Report Badawczy

RB/84/2003

Research Report

Fragment rozdziału 13
 "Complex of operations" w książce Analysis and Decision Making in Uncertain Systems

Z. Bubnicki

Instytut Badań Systemowych

 Polska Akademia SaukSystems Research Institute Polish Academy of Sciences

POLSKA AKADEMLA NAUK

Instytut Badań Systemowych

ul. Newelska 6
01-447 Warszawa
tel.: $\quad(+48)(22) 8373578$
fax: $\quad(+48)(22) 8372772$

Kierownik Pracowni zgłaszajacy pracę:
Prof. dr hab. inż. Zdzisław Bubnicki

Fragment rozdzialu 13. „Complex of operations" w książce „Analysis and Decision Making in Uncertain Systems", Springer Verlag, Berlin, London, New York 2004 (w druku).

Zdzislaw Bubnicki

Pracownia Systemów Wiedzy i Sztucznej Inteligencji, Instytut Badań Systemowych PAN, ul. Podwale 75, 50-449 Wroclaw, e-mail: Zdzislow.Bubnicki@pwr.wroc.pl

13.3 Special Cases and Examples

In many cases an expert gives the value x_{i}^{*} and the interval of the approximate values of \bar{x}_{i} : $x_{i}^{*}-d_{i} \leq x_{i} \leq x_{i}^{*}+d_{i}$. Then we assume that $h_{x i}\left(x_{i}\right)$ has a triangular form presented in Fig. 13.3 where $d_{i} \leq x_{i}^{*}$. Let us consider the relation (13.11) in the form $T_{i} \leq x_{i} u_{i}$ where $x_{i}>0$ and u_{i} denotes the size of a task. In this case, using (13.17) and (13.19) it is easy to obtain the following formulas for the functions $v_{i}\left(u_{i}\right)$ and $\hat{v}_{i}\left(u_{i}\right)$:

$$
\begin{align*}
& v_{i}\left(u_{i}\right)=\left\{\begin{array}{ccc}
1 & \text { for } & u_{i} \leq \frac{\alpha}{x_{i}^{*}} \\
\frac{1}{d_{i}}\left(\frac{\alpha}{u_{i}}-x_{i}^{*}\right)+1 & \text { for } & \frac{\alpha}{x_{i}^{*}} \leq u_{i} \leq \frac{\alpha}{x_{i}^{*}-d_{i}} \\
0 & \text { for } & u_{i} \geq \frac{\alpha}{x_{i}^{*}-d_{i}},
\end{array}\right. \tag{13.23}\\
& \hat{v}_{i}\left(u_{i}\right)=\left\{\begin{array}{ccc}
0 & \text { for } & u_{i} \leq \frac{\alpha}{x_{i}^{*}+d_{i}} \\
-\frac{1}{d_{i}}\left(\frac{\alpha}{u_{i}}-x_{i}^{*}\right)+1 & \text { for } & \frac{\alpha}{x_{i}^{*}+d_{i}} \leq u_{i} \leq \frac{\alpha}{x_{i}^{*}} \\
1 & \text { for } & u_{i} \geq \frac{\alpha}{x_{i}^{*}} .
\end{array}\right. \tag{13.24}
\end{align*}
$$

Figure 13.3. Example of the certainty distribution
For the relations $T_{i} \leq x_{i} u_{i}^{-1}$ where u_{i} denotes the size of a resource, the functions $v_{i}\left(u_{i}\right)$ and $\hat{v}_{i}\left(u_{i}\right)$ have an analogous form with u_{i}^{-1} in place of u_{i} :

$$
\begin{align*}
& v_{i}\left(u_{i}\right)=\left\{\begin{array}{ccc}
0 & \text { for } & u_{i} \leq \frac{x_{i}^{*}-d_{i}}{\alpha} \\
\frac{1}{d_{i}}\left(\alpha u_{i}-x_{i}^{*}\right)+1 & \text { for } & \frac{x_{i}^{*}-d_{i}}{\alpha} \leq u_{i} \leq \frac{x_{i}^{*}}{\alpha} \\
1 & \text { for } & u_{i} \geq \frac{x_{i}^{*}}{\alpha},
\end{array}\right. \tag{13.25}\\
& \hat{v}_{i}\left(u_{i}\right)=\left\{\begin{array}{ccc}
1 & \text { for } & u_{i} \leq \frac{x_{i}^{*}}{\alpha} \\
-\frac{1}{d_{i}}\left(\alpha u_{i}-x_{i}^{*}\right)+1 & \text { for } & \frac{x_{i}^{*}}{\alpha} \leq u_{i} \leq \frac{x_{i}^{*}+d_{i}}{\alpha} \\
0 & \text { for } & u_{i} \geq \frac{x_{i}^{*}+d_{i}}{\alpha} .
\end{array}\right.
\end{align*}
$$

Example 13.1.

Let us consider the resource allocation for two operations $(k=2)$. Now in the maximization problem (13.13) the decision u_{1}^{*} may be found by solving the equation $v_{1}\left(u_{1}\right)=v_{2}\left(U-u_{1}\right)$ and $u_{2}^{*}=U-u_{1}^{*}$. Using (13.25), we obtain the following result:

1. For

$$
\begin{equation*}
\alpha \leq \frac{x_{1}^{*}-d_{1}+x_{2}^{*}-d_{2}}{U} \tag{13.27}
\end{equation*}
$$

$v(u)=0$ for any u_{1}.
2. For

$$
\begin{equation*}
\frac{x_{1}^{*}-d_{1}+x_{2}^{*}-d_{2}}{U} \leq \alpha \leq \frac{x_{1}^{*}+x_{2}^{*}}{U} \tag{13.28}
\end{equation*}
$$

we obtain

$$
\begin{align*}
& u_{1}^{*}=\frac{\alpha d_{1} U+x_{1}^{*} d_{2}-x_{2}^{*} d_{1}}{\alpha\left(d_{1}+d_{2}\right)}, \tag{13.29}\\
& v\left(u^{*}\right)=\frac{1}{d_{1}}\left[\alpha u_{1}^{*}-x_{1}^{*}\right\rfloor+1 \tag{13.30}
\end{align*}
$$

3. For

$$
\begin{equation*}
\alpha \geq \frac{x_{1}^{*}+x_{2}^{*}}{U} \tag{13.31}
\end{equation*}
$$

we obtain $v\left(u^{*}\right)=1$ for any u_{1} satisfying the condition

$$
\frac{x_{1}^{*}}{\alpha} \leq u_{1} \leq U-\frac{x_{2}^{*}}{\alpha}
$$

In the case (13.27) α is too small (the requirement is too strong) and it is not possible to find the allocation for which $v(v)$ is greater than 0 . In the case (13.28) we obtain one solution maximizing $v(u)$. For the numerical data $U=9, \alpha=0.5, x_{1}^{*}=2, x_{2}^{*}=3, d_{1}=d_{2}=1$, using (13.29) and (13.30) we obtain $u_{1}^{*}=3.5, u_{2}^{*}=5.5$ and $v=0.75$, which means that the requirement $T \leq \alpha$ will be approximately salisfied with the certainty index 0.75 . The solution of the oplimization problem (13.18) based on (13.26) may be obtained in an analogous way: 1. For

$$
\begin{equation*}
\alpha \leq \frac{x_{1}^{*}+x_{2}^{*}}{U} \tag{13.32}
\end{equation*}
$$

$v_{n}(u)=0$ for any u_{1}.
2. For

$$
\begin{equation*}
\frac{x_{1}^{*}+x_{2}^{*}}{U} \leq \alpha \leq \frac{x_{1}^{*}+d_{1}+x_{2}^{*}+d_{2}}{U} \tag{13.33}
\end{equation*}
$$

$u_{N 1}^{*}=u_{1}^{*}$ in the formula (13.29) and

$$
\begin{equation*}
v_{n}\left(u^{*}\right)=\frac{1}{d_{1}}\left(\alpha u_{N 1}^{*}-x_{1}^{*}\right) \tag{13.34}
\end{equation*}
$$

3. For

$$
\alpha \geq \frac{x_{1}^{*}+d_{1}+x_{2}^{*}+d_{2}}{U}
$$

we oblain $v_{n}\left(u^{*}\right)=1$ for any u_{1} satisfying the condition

$$
\frac{x_{1}^{*}+d_{1}}{\alpha} \leq u_{1} \leq U-\frac{x_{2}^{*}+d_{2}}{\alpha}
$$

For the numerical data we have the case (13.32) and $v_{n}(u)=0$.
The optimization problem (13.22) for C-uncertain variables is much more complicated and should be considered in the different intervals of α introduced for v and v_{n}. For example, if

$$
\begin{equation*}
\frac{x_{1}^{*}+x_{2}^{*}}{U} \leq \alpha \leq \frac{x_{1}^{*}+d_{1}+x_{2}^{*}+d_{2}}{U} \tag{13.35}
\end{equation*}
$$

which means the combination of the cases (13.31) and (13.33), then $u_{c l}^{*}=u_{N 1}^{*}$ and

$$
v_{c}\left(u^{*}\right)=\frac{1}{2}\left[\nu\left(u^{*}\right)+1-v_{n}\left(u^{*}\right)\right] .
$$

Substiluting $v\left(u^{*}\right)=1$ and (13.34) yields

$$
\begin{equation*}
v_{c}\left(u^{*}\right)=1-\frac{1}{2 d_{1}}\left(\alpha u_{c 1}^{*}-x_{1}^{*}\right) . \tag{13.36}
\end{equation*}
$$

For the numerical data $U=9, a=0.6, x_{1}^{*}=2, x_{2}^{*}=3, d_{1}=d_{2}=1$ the inequality (13.35) is satisfied. Then, by using (13.29) and (13.36) we obtain $u_{c 1}^{*}=3.67$ and $v_{c}\left(u^{*}\right)=0.9$. The results for these data in the case v and v_{n} are as follows: $u_{N 1}^{*}=u_{c 1}^{*}=3.67$ and $v_{n}\left(u^{*}\right)=0.2 ; v\left(u^{*}\right)=1$ for any u_{1} from the interval [3.33, 4].

Example 13.2.

Let us consider the task allocation for two operations. In the maximization problem (13.13) the decision u_{l}^{*} may be found by solving the equation $v_{1}\left(u_{1}\right)=\nu_{2}\left(U-u_{1}\right)$ and $u_{2}^{*}=U-u_{1}^{*}$. Using (13.23), we oblain the following result:

1. For

$$
\begin{equation*}
\alpha \leq \frac{U\left(x_{1}^{*}-d_{1}\right)\left(x_{2}^{*}-d_{2}\right)}{x_{1}^{*}-d_{1}+x_{2}^{*}-d_{2}} \tag{13.37}
\end{equation*}
$$

$v(u)=0$ for any u_{1}.
2. For

$$
\begin{equation*}
\frac{U\left(x_{1}^{*}-d_{1}\right)\left(x_{2}^{*}-d_{2}\right)}{x_{1}^{*}-d_{1}+x_{2}^{*}-d_{2}} \leq \alpha \leq \frac{U x_{1}^{*} x_{2}^{*}}{x_{1}^{*}+x_{2}^{*}} \tag{13.38}
\end{equation*}
$$

u_{1}^{*} is a root of the equation

$$
\frac{1}{d_{1}}\left(\frac{\alpha}{u_{1}}-x_{1}^{*}\right)=\frac{1}{d_{2}}\left(\frac{\alpha}{U-u_{1}}-x_{2}^{*}\right)
$$

satislying the condition

$$
\frac{\alpha}{x_{1}^{*}} \leq u_{1}^{*} \leq \frac{\alpha}{x_{1}^{*}-d_{1}}
$$

and $v\left(u^{*}\right)=v_{1}\left(u_{1}^{*}\right)$.
3. For

$$
\begin{equation*}
\alpha \geq \frac{U x_{1}^{*} x_{2}^{*}}{x_{1}^{*}+x_{2}^{*}} \tag{3.39}
\end{equation*}
$$

$v\left(u^{*}\right)=1$ for any u_{1} satisfying the condition

$$
U-\frac{\alpha}{x_{2}^{*}} \leq u_{1} \leq \frac{\alpha}{x_{1}^{*}}
$$

For example, if $U=2, \alpha=2, x_{1}^{*}=2, x_{2}^{*}=3, d_{1}=d_{2}=1$ then using (13.38) yields $u_{1}^{*}=1.25, u_{2}^{*}=0.75$, $v\left(u^{*}\right)=0.6$.
The result is simpler under the assumption

$$
\begin{equation*}
\frac{x_{1}^{*}}{d_{1}}=\frac{x_{2}^{*}}{d_{2}} \triangleq \gamma \tag{13.40}
\end{equation*}
$$

Then in the casc (13.40)

$$
\begin{gather*}
u_{1}^{*}=\frac{U x_{2}^{*}}{x_{1}^{*}+x_{2}^{*}}, \quad u_{2}^{*}=\frac{U x_{1}^{*}}{x_{1}^{*}+x_{2}^{*}} \\
v\left(u^{*}\right)=v_{1}\left(u_{1}^{*}\right)=\frac{1}{d_{1}}\left(\frac{\alpha}{u_{1}^{*}}-x_{1}^{*}\right)+1=\gamma\left[\frac{\alpha\left(x_{1}^{*}+x_{2}^{*}\right)}{U x_{1}^{*} x_{2}^{*}}-1\right]+1 \tag{13.41}
\end{gather*}
$$

The formula (13.41) shows that $v\left(u^{*}\right)$ is a linear function of the parameter γ characterizing the expert's uncertainty.
The result in point 3 of Example 13.2 may be easily generalized for k operations described by the incqualities $T_{i} \leq x_{i} u_{i}$ and for any form of $h_{x i}\left(x_{i}\right)$. Let us denote by x_{i}^{*} the value maximizing $h_{x i}\left(x_{i}\right)$, i.e. $h_{x i}\left(x_{i}^{*}\right)=1$.
Theorem 13.2. If

$$
\begin{equation*}
\alpha \geq \frac{U}{\sum_{i=1}^{k}\left(x_{i}^{*}\right)^{-1}} \tag{I3.42}
\end{equation*}
$$

then

$$
\begin{equation*}
D_{u}=\left\{u:\left(\bigwedge_{i \in \overline{1, k}} 0 \leq u_{i} \leq \frac{\alpha}{x_{i}^{*}}\right) \wedge \sum_{i=1}^{k} u_{i}=U\right\} \tag{13.43}
\end{equation*}
$$

is the sct of all allocations $u^{*}=\left(u_{1}^{*}, u_{2}^{*}, \ldots, u_{k}^{*}\right)$ such that $v\left(u^{*}\right)=\mathrm{I}$.
Proof: From (13.14) it follows that in

$$
\begin{equation*}
u_{i} \leq\left(x_{i}^{*}\right)^{-1} \tag{13.44}
\end{equation*}
$$

then $x_{i}^{*} \in D_{x i}\left(u_{i}\right)$ and consequently $v_{i}\left(u_{i}\right)=1$. It is easy to see that under the assumption (13.42) there exists an allocation $u=\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ such that (13.44) is satisfied for each $i \in \bar{I}, k$ and $u_{1}+u_{2}+\ldots+u_{k}=U$. All allocations satisfying these conditions form the set D_{μ} described by (13.43), and if $u \in D_{u}$ then, according to (13.13), $v\left(u^{*}\right)=1$.

13.4 Decomposition and Two-level Control

The determination of the control decision u^{*} may be difficult for $k>2$ because of the great computational difficulties. To decrease these difficulties we can apply the decomposition of the complex into two subcomplexes and conscquently to obtain a two-level control system (Fig. 13.4). This approach is based on the idea of decomposition and two-level control presented for the deterministic case [13]. At the upper level the value U is divided into U_{1} and U_{2} assigned to the first and the second subcomplex, respectively, and at the lower level the allocation $u^{(1)}, u^{(2)}$ for the subcomplexes is determined. Let us introduce the following notation:
n, m - the number of operations in the first and the second complex, respectively, $n+m=k, T^{(1)}, T^{(2)}$ - the execution times in the subcomplexes, i.e.

$$
T^{(1)}=\max \left(T_{1}, T_{2}, \ldots, T_{n}\right), \quad T^{(2)}=\max \left(T_{n+1}, T_{n+2}, \ldots, T_{n+m}\right)
$$

$u^{(1)}, u^{(2)}$-the allocations in the subcomplexes, i.e.

$$
u^{(1)}=\left(u_{1}, \ldots, u_{n}\right), \quad u^{(2)}=\left(u_{n+1}, \ldots, u_{n+m}\right)
$$

Figure 13.4. Two-level control system
The procedure of the determination of u^{*} is then the following:

1. To determine the allocation $u^{(1)^{*}}\left(U_{1}\right), u^{(2)^{*}}\left(U_{2}\right)$ and the certainty indexes $v^{(1)^{*}}\left(U_{1}\right), v^{(2)^{*}}\left(U_{2}\right)$ in the same way as μ^{*}, v^{*} in Sect. 13.2, with U_{1} and U_{2} in place of U.
2. To determine U_{1}^{*}, U_{2}^{*} via the maximization of

$$
\left.v(T \widetilde{\leq} \alpha)=v\left[T^{(1)} \widetilde{\leq} \alpha\right) \wedge\left(T^{(2)} \widetilde{\leq} \alpha\right)\right] \triangleq v\left(U_{1}, U_{2}\right)
$$

Then

$$
\left(U_{1}^{*}, U_{2}^{*}\right)=\arg \max _{U_{1}, U_{2}} \min \left\{v^{(1)^{*}}\left(U_{1}\right), v^{(2)^{*}}\left(U_{2}\right)\right\}
$$

with the constraints: $U_{1,2} \geq 0, U_{1}+U_{2}=U$.
3. To find the values of $u^{(1)^{*}}, u^{(2)^{*}}$ and v^{*} putting U_{1}^{*} and U_{2}^{*} into the results $u^{(1)^{*}}\left(U_{4}\right), u^{(2)^{*}}\left(U_{2}\right)$ obtained in point 1 and into $v\left(U_{1}, U_{2}\right)$ in point 2 .
It may be shown that the result obtained via the decomposition is the same as the result of the direct approach presented in Sect. 13.2.

Example 13.3.

Let us consider the resource allocation problem the same as in Example 13.1 for $k=4$ and introduce the decomposition into two subcomplexes with $n=m=2$. Using the result obtained in Example I3.I with $U^{(1)}$, $v^{(1)}$ in place of U, v, we have the following result for the first subcomplex:

1. For

$$
U \leq \frac{x_{1}^{*}-d_{1}+x_{2}^{*}-d_{2}}{a}
$$

$\left.v^{(1)}\right)^{*}\left(U_{1}\right)=0$.
2. For

$$
\frac{x_{1}^{*}-d_{1}+x_{2}^{*}-d_{2}}{\alpha} \leq U \leq \frac{x_{1}^{*}+x_{2}^{*}}{\alpha}
$$

we obtain

$$
v^{(1)^{*}}\left(U_{1}\right)=A_{1} U_{1}+B_{1}
$$

where

$$
A_{1}=\frac{a}{d_{1}+d_{2}}, \quad B_{1}=\frac{x_{1}^{*} d_{2}-x_{2}^{*} d_{1}}{d_{1}\left(d_{1}+d_{2}\right)}-\frac{x_{1}^{*}}{d_{1}}+1
$$

3. For

$$
U \geq \frac{x_{1}^{*}+x_{2}^{*}}{\alpha}
$$

$v^{(1)^{*}}\left(U_{1}\right)=1$.
The relationship $v^{(2) *}\left(U_{2}\right)$ is the same with $x_{3}, x_{4}, d_{3}, d_{4}, A_{2}, B_{2}$ in place of $x_{1}, x_{2}, d_{1}, d_{2}, A_{1}, B_{1}$. The value U_{1}^{*} may be determined by solving the equation $v^{(1)^{*}}\left(U_{1}\right)=v^{(2)^{*}}\left(U-U_{1}\right)$ and $U_{2}^{*}=U-U_{1}^{*}$.

The result is as follows:

1. For

$$
\alpha \leq \frac{x_{1}^{*}-d_{1}+x_{2}^{*}-d_{2}+x_{3}^{*}-d_{3}+x_{4}^{*}-d_{4}}{U}
$$

$v\left(U_{1}, U_{2}\right)=0$.
2. For

$$
\frac{x_{1}^{*}-d_{1}+x_{2}^{*}-d_{2}+x_{3}^{*}-d_{3}+x_{4}^{*}-d_{4}}{U} \leq \alpha \leq \frac{x_{1}^{*}+x_{2}^{*}+x_{3}^{*}+x_{4}^{*}}{U}
$$

we obtain

$$
\begin{aligned}
U_{1}^{*}= & \frac{A_{2} U+B_{2}-B_{1}}{A_{1}+A_{2}}, \quad U_{2}^{*}=\frac{A_{1} U+B_{1}-B_{2}}{A_{1}+A_{2}} \\
& v\left(U_{1}^{*}, U_{2}^{*}\right)=\frac{A_{1} A_{2} U+A_{1} B_{2}+A_{2} B_{1}}{A_{1}+A_{2}}
\end{aligned}
$$

3. For

$$
\alpha \geq \frac{x_{1}^{*}+x_{2}^{*}+x_{3}^{*}+x_{4}^{*}}{U}
$$

we obtain $v\left(U_{1}^{*}, U_{2}^{*}\right)=1$ for any U_{1} satisfying the condition

$$
\frac{x_{1}^{*}+x_{2}^{*}}{\alpha} \leq U_{1} \leq U-\frac{x_{3}^{*}+x_{4}^{*}}{\alpha} .
$$

For the numerical data $U=20, \alpha=0.5, x_{1}^{*}=2, x_{2}^{*}=3, x_{3}^{*}=3, x_{4}^{*}=4, d_{1}=d_{2}=1, d_{3}=d_{4}=2$ we obtain: $U_{1}^{*}=8 \frac{2}{3}, U_{2}^{*}=11 \frac{1}{3}, u_{1}^{*}=3 \frac{1}{3}, w_{2}^{*}=5 \frac{1}{3}, u_{3}^{*}=4 \frac{1}{3}, u_{4}^{*}=7$ and $v^{*}=\frac{2}{3}$, which means that the requirement $T \leq \alpha$ will be approximately satisfied with the certainty index $\frac{2}{3}$.

