

we get 
k ( k k) -k -k fx+ P·,·-x -ak=fs(-)~fs(-)~fs(·)+ 09 , (2.13) 

where 
pk := p} + p~ = (xk - l+ 1)/tk and Ctk := J/: - J~(xk) (2.14) 

are the aggregate subgradient ( cf. (2. 7)) and the aggregate linearization error, respectively. 
The aggregate subgradient inequality (2.13) yields the optimality estimate 

J! ~ f(x) + E9 + llllx - xkl + ak for all x ES. (2.15) 

Combined with f(xk) - Ef ~ J/: (cf. (2.5)), the optimality estimate (2.15) says that the 
point xk is E-optimal (i.e., f (xk) - J. ~ E := Ef+ E9 ) if the optimality measure 

(2.16) 

is zero; xk is approximately E-optimal if Vi is small. 
Thus we would like Vi to vanish asymptotically. Hence it is crucial to bound Vk via 

the predicted descent Vk, since normally bundling and descent steps drive vk to O. To this 
end, we first highlight some elementary properties of ak and Vki see Fig. 2.1. 
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In words, (2.13) and (2.5) mean that the model Jg and its linearization Jg may over
shoot the objective fs by at most tg, whereas f! may underestimate f(xk) by at most Ef, 

Hence the linearization error °'k of (2.14) may drop below O by no more than c :=Ef+ tg: 

°'k 2: 1: - Ji(xk) 2: 1: - f (xk) - lg 2: -Ef - lg = -/;, (2.17) 

The predicted descent vk ( cf. (2.6)) may be expressed in terms of pk and ak as 

vk = tk1Pkl 2 + °'k = ldkl 2/tk + °'k with dk := l+l - xk = -tkl (2.18) 

bcing the search direction. Indeed, li+1 - xkl 2/tk = tk1Pkl 2 by (2.14), whereas by (2.12) 

A(Yk+1) = f~(l+l) = f~(xk) + (l, l+1 - xk) = f~(xk) - ll+1 - xkl 2/tk, 

so Vk := f!-A(yk+l) = °'k + tk1Pkl 2 by (2.14). Note that Vk 2: °'k· 
Since Vi := max{lpkl, Cl'k}, Vk = tk1Pkl 2 + Cl'k and -Cl'k ś c (cf. (2.16)-(2.18)), we have 

Vi = max { [(vk - Cl'k)/tk] 112 , °'k} ś max { (2 max[vk, -Cl'k]/tk) 112 , °'k}, (2.19) 

Vi ś max { (2vk/tk) 112, Vk} if Vk 2: -Cl'k, 

Vk < (-20'k/tk)l/2 Ś (2c/tk)112 if Vk < -Cl'k, 

(2.20) 

(2.21) 

The bound (2.21) will imply that if xk isn't t-optimal (so that Vi can't vanish as tk 
increases), then vk 2: -Cl'k and the bound (2.20) hold for tk large enough; on the other 
hand, the bound (2.20) suggests that tk shouldn't decrease unless Vk is small enough. 

We now have the necessary ingredients to state our method in detail. 

Algorithm 2.1. 
Step O (Initiation). Select x1 E S, a descent parameter 1,, E (O, 1) , a stepsize bound T1 > O 
·and a stepsize t1 E (O, Ti]. Set y 1 := x 1 , f; := f; (cf. (2.2)), g1 := gy,, J 1 := { l} , i; := O, 
k := k(O) := 1, ł := O (k(l) - 1 will denote the iteration of the łth descent step). 

Step 1 ( Trial point finding). Find yk+I and multipliers vj such that (2.7)-(2.8) hold. 

Step 2 (Stopping criterion). If Vi = O (cf. (2.15)-(2.16)), stop (!; ś J. + c_ą)-

Step 3 (Stepsize correction). If vk < -Cl'k, set tk := lOtk, Tk := max{Tk, tk}, i7 :=kand 
loop back to Step 1; else set Tk+I := Tk. 

Step 4 (Descent test). Evaluate g+1 and gk+ 1 (cf. (2.2)). If the descent test holds: 

(2.22) 

set xk+I := yk+I, J;+ 1 := g+1, i7+1 := O, k(l + 1) := k + 1 and increase łby 1 (descent 
step); else set xk+I := xk, J;+1 := f! and i}+1 := i~ (null step). 

Step 5 (Bundle select-ion). Choose Jk+ 1 :) Jk U {k + 1} , where Jk := {j E Jk: vJ f O}. 
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Step 6 (Stepsize updating). If k(l) = k + 1 (i.e., after a descent step), select tk+ł E 
[t,, Tk+d; otherwise, either set tk+ł := tk, or choose tk+1 E [O.ltk, tk] if i~+l = O and 

f!-fk+1(xk) 2'. vk := max{ IPkl,o:k} · 

Step 7 (Loop). Increase k by 1 and go to Step 1. 

A few comments on the method are in order. 

(2.23) 

Remarks 2.2. (i) When the feasible set S is polyhedral, Step 1 may use the QP method 
of [Kiw94], which can solve efficiently sequences of related subproblems (2.4) . 

(ii) Step 2 may also use the test f! ~ inf Jk (cf. Lem. 2.3(i)); more practicable stopping 
criteria are discussed in §4.2. 

(iii) In the case of exact evaluations (c = O), we have Vk 2'. ak 2'. O (cf. (2.17)-(2.18)), 
Step 3 is redundant and Algorithm 2.1 becomes essentially that of [Kiw90]. 

(iv) To see the need for increasing tk at Step 3, suppose n = 1, f (x) = -x, S = IR., 
1: 1 = O, t 1 = 1, c = 1, f;, = -1, g 1 = -1, h(x) = -x. If Step 3 were omitted and null 
Hteps were taken when Vk ~ O, the method would jam with yk+1 = 1 for k 2'. 1. Also 
11ote that decreasing tk would not help. In fact decreasing tk at Step 6 aims at collecting 
more loca! information about f at null steps, whereas in such cases tk must be increased 
to produce descent or confirm that xk is c-optimal (Jet f(x) = max{-x, x - 2} above). 
Hence whenever tk is increased at Step 3, the stepsize indicator it fe O prevents Step 6 
from decreasing tk after null steps until the next descent step occurs (cf. Step 4). 

( v) At Step 5, one may Jet Jk+l := Jk U { k + l} and then, if necessary, drop from Jk+ 1 

an index j E Jk \ Jk with the smallest j1(xk) to keep pk+ll ~ M for some M 2'. n+ 2. 
(vi) Step 6 may use the procedure of [Kiw90, §2] for updating the proximity weight 

uk := l/tk , with obvious modifications. 

We now show that the loop between Steps 1 and 3 is infinite iff J! ~ inf H < A(xk), 
_in which case the current iterate xk is already c-optimal. 

Lemma 2.3. (i) If J; ~ inf Jt then f(xk) - Ef ~ J! ~ J. + cg and f(xk) ~ J. + t-:. 

(ii) Step 2 terminates, i.e., Vk := max{lpk\, ak} = O, iff J! ~ min Jg = ]g(xk) . 
(iii) If the loop between Steps 1 and 3 is infinite, then J! ~ inf Jg ( < Jg(xk); cf. (ii)) . 

Moreover, in this case we have Jg(yk+ 1) 1 inf Jg as tk i oo. 
(iv) ff J! ~ inf Jg at Step 1 and Step 2 does not terminate (i.e., inf Jg < Jg(xk); cf. 

(ii)), then an infinite loop between Steps 3 and 1 occ·urs. 

Proof. (i) Combine J. = inf fs (cf. (1.1), (2 .1)) with inf Jg ~ inf fs + c9 (cf. (2.13)) and 
f(xk) - cf~ J! (cf. (2.5)), and use c :=cf+ cg for the second inequality. 

(ii) "•": Since IPkl = O 2'. ak, (2.13)- (2.14) yield Jg(xk) ~ ]g(-), yk+ł = xk and 
f~ ~ Jg(xk), whereas by (2.12), fk(xk) = Jk(yk+ł) = Jg(xk). "<=": Since Jg(xk) = 
min jg, using <fak(xk) = min Jg ~ <i>k(yk+t) ~ <i>k(xk) in (2.4) gives yk+t = xk, so again 
Jk(xk) = ]g(xk) by (2.12), and (2.14) yields pk = O and ak = J1: - Jk(xk) ~ O. 

(iii) At Step 3 duriug the loop the facts Vi < (2c/tk) 112 (cf. (2.21)) and tk i oo give 
max{lpk\,o:k} =: Vi--> O, so (2.13) yields f! ~ infjg. The fact that fk(vk+t ) 1 inf}k as 
ti- i oo in (2.4) is well known; see, e.g., [Kiw95b, Lem. 2.1]. 
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(iv) By (2.11), lk(yk+ 1) = lg(yk+I) 2: inf lg. Thus (cf. (2.6)) Vk ~ ft - inf lg~ O 
and (cf. (2.18)) Vk = tk1Pkl 2 + O'.k yield °'k ~ -tk1Pkl 2 at Step 3 with pk =/ O (since 
max{IPkl,ad =: Vk > O at Step 2). Hence °'k < -1t1Pkl 2, so (cf. (2.18)) Vk < -ak aud 
Step 3 loops back to Step 1, after which Step 2 can't terminate due to (ii). O 

Remark 2.4. By Lemma 2.3, the algorithm may terminate if J! ~ inf lg. When S is 
polyhedral, then either inf lg = -oo, or there is ik such that lg(yk+I) = min lg whenever 
tk 2 ik; this may be discovered by a parametric QP method [Kiw95b], and the algorithm 
rnay stop if f! ~ min lg, thus forestalling an infinite loop between Steps 1 and 3. 

3 Convergence 

In view of Lemma 2.3, we may suppose that the algorithm neither terminates nor loops 
infinitely between Steps 1 and 3 (otherwise xk is E-optimal). At Step 4, yk+1 E S and 
vk > O (by (2.20), since Vi > O at Step 2), so xk+1 ES and J!+1 ~ J! for all k. 

Let f::° := limk};;'. We shall show that f::° ~ J. + E9 • Because the proof is quite 
complex, it is broken into a series of lemmas, starting with the following two simple 
results. To handle loops, let V[ denote the minimum value of Vi at each iteration k. 

Lemma 3.1. Jf .lim.. v,: = O (e .g., limk Vi = O) and {xk} is bounded, then f::° ~ J. + E9 • 

Proof. Pick J( C {1, 2, ... } such that V[..!!.... O. Fix x ES. Letting k EJ( tend to infinity 
in (2.15)-(2.16) with Vi = v,: yields f::' ~ f(x) + Eg, SO J:: ~ infs j + Eg = J. + Eg- • 
Lemma 3.2. If T00 := limk Tk = oo at Step 4, then limk v,: = O. 

Proof. Let J( C {l, 2, ... } index iterations k that increase n at Step 3. For k E !(, at 
Step 3 on the last loop to Step 1 we have Vi < (2c/tk) 112 (cf. (2.21)) with tk such that 
' I( I( 
lOtk becomes the finał Tk, so the facts O~ V[~ Vk and Tk ---, oo give V[---, O. O 

In view of Lemmas 3.1-3.2, we may assume that T00 < oo when {xk} is bounded, e.g., 
only finitely many descent steps occur. This case is analyzed below. 

Lemma 3.3. Suppose there exists k such that for all k 2 k, Step 3 doesn't increase tk 
and only null steps occur with tk+1 ~ tk determined by Step 6. Then vk -> O. 

Proof. Fix k 2 k. We first show that 11+1 2 Jg. Let A := maxjEJk fi. Since Jk := {j E 

Jk : 117 =/ O} and gj = V fi, Jk ~ maxjEJk fi =: A and (2.8) yielcl }k(yk+1) = A(yk+1) and 
k - k - - - • -k k I - -

pj E 8fk(y +1). Thus fk ~ Jk by (2.9), so fk ~ fk+1 (J" C J +) gives fk ~ fk+i· Hence 
(2.10)- (2.11) yield Jg := fk + ~ ~ A+1 + is =: 11+1. 

Next, consider the following partia! linearization of the objective r/h of (2.4): 

(3.1) 
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We have V</!k(yk+ 1) = O from V Jg = pk = (xk-yk+ 1)/tk (cf. (2.13)- (2 .14)) , and l}(yk+l) = 

Jk(yk+ 1) by (2.12), so </!k(yk+l) = </Jk(yk+l) (cf. (2.4)) and by Taylor's expansion 

(3.2) 

By (3.1) and (2 .11), we have </!k(xk) = Jg(xk) :::; l(xk) + Eg (using xk ES); hence by (3.2) , 

(3.3) 

Now, using xk+1 = x\ tk+l :::; tk and Jg+ 1 2: fg in (2.4) and (3.1) gives <Pk+1 2: <fik, so 

(3.4) 

by (3.2). Since xk = xk and tk :::; tk for k 2': k, by (3.3)- (3.4) there exists <f>00 :::; l(xk) + E9 

snch that 
(3.5) 

and {yk+1} is bounded. Then {gk} is bounded as well , since gk E 8J(yk) with E :=EJ+ E9 

by (2.2), whereas 8J is locally bounded [HUL93, §XI.4.1]. 
We now show that the approximation error Ek := g+1 - A(yk+I) vanishes. Using the 

form (2.2) of A+i, the bound fk+ 1 :::; A+i (cf. (2.3)), the Cauchy-Schwarz inequality and 
(2.4) with xk = xk and tk+I :::; tk for k 2': k, we estimate 

where 

Ek := 1;+1 - A(l+l) = lk+1(l+2) - Jk(yk+ 1) + (l+1, y"+1 -y"+2) 

:::; A+1(Yk+2) -A(yk+ł) + 1l+111yk+l -yk+21 

= <Pk+i(Yk+2) - </Jk(y"+l) + 1l+1IIYk+l -y"+21 
__ 1_lyk+2 _ xkl2 + ...Llyk+l _ xkl2 

2tk+l 2tk 

:::; </Jk+1(l+2) - </Jk(y"+l) + 1l+111l+l - yk+21 + t:,.k , 

t:,.k := ...L (lyk+I - xkl2 - 1l+2 - xk12) 
2i. 

:::; 2:. (ll+1 - l+2l2 + 21Yk+2 - i+1IIYk+2 - x;,;1) 

< ...Lly"+l -y"+212 + (.!.lyk+l _ y"+212_1_ly"+2 _ xkl2) 1/2 _ 
- 2tk tk tk+l 

(3.6) 

We have limk ,6.k :::; O, since 21t IYk+J - yk+212 -t O by (3.4)- (3.5), whereas -t 1 lyk+2 - xkl 2 
k k+l 

is bounded by (3.3). Hence using (3.5) and the boundedness of {gk+1} in (3.6) yields 
limk i!k :::; O. On the other hand , the null step condition g+1 > l;; - 1wk for k 2': k gives 

where 1,, < 1 by Step O; thus i!k _, O and vk _, O. • 
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Using (2.18) we may relate the descent vk := f! - A(vk+I) predicted by Jk with the 
descent predicted by the augmented model efJk in subproblem (2.4): 

Wk := 1; - </Jk(Yk+1) = Vk - ½tklll 2 

= ½tk1Pki2 + Clk = ½ldkl 2/tk + Clk, 

(3.7a) 

(3. 7b) 

The above relations are convenient in showing that !dkl = O(tk12 ) during a series of null 
steps that decrease tk; this will be useful when limk tk = O. 

Lemma 3.4. ff Step 4 is entered with i7 = O, then ldkl 2 ~ (tk(l)lgk(l)l 2 + 2E)tk , 

Proof. First, suppose k = k(l). Then (cf. Steps O and 4) xk = yk and J; = f;, so using 
the bound A 2': fk (cf. (2.3)) in subproblem (2.4) and the form (2.2) of fk gives 

</Jk(yk+I) 2': min { !k( ·) + 2U · -xkl2} = J; - ~lll2 . 

Thus Wk(I) ~ ~lgk(l)l 2 by (3.7a). Next, suppose k > k(l). Then (cf. Steps 3, 4, 6) 
xi+I = xk(I) and ti+1 ~ tj for j = k(l): k - 1 due to i7 = O, and hence Wj+J ~ w1 by (3.4) 
and (3.7a). Thus Wk ~ Wk(l), and by (3.7b) and (2.17), 2'.. w12 = Wk - Ok~ Wk(I) + E. • 

We now use the safeguard (2.23) for analyzing the case of diminishing stepsizes. 

Lemma 3.5. Suppose limk tk = O at Step 6 and either only finitely many descent steps 
occur, or sup1 tk(I) < oo and {xk} is bounded. Then limk ½,=O at Step 6. 

Proof. Let C be the supremum of tk(l)ll(')l 2 + 2E over the generated values of ł. Note 
that C < oo, since if l is unbounded then {l<1l} is bounded because for k = k(l) we have 
xk = yk and gk E 8.f(yk) with E :=Ef+ Eg by (2.2), whereas 8.f is locally bounded. 

Since limk tk = O, there is K C {l, 2, ... } such that tk+I ..!!_, O at Step 6 with tk+I < tk 
'r/k E K; thus tk ..!!_, O, since tk ~ lOtk+I at Step 6. For k E K, at Step 6 we have (2.23), 

g+1 > f! - K.Vk and i~ = O at Step 4. Using i7 = O, the definition of C and tk ..!!_, O in 

Lemma 3.4 yields ldkl 2 ~ Ctk ..!!_, O, i.e., dk ..!!_, O. Thus, since { xk} is bounded, so are 
{yk+ 1 = xk + dkhEI< and {gk+ 1 E 8,f (yk+1 )}kEI< because 8.f is locally bounded. 

Let k E K at Step 6. Since g+1 > J; - K.Vk and yk+I = xk + dk, using (2.2) gives 

f!- !k+1(xk) = J;- 1;+1 - (l+1,xk -l+1) ~ K.Vk + ll+1 lldkl, (3.8) 

Now, (2.23), (3.8) and the fact vk = ldkllPkl + C<k (cf. (2.18)) imply 

Vk := max { Ili, ok} ~ J; - fk+1(xk) ~ r;, (ldkllPkl + ok) + ll+1 lldkl 

~ 1,(l + !dkl) max { IPkl, ak} + ll+1 lldkl = r;,(l + ldkl)Vi + ll+1lldkl. (3.9) 

Therefore, since i. < 1, dk ..!!_, O and {gk+ 1 hEI( is bouncled, for large k E !( 

O~ Vi ~ l.l+ 1llcfl/ [1 - i.(1 +!dkl)]..!!_, O. 

Thus limkEK ½, = O. D 
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'vVe may naw finish the Ca.'le of infinitely many consecutive null steps. 

Lemma 3.6. Suppose there exists 'k such that ordy null steps ocwr for all k 2'. 'k . Then 
either T00 = oo and limk V{= O, or T00 < oo and limk Vi = O at Step 4. 

Proof. If limk tk = O at Step 6 then lirnk Vi = O by Lemma 3.5, so a.ssurne limk tk > O. 
Next, if T00 = oo then limk V~= O by Lemma 3.2, so assume T00 < oo. 

If Step 3 increases tk for same k = k' 2". 'k, then tk 2 lOtk-L and i} ie O, whereas 
for k 2'. k' Step 4 keeps i}+1 = it ie O and Step 6 sets tk+I = tk, so the number of such 
increases must be finite (otherwise tk--> oo and T00 = oo, a contradiction). Hence we may 
assume that Step 3 doesn't increMe tk for k 2'. 'k. Then Lemma 3.3 gives vk --> O. Since 
(cf. (2.20)) Vi ::; max{(2vk/tk) 112 , vd and liillk tk > O, we get Vi--> O. D 

For analyzing the remaining cMe of infinitely many clescent steps, we shall use the 
descent indicator ik defined by ik := 1 if (2.22) holcls, ik := O otherwise. 

Lemma 3. 7. (i) ff f::° > -oo, then ikvk --> O at Step 4. 
(ii) ff f ::° > J. + Eg, then { xk} is bounded. 

Proof. (i) At Step 4, o ::; KikVk ::; J: - 1;+1, SO r;k ikvk ::; (J; - !::°)/ K, < 00. 

(ii) Pick x ES and 1 >Osuch that J: > J(x) + c9 + 1 for all k. Since (pk, x - xk) ::; 
ak - 1 by (2.13), xk+1 - xk = -iktkpk and Vk = tk1Pkl 2 + ak by (2.18), we deduce that 

lxk+I - xl2 = lxk - xl2 + 2 (3/+I - xk, xk - x) + lxk+l - xkl2 

::; lxk - xl 2 + 2iktk(ak - 1 ) + 2ikti1Pkl2 

= lxk - xl 2 + 2iktk(Vk - ,). 

Since ikvk--> O by (i), there is k1 such that for all k 2'. k1 , ik(vk - 1 ) ::; O above and hence 
lxk+ 1 - xl ::; lxk - xl. Thus {xk} is boundecl. D 

Lemma 3.8. ff infinitely many descent steps occur, then f::°::; J. + Eg. 

Proof. Suppose for contradiction f::' > f. + Eg, By Lemma 3.7(ii), {xk} is bounded. 
Fnrther, T 00 < oo, since otherwise Lemmas 3.2 and 3.1 would yield f::' ::; f. + Eg, a 
contradiction. Similarly, limk tk > O, since otherwise Lemmas 3.5 and 3.1 would yield a 
contradiction. Let K := {k : ik = 1}. Using limktk > O and vk __!S_, O (cf. Lem. 3.7(i)) in 

the bound Vk ::; max{(2vk/tk) 112, vk} (cf. (2 .20)) yields Vi __!S_, O. Hence limk Vk = O and 
again Lemma 3.1 gives a contracliction. D 

We may naw prove aur principal result. Note that J: l f::' 2 f. - EJ by (2.5). 

Theorem 3.9. We have ft l f::°::; J.+Eg, Moreover, limkf(xk)::; J.+c for E := c1+c9 , 

so that each cluster point x• of {xk} (if any) satisfies x* ES and f(x*)::; f. + E. 

Proof. To get f::° ::; J. + c9 , invoke Lemmas 3.6 and 3.1 in the case of finitely many 
clescent steps, and Lemma 3.8 otherwise. By (2.5), limk f (xk) ::; limk J: + EJ ::; J. +EJ +c9 . 

The finał assertion follows from the fact {xk} c Sand the closeclness of Sand f. • 
10 
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It is instructive to examine the assumptions of the preceding results. 

Remarks 3.10. (i) Inspection of the proofs of Lemmas 3.3 and 3.5 reveals that Lemmas 
3.3- 3.8 and Theorem 3.9 require only convexity, finiteness and closeclness of f on S and 
local boundedness of the approximate subgraclient mapping g. on S . In particular, it suffices 
to assume that fis finite convex on a neighborhoocl of S, since g. E 8J(·). 

(ii) For Lemma 3.5, it suffices to assume bouncleclness of {gk}, instead of loca! bouncl
eclness of g. and bouncledness of {xk}. Note that {xk} is bounclecl if fs is coercive, since 
then the level set { x E S: f(x) ::; /;, +EJ} is bouncled and contains {xk} by (2.5) . 

The next result will justify the stopping criteria of §4.2. 

Lemma 3.11. Suppose J. > -oo, and either {gk} is bounded, or g. is locally bounded 
and {xk} is bounded (e.g ., fs is coercive). Then limk Vk = O. 

Proof. If only finitely many clescent steps occur, then the proof of Lemma 3.6 and Re
marks 3.10 yielcl limk V{ = O. Hence suppose for contradiction that lim.,. Vk > O for 
infinitely many clescent steps. 

We have T00 < oo, since otherwise Lemma 3.2 woulcl yielcl limk v; = O. Similarly, 
lim.,. tk > O, since otherwise Lemma 3.5 and Remark 3.lO(ii) would imply limk Vi = O. 
Next, f! 2". f(xk) ~ EJ 2". J. -EJ> -oo (cf. (2.5)) gives f~ > -oo. Let K := {k: ik = 1}. 

Using limktk > O and vk ..!!_, O (cf. Lem. 3.7(i)) in the bound Vi::; max{(2vk/tk)112,vk} 

(cf. (2.20)) yields Vi ..!!_, O and hence limk v; = O, a contradiction. O 

4 Modifications 

4.1 Subgradient aggregation 

'To tracie off storage and work per iteration for speed of convergence, one may replace 
subgradient selection with aggregation as in [Kiw90], so that only M 2". 2 subgradients are 
stored. To this end, we note that the prececling results remain valid if, for each k, A+i is 
a closed convex function such that a(}k+l +is)= aA+1 + ais (cf. (2.7)) and 

max { Jk(x), ik+i(x)} ::; A+1(x) ::; f(x) + Eg Vx ES. (4.1) 

Examples include fk+1 = max{lk, fk+i}, or A+1 = max{lk, fi : j E Jk+l} with k + 1 E 
Jk+I C { 1: k + 1}, and possibly same fi replaced by h for j ::; k. In fact A may be 
omittecl in ( 4.1) after a clescent step. 

4.2 Optimality measures and stopping criteria 

In practice Step 2 may use the stopping criterion Vi ::; Eopt, where Eopt > O is an optimality 
tolerance. Then any loop between Steps 1 and 3 is finite (cf. the proof of Lemma 2.3(iii)), 
whereas Lemma 3.11 gives conditions that ensure finite termination. 
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I 
It may be mare appropriate to replace Vi by the modified optimality measure 

1\ := RJpkJ + Cit with Cit := max{ l'ik, O}, (4.2) 

where R > O is the "radius of the picture" [HUL93, Note XIV.3.4.3G], because the opti
mality estimate (2.15) combined with f(xk) ~ J/: + EJ (cf. (2.5)) gives the bounds 

f(xk) - min fs(x) - E ~ J! - min fs(x) - E9 ~ RJll + Cik. (4.3) 
Jx-x"J:,R Jx-x"J:,R 

Since min{ R, 1} Vk ~ 1\ ~ (R + 1 )Vi by (2.16) and ( 4.2), the preceding results hold with 
Vk replaced by 11i, also in the safeguard (2.23) of Step 6, since (3.9) may be replaced by 

1\ := RJll +Cit~ f! - fk+1(xk) ~ K. (Jdk[[l[ + Cik) + [l+1[[dkJ 

~ 11:(l + [dk[/R)(R[pk[ + c,t) + 1l+1[[dk[ = 11:(l + [dk[/R)Vk + 1l+1 [[dk[. (4.4) 

In view of (4.3), another optimality measure Vk := RJpkJ + c,k may replace Vk both in the 
stopping criterion (since vk ~ vk ~ (R+ l)Vi) and in the safeguard (2.23), which becomes 

(4.5) 

Lemma 4.1. Suppose Step 6 employs the safeguard (4.5) instead of (2.23). Then Lemma 
3.5, Remarks 3.10 and Lemma 3.11 remain true. 

Proof. We only give two replacements for (3.9). First, for k EI<+:= {k EJ<: c,k 2: O}, 
we have vk = vk in (4.5), SO (4.4) holds. Hence if I<+ is infinite then vk !2.±., O by the 

previous argument, and thus Vi !2.±.. O because Vi ~ Vk/ min{ R, l }. Otherwise I{_ := { k E 
K: c,k < O} is infinite. Let k EJ<_. Then Vk := max{JpkJ,c,k} = JpkJ, whereas vk 2: -c,k 
and (2.18) yield Cik 2: -½tkJPk[2 = -½JdkJJpk[, so '\li := RJpkJ + Cik 2: (R- ½JdkJ)Vi. Hence 
using (4.5) we may replace (3.9) by 

(R- ½Jdk[)Vk ~ f! - !k+1(xk) ~ 1,,[dkJJl[ + Jl+1[JdkJ = 11:JdkJVk + Jl+1 J[dk[ 

to get Vi .!5.::.., O as before. O 

4.3 Tests for stepsize expansion and descent 

Consider replacing the test vk 2: -c,k of Step 3 by the stronger test 11:v'Vk 2: -c,k with a 
fixed coefficient 11:v E (O, 1). The preceding results are not impaired, since (2.20)-(2.21) 
are replaced by 

Vk ~ max { [ ( 1 + K.v )vk/tk] i/2 , Vk } if K.v Vk 2: -Cek, 

Vi < [-(1 + łl:v)Cik/(11:vtk)] 112 ~ [(1 + K.v)E/(11:vtk)] 112 if 11:vVk < -Ctk. 

Further, the facts Vk = tk1Pkl 2 + ak (cf. (2.18)), Wk = ½tk1Pkl2 + Cik (cf. (3.7b)) and 
1,,vvk 2: -ak at Step 4 yield the bounds 

(4.6) 
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These bounds allow us to replace Vk by wk in the descent test (2.22), thus bringing it closer 
to those of [HUL93, Alg. XV.3.1.4] and [Kiw90, §5] . Again the preceding results extencl 
easily (in the proof of Lemma 3.3, 1;+1 > J': - 1,,wk implies J;+1 > J; - 1,,vk, whereas in 
the proof of Lemma 3.7(i), Lk ikVk::; 1:"" Lk ikwk < oo). 

For 1,,u =½,we have Wk::; Vk::; 3wk by (4.6) , whereas the test 1,,vvk 2: -ak is equivalent 
to Wk 2: -ak. Note that Wk 2: O is equivalent to the original test vk 2: -ak. 

4.4 Zigzag searches 

Our aualysis may accomoclate zigzag searches (cf. [HUL93, §XV.3.3], [Hin0l, Kiw96, 
ScZ92]), which amount to trying possibly mare than one value of tk at each iteration. 

We first consider stepsize expansion at descent steps. Suppose that the descent test 
(2.22) holds, but tk < Tk and same other tests, e.g., J;+ 1 ::; J;- R-,vk or (gk+I, dk) < -R-,vk 
with ;;;-, E (1,,, 1), indicate that larger descent might occur if tk were increased. Letting 
tk := tk, we may choose a larger tk E (k, Tk] and go back to Step 1. If (2.22) fails when 
Step 4 is reentered, then a descent step must be made with tk reset tok- Otherwise, either 
a descent step with the current tk is accepted, or a larger stepsize may be tested as above. 

One may use simple safeguards, such as l.lk::; Tk and tk 2: l.ltk, to ensure finiteness 
of the loop between Steps 4 and 1. Indeed, these safeguards eventually break the loop, 
unless Step 3 drives tk and Tk to oo, but in this case the conclusions of Lemma 2.3(iii) 
hold (by its proof), so in fact a cycle between Steps 1 and 3 occurs by Lemma 2.3(iv). In 
effect, the preceding results are not affected by such modifications. 

To enable zigzag searches at null steps, it suffices to redefine A+i after Step 6 as 

(4.7) 

Then "tk+I ::; tk" in Lemma 3.3 must be replaced by "0.9tk < tk+ł ::; tk", but this is 
enough for the proof of Lemma 3.6, since if limk tk > O and tk+l ::; tk for k 2: k, then 
tk+i > 0.9tk for all large k. The remaining results are not affected. 

4.5 Ad hoc modification 

Our analysis also sheds light on the behavior of the original proximal bundle method 
[Kiw90] , [HUL93, §XV.3] in the inexact case. 

Consider the following crippled version of Algorithm 2.1 with the safeguard (2.23) 
replaced by (4.5). Suppose Step 2 employs any of the stopping criteria of §4.2 with a 
positive optimality tolerance €opt, whereas Step 3 is replaced by 

Step 3' (Inaccurncy detection). If Wk < O, then stop; else set Tk+ 1 := Tk , 

This version is an ad hoc modification of the method of [Kiw90] that only employs 
the additiona.l stopping criterion wk < O; in fact most existing implementations use this 
criterion anyway (to detect QP ina.ccuracy or erroneous subgradients). 

As for convergence of this moclification, there are three cases. First, if no termination 
occurs then the results of §3 apply (with T00 = Ti); in view of Lemma 3.11, this ca.se is 
quite unlikely. Second, termination at Step 2 means a satisfactory solution has been founcl. 
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Third, termination at Step 3' implies Vi < (2E/tk) 112 (cf. (2.21)); thus xk is a satisfactory 
solution if tk is "large enough", otherwise a failure occurs. 

The above analysis suggests that the existing bundle codes rnay behave reasonably well 
in the inexact case, provided large enough stepsizes are used (most codes allow the user 
to choose the initial stepsize and its updating strategies). Of course, in case of failure, the 
user rnay choose a larger stepsize, disallow stepsize decreases, and restart the algorithm at 
Step 1; sucha "natura!" strategy reinvents Algorithrn 2.1! Finally, note that the existing 
codes won 't face any trouble until the predicted descent vk falls below the oracle's error E 
(since Wk < O implies vk < -ak ~ E by (3.7b), (2.18) and (2.17)) . 

5 Lagrangian relaxation 

In this section we consider the special case where problem (1.1) with S := IR~ is the 
Lagrangian dual problem of the following primal convex optirnization problem 

1/;t{"'" := max 1/Jo(z) s.t. 1/Jj(z) 2: O, j = 1: n, z E Z, (5.1) 

where 0 ,j, Z C IR"' is compact and convex, and each 1/;j is concave and closed (upper 
sernicontinuous) with dorn 1/;j :) Z. The Lagrangian of (5.1) has the form 1/;0(z) + (y, 1/J(z)), 
where 1/J := (1/;1 , ... , 1/Jn) and y is a multiplier. Suppose that, at each y E S, the dual 
Junction 

J(y) := max { 1/Jo(z) + (y, 1/J(z)) : z E Z} (5.2) 

can be evaluated with accumcy E 2: O by finding a partia/ Lagrangian E-solution 

z(y) EZ such that fy := 1/Jo(z(y)) + (y,1/;(z(y))) 2: J(y)- E. (5.3) 

Thus fis finite convex and has an E-subgradient mapping g. := 1/J(z(,)) on S. In view of 
Rem. 3.lO(i), we suppose that 1/;(z(,)) is locally bounded on S (e.g., f agrees on S with 
'a convex function finite on an open neighborhood of S, or inf z rnin;'=i 1Pj > -oo, or 1/J is 
continuous on Z) . Finally, we assume that fs is coercive, i.e., Arg mins fis nonernpty and 
bounded (e.g., Slater's condition holds: 1/J(z) > O for sorne z EZ). 

In effect, assuming k--> oo, the results of §3 hold with EJ := E and E9 := O, J. > -oo, 
{xk} is bounded (cf. Rem. 3.lO(ii)) and Lemma 3.11 yields limk v,; = O. In particular, the 
partia! Lagrangian solutions zk := z(yk) (cf. (5.3)) and their constraint values gk := 1/J(zk) 
determine the linearizations (2.2) as Lagrangian pieces off in (5.2): 

(5.4) 

Using their weights {vJ}jEJk (cf. (2.8)), we may estimate solutions to (5.1) via aggregate 
primal solutions 

Zk ·= "VkZj . 6 J • 
jEJk 

We now derive useful bounds on 1/Jo(zk) and '!j;(zk) as in [Kiw95a, Lem. 4.1]. 

L 5 1 -k z ,/, (-k) > fk _ _ ( k k) ,1,(-k) > k > k emma .. z E , '//O z _ ,. Ctk p , x , '// z _ PJ _ p . 
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Proof. We have (cf. (2.8)) L-jEJ" vj = 1 with vj 2 O. Hence zk E co{zi}jEJ" C Z , 
·l/;0 (zk) 2 L-j vj-1/Jo( zi), 1/J(zk) 2 L-j vj-1/J(zi) by convexity of Z and concavity of 1/Jo, 1/J . 

Since (cf. (2.7)) p~ E 8is(yk+1) with S := IR~ , we have p~::; O and \P~,yk+1) = O, so 
(cf. (2.14)) pj = pk - p~ 2 pk . Next, using (2.8) and (5.4) with 1/J(zi) =: gi, we get 
L-i vj-1/J( zi) = L-i vjgi = pJ and 

A(l+1) = L i vj Ji(l+ 1) = Li vj [·1/Jo(zi) + (l+1 , 1/J(zi))] = Li 1/j-1/Jo(zi) + (l+1,p}) . 

Rearranging and using \P~, yk+1) = O, pk := pj + p~ ( cf. (2.14)), (2.12) and (2.13) gives 

Li vj -1/Jo(zi) = A(yk+I) - \P7 + Pt yk+I) = Jf(O) = f! - Ctk - (l, xk) • 

Combining the preceding relations yields the conclusion. D 

The bounds of Lemma 5.1 are expressed in terms of the primal-dual optimality measure 

(5.6) 

as 1/Jo(zk) 2 J; - I\ , minj'=i 1/Ji(zk) 2 -'t\. Hence we may generate record measures \°\• 
and prima! solutions z: as follows. At Step O, set Vt := 00. At Step 1, if vk < v,:, set 
vk· := vk, z: := zk . At Step 4 set v:+1 := vk·, z:+1 := z:. In effect, v,: (the current 
minimum of ½ for j ::; k) measures the quality of the prima! iterate 

z!EZ with 1/Jo(z~):C::!;)-Vt , 1/!j(z!):c::-vk· , j=l:n. (5.7) 

We now show that {zZ} converges to the set of E-optimal primal solutions of (5.1) 

Z, := { Z E Z : 1/Jo(z) ~ 1/J!;'ax - E, 1/J(z) <". 0}. 

Theorem 5.2. (i) { z:} is bounded and all its cluster points lie in Z. 
(ii) limk f: = : f;:' <". f. - E and limk Vk* :s; 0. 
(iii) Let z';' be a cluster point of {zż}. Then z';' EZ, . 
(iv) dz,(z:l := inf,EZ, [z: - z[ --> O as k--> oo. 

Proof. (i) By (5.7), {z:} lies in the set Z, which is compact by our assumption. 

(5.8) 

(ii) By (2.5), f! 2 f(xk) - Ej with Ej := E gives f::' 2 f. - E. Next, since pJ 2 pk (cf. 
Lem. 5.1) implies maxj[-pJ]i :::; [pk[ , using (5 .6) and (2.16) yields 

hence by construction Vk* ::; minJ=1 Vj(l + jxij). Recall that under our assumptions on 

(5 .1) , limk vi: = O and {xk} is boundecl. Therefore, limk V/::; O by monotonicity. 
(iii) By (i), z';' EZ. Using (ii) in (5.7) gives 1/Jo(z';') 2 f::', 1/!(z';') 2 O by closedness of 

1/Jo, 1/J . Since f::' 2 f. - E by (ii) , where /. 2 1/Jbnax by weak cluality (cf. (1.1), (5.1), (5.2)) , 
we have ·1/;0(.z';') 2 1/J/i'ax - c. Thus z';' EZ, by the clefinition (5.8). 

(iv) This follows from (i,iii) and the continuity of the distance function dz, . D 
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Remarks 5.3. (i) By the proofs of Lemma 2.3(iii) and Theorem 5.2, if an infinite loop 
between Steps 1 and 3 occurs then Vk -> O yie]ds max{l1i, O} -> O and dz, (zk) -> O. 
Similarly, if Step 2 terminates with Vi = O then Vi :=:; O and zk E Z,. 

(ii) Theorem 5.2 holds for {z~} replaced by {zkhe[( for any KC {l , 2, . .. } such that 
limke[( max{"\\, O} = O. 

(iii) Given a tolerance €toi > O, the method may stop if 

'1/Jo(zk) 2': !':- €toi and 1P1(zk) 2'. -€toi, j = l : n . 

Then '1/Jo(zk) 2': '1/Jónax - E - E,0 1 from J;: 2". f. - E (cf. (2.5)) and/. 2': 1/Jónax (weak duality), 
so zk EZ is an approximate solution of (5.1). This stopping criterion will be satisfied for 
some k (cf. (5.7) and Thm 5.2(ii)) . 

No longer assuming coercivity off s, we stili have 

Theorem 5.4. Theorem 5.2 holds if f. > -oo and tk 2". tmin > O for all k. 

Proof. In view of the proof of Theorem 5.2, we only need to show that limk i'\• :=:; O when 
infinitely many descent steps occur (since otherwise {xk} is bounded, whereas limk v,: = O 
by Lem. 3.11). 

Let K := {k : ik = l}. Since Vk Ł O (cf. Lem. 3.7(i)) with vk = tk1Pkl 2 + Ctk 

(cf. (2.18)) and vk 2". laki at Step 4, we have ak Ł O and tk1Pkl 2 Ł O. By (2.18) , 
xk+I - xk = -iktkpk, SO 

lxk+Il 2 - lxkl 2 = iktk { tk1Pkl 2 - 2 (l, xk)} . 

Sum up and use the fact Lk iktk 2". Lkef( tmin = oo to get 

l~IJ} { tklll 2 - 2 (l, xk)} 2': O 

'(since otherwise lxk+112 -> -oo, which is impossible). Combining this with tklll2 Ł O 

yields limkeK (pk, xk) :=:; O, as well as 1Pkl2 Ł O by using the fact tk 2". tmin • Since also 

Ctk Ł O, we have limkEK 1\ :=:;Oby (5.9). Then the fact Vt :=:; vk implies limk V/ :=:; O. 0 

Remarks 5.5. (i) For Theorem 5.4, we may impose a !ower bound tmin > O on tk+I at 
Step 6, whereas f. > -oo if problem (5.1) is feasible (by weak duality). Thus, in contrast 
with [FeKOO, Kiw95a], our prima! recovery works even if (5.1) has no Lagrange multipliers. 

(ii) Remarks 5.3 remain valid under the assumptions of Theorem 5.4. 

In the remainder of this section we allow the prima! problem (5.1) to be nonconvex. As 
before, our standing assumptions are that { 'I/J1 }:7=0 are finite and upper semicontinuous on 
the compact set Z, '1/J(z(-)) is locally boundecl on S , and either fs is coercive orf. > -oo 
and tk 2". tmin > O as in Theorem 5.4 (cf. Rem. 5.5(i)). 

Since problem (5 .1) may be nonconvex, consicler its relaxed convexified version 

M 

·lj.;r1 := ma~, L 1,j1/Jo(z1) s.t. 
(v,,z');=I j = I 

M M 
LV11/J(z1) 2': O, LV1 = 1, z1 EZ, v1 2". O, 
j=I j=I 
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where M := n+ 1; see [FeKOO, LeROl, MSW76]. Similarly to (5.8), !et Z, denote the 
set of €-optima! solutions of (5.10) . Such solutions may be estimated by (vj,zi)JEi• with 

Jk := {j E Jk : vj =I O} as follows. Since the QP routine of [Kiw94] delivers iJkl :S M, 

whereas any (vj, zi) can be split into two elements (vj/2, zi), we may assume iJkl = M. 
Denoting (vj, zi)JEi• as (DJ, zik)f'f: 1, the proof of Lemma 5.1 yields 

M M 
'"' •k 0 1, ( •jk) _ fk ( k .k) 0 łlj '1'0 z - X - °'k - p ' X and I: DJ'lj;(zik) = P1 2'. pk. (5.11) 
j=l j=l 

Now, the record solutions (iij, zik)t1 are generated just like z: by setting (iij, zik)t1 := 

(Dj,zik)t 1 at Step 1 if i\< i\•, and (iij+1,2J,k+I)t 1 := (iij,zik)t 1 at Step 4. We now 

show that (iij,zik)t 1 converges to Z„ thus extending [FeKOO, Thm 6.2] . 

Theorem 5.6. (i) {(iij,zik)t 1 } lies in a compact set. 

(ii) Iimk J! =: f::' 2'. J. - E and limk Vt '.S O. 
(iii) Let (iii, zi)t1 be a cluster point of {(iij, zik)t1 }. Then (iii, zi)t1 EZ,. 
(iv) dz,((iiJ, zik)t1)-> O as k-> oo. 

Proof. (i) By construction (cf. (2.8)), Li iiJ = 1, iiJ > O, zik EZ, a compact set. 
(ii) The proofs of Theorems 5.2(ii) and 5.4 remain valid. 
(iii) By (i), Lj Vj = 1, Vj 2'. o, zi E z, j = 1: M. Next, using (ii) with V/ = vk (cf. 

(5.6)) for k such that (DJ, zik) = (ii], zik) in (5.11) and the upper semicontinuity of 'lj;0 , 'lj; 
gives 

M 

L VJ'lj;o(zi) 2'. r: 2'. J. - E and 
j=l 

M 

1= vj'lj;(zi) 2'. o. 
j=l 

Since (iii, zi)t1 is feasible in (5.10) and J. 2'. 'lj;ó01 by weak duality (cf. (1.1), (5.2), (5.10)), 
,we have I:f=1 iiJ7/!o(zi) 2'. 7/!óel - c, i.e., (iii, zi)f=1 is an €-optima! solution of (5.10). 

(iv) This follows from (i,iii) and the continuity of dz,· O 

Extensions to separable problems are easily developed as in [FeKOO, §6]. 
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