
Raport Badawczy

Research Report
RB/68/2003

Partitioning schemes
for quicksort and quickselect

Krzysztof C. Kiwiel

Instytut Badań Systemowych
Polska Akademia Nauk

Systems Research Institute
Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badań Systemowych

ul. Newelska 6

O 1-44 7 Warszawa

tel.: (+48) (22) 8373578

fax: (+48) (22) 8372772

Kierownik Pracowni zgłaszający pracę :

Prof. dr hab. Krzysztof C. Kiwiel

Warszawa 2003

Partitioning schemes for quicksort and quickselect

Krzysztof C. Kiwiel*

December 20, 2003

Abstract

We introduce severa! modifications of the partitioning schemes used in Hoare's quick
sort and quickselect algorithms, including ternary schemes which identify keys less
or greater than the pivot. We give estimates for the numbers of swaps made by
each scheme. Our computational experiments indicate that ternary schemes a.llow
quickselect to identify a.li keys equa.l to the selected key at little a.dditiona.l cost.

Key words. Sorting, selection, quicksort, quickselect, partitioning.

1 Introduction

Hoare's quicksort [Hoa.62] and quickselect (originally called FINO) [Hoa61b] a.re among
the most widely used algorithms for sorting and selection. In our context, given an array
x[l: n] of n elements and a total order <, sorting means permuting the elements so that
X; '.S Xi+J for i = 1: n - 1, whereas for the simpler problem of selecting the kth smallest
element, the elements a.re permuted so that x, '.S Xk '.S Xj for 1 ::S i ::S k '.S j '.S n .
· Both algorithms choose a pivot element, say v, and partition the input into a left array
.i[l: a-1] ::Sv, a middle array x[a: b] = v, and a right array x[b+ 1: n]:::: v. Then quicksort
is called recursively on the left and right arrays, whereas quickselect is called on the left
array if k < a, or the right array if k > b; if a '.S k '.S b, selection is finished.

This paper introduces useful modifications of severa! partitioning schemes. First, we
show that after exchanging x1 with Xn when necessary, the classic scheme of Sedgewick
[Knu98, §5.2.2] no longer needs an artificial sentinel. Second, it turns out that a simple
rnodification of another popular scheme of Sedgewick [BeM93, Prog. 3] allows it to handle
equal keys rnore efficiently; both schemes take n or n+ 1 comparisons. Third, we describe
a scheme which makes just the n - l necessary comparisons, as well as the minimum
number of swaps when the elements are distinct. This should be contrasted with Lomuto's
scheme [BeM93, Prog. 2], [CLRS0l, §7.1], which takes n - l comparisons but up to n - l
swaps. Hence we analyze the average numbers of swaps made by the four schemes w hen the
elernents a.re distinct and in random order. The first three schemes take at most n/4 swaps
on average, whereas Lomuto's scheme takes up to n - 1. Further, for the pivot selected

•Systems Research Institute, Ncwelska 6, 01- 447 Warsaw, Poland (kiwiel©ibspan. waw . pl)

as the median of a sample of 2t + 1 elements, the first three schemes make asymptotically
n/6 swaps fort= O, n/5 fort= 1, etc. (cf. §3.3.1), while Lomuto's scheme takes (n-1)/2;
the swap counts are similar when the pivot is Tukey's ninther [BeM93, CHT02, Dur03].

When equal keys occur, one may prefer a ternary scheme which produces a left array
with keys < v and a right array with keys > v, instead of :<s: v and 2': v as cło binary schemes.
Here ortly the Bentley-Mcllroy schcme [BeM93] looks competitive, since Dijkstra's "Dutch
aational flag" scheme [Dij76, Chap. 14] and Wegner's schemes [Weg85] are more complex.
However, the four schemes cliscussed above also have attractive ternary versions. Our first
scheme omits pointer tests in its key comparison loops, keeping them as fast as possible.
Our second scheme improves on another scheme of Sedgewick [Sed98, Chap. 7, quicksort]
(which needn't produce true ternary partitions; cf. §5.2). Our third scheme is a simple
modification of the Bentley-Mcilroy scheme which makes n - l c01ńparisons; the original
version takes n - 1/2 on average (cf. Lem. 5.1), although n - l was assumed in [Dur03] .
Ternary versions of Lomuto's scheme seem to be less attractive. When many equal keys
occur, the Bentley-Mcilroy scheme tends to make fewer swaps than the other schemes,
but it may swap needlessly equal keys with themselves and its inner loops involve pointer
tests. Hence we introduce hybrid two-phase versions which eliminate vacuous swaps in the
first phase and pointer tests in the second phase.

Ternary schemes, although slower than their simpler binary counterparts, have at least
two aclvantages. First, quicksort's recursive calls aren't made on the equal keys isolated by
partitioning. Second, quickselect can iclentify all keys equal to the kth smallest by finding
two indices k_ :<s: k :<s: k+ such that x[l: k_ - l] < Xk = x[k_: k+J < x[k+ + l: n] on output.

Our fairly extensive computational tests with quickselect (we left quicksort for future
work) were quite suprising. First, the inclusion of pointer tests in the key comparison
loops didn't result in significant slowdowns; this is in sharp contrast with traditional
recommendations [Knu98, Ex. 5.2.2-24], [Sed78, p. 848], but agrees with the observation
of [BeM93] that Knuth's MIX cost model needn't be appropriate for modern machines.
Second, the overheads of ternary schemes relative to binary schemes were quite mild.
Third, Lomuto's binary scheme was hopeless when many equal keys occured, since its
running time may be quadratic in the number of keys equal to the kth smallest .

More information on theoretical and practical aspects of quicksort and quickselect can
be found in [BeS97, Grii99, HwT02, KMP97, MaROl, Mus97, Va!O0] and references therein.

The paper is organized as follows. The four bipartitioning schemes of interest are
described in §2 and their average-case analysis is given in §3. In §4 we present tuned
versions (cf. [MaR0l, §7]) for the case where the pivot is selected from a sample of severa!
clements. Tripartitioning schemes are discussed in §5. Finally, our computational results
are reported in §6.

2 Bipartitioning schemes

Each invocation of ąuicksort and ąuickselect deals with a subarray x[ł: r] of the input array
.1:[l: n]; abusing notation, we let n := r - l + l denote the size of the current subarray. It is
coavenient to assume that the pivot v := x1 is placed first (after a possible exchange with
aaother element). Each binary scheme given below partitions the array into three blocks,

2

with Xm ::; v for ł ::; m < a, Xm = v for a::; m::; b, Xm 2:: v for b < m::; r, l::; a::; b::; r.
We suppose that n> 1 (otherwise partitioning is trivia!: set a:= b := l).

2.1 Safeguarded binary partition

Our first modification of the classic scheme of Sedgewick [Knu98, §5.2.2, Algorithm Q]
proceeds as follows. After comparing the pivot v := x 1 to Xr to produce the initial setup

lx=vlx<vl? lx>vlx=v[
l p j q r

with ·i := l and j := r, we work with the three inner blocks of the array

l p i j q r

until the middle part is empty or just contains an element equal to the pivot

lx=vlx:-::::vlx=vlx2::vlx=vl
l p j q r

(2.1)

(2.2)

(2.3)

(i.e., j = i - 1 or j = i - 2) , then swap the ends into the middle for the fina! arrangement

lx:Svlx=vlx2::v[
l a b r

(2.4)

Scheme A (Safeguarded binary partition).

Al. [Initialize.] Set i:= ł , p :=i+ 1, j :=rand ą := j - 1. If v > XJ, e:Xchange x; +--> XJ

and set p := i; else if v < xJ, setą:= j.

A2. [Increase i until x; 2:: v.] Increase i by 1; then if x; < v, repeat this step.

A3. [Decrease j until Xj ::; v.] Decrease j by 1; then if Xj > v, repeat this step.

A4. [Exchange.] (Here XJ ::; v ::; x;.) If i < j, exchange x; <-> XJ and return to A2. If
i= j (so that X;= Xj = v), increase i by 1 and decrease j by 1.

A5. [Cleanup.] Set a:= l + j - p + 1 and b := r - q + i - 1. If ł < p, exchange x1 <-> Xj

If q < r, exchange Xi <-> x, ..

Step Al ensures that X; ::; v::; Xj, so steps A2 and A3 don't need to test whether i::; j.
In other words, while searching for a pair of elements to exchange, the previously sorted
data (initially, X1 ::; x,.) are used to bound the search, and the index values are compared
only when an exchange is to be made. This leads to a small amount of overshoot in the
search: in addition to the necessary n - 1 comparisons, scheme A makes two spurious.
comparisons or just one (when i = j + 1 or i = j at A4 respectively). Step A4 makes at
most n/2 index comparisons and at most n/2 - 1 swaps (since j - ·i decreases at least by 2
between swaps); thus Al and A4 make at most n/2 swaps. To avoid vacuous swaps, step

3

A5 may use the tests ł < rnin{p,j} and max{ą,i} < r; on the other hand, A5 could make
unconditional swaps without impairing (2.4).

Of course, scheme A could be described in other equivalent ways. For instance, Al and
A5 can be written in terms of binary variables i1 := p - l and ir := r - q; then A5 may
decrease j by 1 if i1 = 1 and increa.se i by 1 if ir = 1 to have a= j + I, b = i - I in (2.4).

A mare drastic simplification could swap Xt <-> Xr if v > Xr at Al, omit the second
instruction of A4, set a:= b := j at AS and swap xi <-> xi if xi = v, xi <-> Xr otherwise.

2.2 Single-index controlled binary partition

It is instructive to compare scheme A with a popular scheme of Sedgewick [BeM93, Progs.
3 and 4], basecl on the arrangernents (2.2)-(2.3) with p := ł + 1, q := r.

Scheme B (Single-index controlled binary partition).

Bł. [Initialize.] Set i := ł and j := r + 1.

B2. [Increase i until Xi 2: v.] Increase i by l; then if i '.S r and Xi < v, repeat this step.

B3. [Decrease j until xi :S v.] Decrease j by l; then if Xj > v, repeat this step.

B4. [Exchange.] (Here xi '.Sv '.S x;.) If i '.S j , exchange x; <-> Xj and return to B2.

B5. [Cleanup.] Exchange Xt <-> Xj-

The test i '.S r of step B2 is necessary when v is greater than the rernaining elernents. If
i = j at B4, a vacuous swap is followecl by one or two unnecessary cornparisons; hence B4
rnay be replaced by A4 to achieve the same effect at no extra cost. With this replacement,
scheme B rnakes n+ l comparisons or n if i =jor i= r + 1 at B4, and at most (n+ 1)/2
index comparisons and (n-1)/2 swaps at B4. Usually scherne Bis used as if a:= b :=jin
(2.4), but in fact B5 rnay set a:= j, b := i-1 (note that the finał arrangement of [BeM93,
p. 1252] is wrong when j = i - 2). Therefore, from now on, we assume that scheme B
·incorporates our suggested modifications of steps B4 and B5.

2.3 Double-index controlled binary partition

The following scheme compares both scanning indices i and j in their inner loops.

Scheme C (Double-index controlled binary partition).

Cl. [Initialize.] Set i := ł + 1 and j := r.

C2. [Increase i until X; 2: v.] If i '.S j and x; < v, increase i by 1 and repeat this step.

C3. [Decrease j until Xj '.S v.] If i < j and J;1 > v, decrease j by 1 and repcat this step.
If i 2: j, set j := i - 1 and go to CS.

C4. [Exchange.] Exchange X;<-> Xj , increase i by 1, decrease j by 1 and return to C2.

C5. [Cleanup.] Set a:= b := j. Exchange x1 <-> Xj-

Thanks to its tight index control, scheme C makes just n - I comparisons and at most
(n - 1)/2 swaps at C4. Suprisingly, we have not founcl this scheme in the literature.

4

2.4 Lomuto's binary partition

We naw consider Lomuto's partition [BeM93, Prog. 2], based on the arrangements

lvlx<vlx2vl?
l p i r

Scheme D (Lomuto's binary partition).

Dl. [Initialize.] Set i := l + 1 and p := l.

D2. [Check if clone.] If i> r, go to D4.

____, lvl:v<vlx2vl
l p r

(2.5)

D3. [Exchange if necessary.] If x, < v, increase p by 1 and exchange Xp <-> x,. Increase i
by 1 and return to D2.

D4. [Cleanup.] Set a := b := p. Exchange x1 <-> Xp.

At the first sight, scheme D Jooks good: it makes just the n - 1 necessary comparisons.
However, it can make up to n - 1 swaps (e.g., vacuous swaps when v is greater than the
remaining elements, or n - 2 nonvacuous swaps for x[ł: r] = [n - 1, n, l, 2, ... , n - 2]) .

2.5 Comparison of bipartitioning schemes

2.5.1 Swaps for distinct keys

When the elements are clistinct, we have strict inequalities in (2.2)- (2.5), j = i-1 in (2.3)
and a = b in (2.4). Distinguishing low keys Xm < v and high keys Xm > v, Jet t be the
number of high keys in the input subarray x[ł + 1: a]. Then schemes B and C make the
same sequence of t swaps to produce the arrangement

lvlx<vlx>vl
l a r

(2.6)

before the finał swap x1 <-> Xa, and their operation is described by the instruction: until
there are no high keys in x[l + 1: a], swap the leftmost high key in x[ł + 1: a] with the
rightmost low key in x[a + 1: r]. Thus schemes B and C make just the necessary t swaps.
Scheme A acts in the same way if Xr > v at Al. If Xr < v at Al, !et t1 be the number of
low keys in x[a: r]; in this low case, after the initial swap ~l <-> Xr, scheme A makes t1 - 1
swaps, each time exchanging the leftmost high key in x[ł + 1: a-1] with the rightmost low
key in x[a: r - 1], to procluce the arrangement

lx<vlx>vlvl
l a r

(2.7)

before the finał swap x,. <-> x, .. Since the number of low keys in x[a + 1: r] equals t, we have
t1 = t + 1 if x 0 < v, otherwise t1 = t. Thus, relative to schemes B and C, scheme A ma.kes
an extra swap when both x„ and :i;.,. are low. Note that schemes A, B and C never swap
the same key twice while producing the arrangements (2.6)- (2.7). In contrast, scheme D

5

may swap the same high key many times while proclucing the arrangement (2.6) (usually
different frorn that of B and C). In fact scheme D makes exactly t0 := a - l swaps; this is
the total number of low keys. Thus the number of extra swaps made by scheme D relative
to B and C, to - t, equals the number of low keys in the initial x[ł + 1: a].

2.5.2 Swaps for equal keys

When equal keys occur, schemes A, B and C perform similarly to Sedgewick's scheme of
[Sed77, Prog. l]; in particular, thanks to stopping the scanning pointers on keys equal to
the pivot, they tend to produce balanced partitions. For instance, when all the keys are
equal, we get the following partitions: for scheme A, a= l(ł+r-1)/2 J, b = a+l+(n mod 2)
after 1(n + 1)/21 swaps; for scheme B, a= 1(1 + r)/21, b =a+ 1- (n mod 2) after in/21
swaps; for scheme C, a = b = 1(1 + r)/21 after I n/21 swaps. In contrast, scheme D makes
no swaps, but yields a= b = l, the worst possible partition.

3 A verage-case analysis of bipartitioning schemes

In this section we assume that the keys to be partitioned are distinct and in random order;
sin ce the schemes depend only on the relative order of the keys, we may as well assume that
they are the first n positive integers in random order. For simplier notation, we suppose
that ł = 1 and r = n. It is easy to see that when the keys in x[l + 1: r] are in random
order, each scheme of §2 preserves mndomness in the sense of producing x[ł: a - l] and
,;[a+ 1: r] in which the low and high keys are in random order (since the relative orders of
the low keys and the high keys on input have no effect on the scheme).

3.1 Expected numbers of swaps for fixed pivot ranks

For a given pivot v := x 1 , Jet Jv denote the number of low keys in the array x[2:n]; then
'a= Jv + 1 is the rank of v. Once Jv is fixed at j (say), to compute the average number of
swaps made by each scheme, it's enough to assume that the keys in x[2: n] are in random
order; thus averages are taken over the (n - 1) ! distinct inputs. Our analysis hinges on the
following well-known fact (cf. [Chv02]).

Fact 3.1. Suppose an army :i;[[: f] contains ii := f - i+ 1 > O distinct keys, of which j
are low and ii - j are high. ff all the ii! permutations of the keys are equiprobable, then
j(n. - J)/ii is the avemge number of high keys in the first j positions.

Proof. List all the ii! key permutations as rows of an ii! x ii matrix. In each column,
each key appears (ii - l)! times, so the number of high keys in the first j columns is
j(fi - j)(ii - l)!; dividing by fi! gives the average number j(ii - j)/ii. O

Lemma 3.2. Snppose the number of low key equals j. Let T/, Tl, TP, TP denote the
n.vemge number·s of swaps made by sr;hemes A, B, C and D, exclmling the finał swaps.
Then

TA= j(n - 1 - j) n - 3 + _j_
1 n-1 n-2 n-1'

n 2': 3, (3. la)

6

TA= _j_
J n - 1 ' n= 2,

TB = Tc = j(n - 1 - j)
1 1 n-1 '

TP =f

(3.1 b)

(3.2)

(3.3)

Proof. By assumption, the arrangements (2.6)-(2.7) involve l = 1, a= j + 1, r = n. The
results follow from suitable choices of[, f, jin Fact 3.1.

For scheme A, assuming n 2: 3, Jet ł = 2, f = n - 1. Depending on whether Xn > v or
Xn < v, scheme A produces either (2.6) or (2.7) from the initial configurations

I V I I X> V I
1 a

or I V I I X< V I
n a n

(3.4)

For Xn > v, take j = j = a - 1; then the average number of high keys in x[2: a] (i.e., of
swaps) equals j(n - 2 - _j)/(n - 2). For Xn < v, take j = j - 1; in this case t, - 1, the
number of low keys in x[a: n - 1), equals the number of high keys in x[2: j), so the average
value of t1 equals (j- l)(n-1- j)/(n-2) + 1. Since there are j low keys and n-1- j high
keys which appear in random order, we have Xn > v with probability (n - 1 - j)/(n - 1)
and Xn < v with probability j/(n -1). Adding the contributions of these cases multiplied
by their probabilities yields (3.la). For n= 2, Al makes 1 swap if j = 1, O otherwise, so
(3.lb) holds.

For schemes B and C, take i= 2, f = n, j = j to get (3.2) in a similar way.
Since scheme D makes to := a - l = j swaps, (3.3) follows. D

To compare the average values (3.1)-(3.3), note that we have O :S j :Sn - 1,

A B j(j - l)
Tj = Tj + (n - l)(n - 2)

D A j+(n-3)j2
and Tj = Tj + ()() n-1 n-2

if n 2: 3, (3.5)

'TP= O and Tf =TP= j if n= 2. Thus TB :S Tf + 1 (with equality iff there areno high
keys), whereas TP is much greater than T/ when there are relatively many low keys.

3.2 Bounding expected numbers of swaps for arbitrary pivots

From now on we assume that the pivot is selected by an arbitrary rule for which (once the
pivot is swapped into x1 if necessary) each permutation of the remaining keys is equiprob
able. Let TA, TB, Tc, To denote the average numbers of swaps made by schemes A, B,
C and D, exclnding the finał swaps. Of course, these numbers depend on details of pivot
selection, but they can be bounded independently of such details. To this end we compute
the maxima of the average values (3.1)-(3.3).

Lemma 3.3. Let T,~ax, T,~ax, T,~ax, T,?iax denote the maxima of Tf, Tp, T?, Tp over
O :S j < n. Then

A _ 4 i n

T,nax - l

(n - 5)(n mod 2)
4(n - l)(n - 2)

7

if n 2: 5,

if n :S 4,

(3.6)

B c n - l (n + l) mod 2
T.11ax = Tma.x = -4- - 4(n - 1)

T,~ax = n-1.

(3.7)

(3.8)

Proof. The maximum of (3.1) is attained at j = I n/21 if n 2'. 4, j = n-1 otherwise. The
maximum of (3.2) is attained at j = l n/2 J. The rest follows by sim ple computations. O

Corollary 3.4. The avemge numbers of swaps TA, Ts, Tc, To made by schemes A, B,
C, O are at most T,~ax, T,~ax, T,~ax, T.?,ax for the values given in (3.6) - (3.8). In particular,
TA, Ts and Tc are at most n/4 for n > 3.

3.3 The case where pivots are chosen via sampling

3.3.1 Pivots with fixed sample ranks

We assurne that the pivot v is selected as the (p + l)th element in a sample of size s,
O s; p < s s; n. Thus p and q := s - l - p are the numbers of low and high keys in the
sample, respectively. Recall that v has rank Jv + l, where Jv is the total number of low
keys. We shall need the following two expected values for this selection:

Ejv = E(n, s,p) := (p + l)(n + 1)/(s + 1) - 1, (3.9)

E [jv(n-1-jv)] = T(n,s,p) := t+ liiq+ li (n+ l)(n+ 2) - _n__ (3.10)
n-1 s+l s+2 n-1 n-1

Here (3.9) follows from [FIR75, Eq. (10)] and (3.10) from the proof of [Ma.ROI, Lem. l].

Theorem 3.5. For E(n,s,p) and T(n,s,p) given by (3.9)-(3.10), the avemge numbers
of swaps TA, Ts, Tc, To made by schemes A, B, C, O are equal to, respectively,

rnax{n-3,0} 1
TA(n,s,p) = { 2 } T(n,s,p) + --1E(n,s,p),

max n - , l n -

Ts(n, s,p) = Tc(n, s,p) = T(n, s,p),

To(n, s, p) = E(n, s,p).

(3.11)

(3.12)

(3.13)

Proof. Take expectations of the averages (3.1)- (3.3) conditioned on Jv = j, and use
(3.9)-(3.10); the two "max" operations in (3.11) combine the cases of n= 2 and n 2'. 3. D

The average va.lues (3.11)- (3.13) may be compared as follows. First, in the classic case
of s = l (p = q = O), we have TA = n/6 if n 2'. 3 (else TA = 1/2), Ts = (n - 2)/6,
To = (n - 1)/2; thus scheme O rnakes about three times as many swaps as A, Band C.

Second, for nontrivial samples (s > 1) one may ask which choices of p are "good" or
"bad" with respect to swaps. For schemes B and C, the worst case occurs if p is chosen to
rnaximize (3.10) (where q + 1 = s - p); we obtain that for all Os; p < s ,

T(n s p) < 11:(s) (n+ l)(n + 2) - _n_ < n - 1 with 11:(s) := 4(ss++12)' (3.14)
' ' - n-1 n-1- 4

8

where the first inequality holds as equality only for the median-of-s choice of p = (s-1)/2,
and the second one iff s = n. Since TA s; Ts + l, (3.14) yields TA s; (n+ 3)/4, but we
alreacly know that TA s; n/4 (Cor. 3.4). For any median-of-s choice with a fixed s, TA
and Ts are asymptotically 1,;(s)n, whereas E(n,s,p) = (n - 1)/2; thus scheme D makes
about 1/21,;(s) > 2 times as many swaps as A, B and C (with 1,;(3) = 1/5, 1,;(5) = 3/14,
1,;(7) = 2/9, 1,;(9) = 5/22). On the other hand, for the extreme choices of p = O or p = s-1
which minimize (3.10) (then vis the smallest or largest key in the sample), Tt-.. and T8 arc
asymptotically ns/(s + l)(s + 2), whereas Tn is asymptotically n/(s + 1) for p = O and
ns/(s + 1) for p = s - 1. Thus scheme D can't improve upon A and B even for the choice
of p = O which minimizes (3.9).

3.3.2 Pivots with random sample ranks

Following the generał framework of [CHT02, §1], suppose the pivot vis selected by taking
a random sample of s elements, and choosing the (p + l)th element in this sample with
probability rrp, O S:: p < s, r:;;:b 7rp = 1. In other worcls, for Pv clenoting the number
of low keys in the sample, we have Pr[pv = p] = 7rp- Hence, by viewing (3.9)-(3.13) as
expectations conditioned on the event Pv = p, we may take total averages to get

Ejv = E [E(n, s,pv)] = E(n, s) := (Epv + l)(n + 1)/(s + 1) - 1,

E ---- = E[T(n,s,pv)] = T(n,s) := L rrpT(n,s,p), [jv(n - 1 - Jv)]

n - 1 O:c,7,<s

and the following extension of Theorem 3.5.

(3.15)

(3.16)

Theorem 3.6. For E(n,s) and T(n,s) given by (3.15)-(3.16), the average numbers of
swaps TA, Ts, Tc, Tn made by schemes A, B, C, D are equal to, respectively,

max{n - 3,0} 1
TA(n, s) = { 2 } T(n, s) + --E(n, s),

max n - , 1 n -1

Ts(n, s) = Tc(n, s) = T(n, s),

Tn(n,s) = E(n,s).

Note that in (3.15)-(3.16), we have Epv = Lo:c,p<s 1rpP S:: s - 1 and

(3.17)

(3.18)

(3.19)

_ (n+l)(n+2) n . . (p+l)(s-p)
T(n, s) = 1,;(s)~~~~ - -- w1th n;(s) := L rr1, ()(2), (3.20)

n - 1 n - 1 O:c,p<s s + 1 s +

where ii;(s) s; n;(s) (cf. (3.14)), and ii;(s) = n;(s) iff 7rp = 1 for p = (s - 1)/2. Thus again
TA and Ts are asymptotically ii;(s)n, wherea.s To can be much larger.

As an important example, we consider Tukey's ninther, the median of three elements
each of which is the median of three elements [BeM93]. Then s = 9 and 7rp = O except for
7r3 = rrs = 3/14, 1r4 = 3/7 [CHT02, Dur03], so E(n, 9) = (n - 1)/2 and ii;(9) = 86/385;:::,
0.223. Thus, when the ninther replaces the median-of-3, TA and To increase by about 12
percent, getting closer to n/4, whereas Tn stays at (n - 1)/2.

9

4 U sing sample elements as sentinels

The schernes of §2 can be tuned [l'viaROl, §7.2] when the pivot vis selected as the (p+ l)th
element in a sample of size s, assurning O :S: p < s :S: n and ą := s - 1 - p > O.

First, suppose the p sample keys :S: v are placed first, followed by v, and the remaining
<J sample keys 2'. v are placed at the end of the array x[ł: r]. Then, for [:= ł + p and
f' := r - q, we only need to partition the array x[ł: f'] of size fi := n - s + 1. The schemes
of §2 are modified as follows.

In step Al of scheme A, set i:= I and j := f' + 1; in step A5 set a:= j, b := i - 1 and
exchange x1 <--> XJ, This scheme makes fi+ 1 comparisons, or just fi if i = j at A4. The
same scheme results from scheme B by replacing ł, r with I, f, B4 with A4, and omitting
the test "i :S: r" in B2. Similarly, I, f' replace ł and r in schemes C and D, which make
ii, - 1 comparisons.

To extend the results of §3 to these modifications, note that for fi = 1 these schemes
make no swaps except for the finał ones. For fi > 1, schemes A, B and C swap the same
lccys, if any. Therefore, under the sole assumption that the keys in x[I + 1: r] are distinct
and in random order, Lemma 3.2 holds with (3.1)- (3.3) replaced by

and TF =j-p, (4.1)

nsing i= l + 1, f- = f, j = j - pin Fact 3.1; further, Lemma 3.3 and Corollary 3.4 hold with
n replaced by fi, (3.6) omittecl and T.~ax = T!ax in (3.7). Next, (3.9)-(3.10) are replaced
by

Ejv - p = E(n, s,p) := (p + l)(n - s)/(s + 1),

E [(jv - p)(n - 1 - ą - Jv)] = T(·) ·= (p + l)(q + 1) (_ _ l)
n-s n,s,p. (s+l)(s+2) n s , s<n,

(4.2)

(4.3)

where (4.3) is obtained similarly to (3.10) [MaROl, §7.2] . In view of (4.1)- (4.3), Theorem
·3.5 holds with E(n, s,p), T(n, s,p) replaced by E(n, s,p), T(n, s,p), (3.11) omitted and
TA(n,s,p) = Ts(n,s,p) in (3.12). Finally, (3.14) is replaced by

• n-s-1
T(n, s,p) :S: 11:(s)(n - s - 1) < 4

s+l
with 11:(s) := -(--),

4s+2

where the equality holds iff p = (s - 1)/2, in which case E(n, s,p) = (n - s)/2.

(4.4)

R.andomness may be lost when the sample keys are rearranged by pivot selection, but
it is prescrved for the median-of-3 selection with p = q = 1. Then the sample keys usually
arc X1, :t1+1, Xr (after exchanging x1+1 with the middle key Xl(l+r)/2J). Arranging the sample
according to Figure 4.1 takes 8/3 cornparisons and 7 /6 swaps on average for distinct keys.
(These counts hold if, for simpler coding, only the left subtree is usecl after exchanging
n<--> c when a> c; other trees [BeM93, Prog. 5] take 3/2 swaps for such simplifications.)

Even if pivot selection cloesn't rearrange the array (except for placing the pivot in x 1),

scheme A may be simplifiecl : in step Al , set i := l and j := r + 1; in step A5 set a:= j ,
IJ := -i - 1 and exchange x, <--> :i:J· The same scheme results from scheme B by replacing
B4 with A4, and omitting the test "i :S: ·r" in B2. This simplification is justified by the

10

Figure 4.1: Decision tree for median of three

presence of at least one key 2: v in i;[ł + 1: r], which stops the scanning index i. Hence the
results of §3 remain valid (with (3.1), (3.5), (3.6), (3.11), (3.17) omitted, Tt= rp in (3.2),
T.~ax = T.~ax in (3.7), TA(n , s,p) = Ts(n,s,p) in (3.12), TA(n,s) = Ts(n,s) in (3.18)).

5 Tripartitioning schemes

While bipartitioning schemes divide the input keys into :S v and 2: v, tripartitioning
schemes divide the keys into < v, = v and > v. We now give ternary versions of the
schemes of §2, using the following notation for vector swaps (cf. [BeM93]).

A vector swap denoted by x[a: b] <----> x[b+l: ej means that the first d := min(b+l-a, c-b)
elements of array x[a: c) are exchanged with its last d elements in arbitrary order if d > O;
e.g., we may exchange Xa+i <----> Xe-i for O :Si< d, or Xa+i <----> Xc-d+l+i for O :Si< d.

5.1 Safeguarded ternary partition

Our ternary version of scheme A employs the following "strict" analogs of (2.2)-(2.4):

lx>vlx=vl
l p i j q r

(5.1)

lx=vlx<vlx=vlx>vlx=vl
l p j q r

(5.2)

lx<vlx=vlx>vl
l a b r

(5.3)

Scheme E (Safeguarded ternary partition).

El. [Initialize.] Set i:= ł, p :=i+ 1, j :=rand ą := j - 1. If v > Xj , exchange X; <----> x1

and set p := i ; else if v < x1 , set q := j.

E2. [Increase ·i until x; 2: v.] Iucrease i by 1; then if x; < v, repeat this step.

E3. [Decrease j until XJ :Sv.] Decrease j by l; then if XJ > v, repeat this step.

11

E4. [Exchange.] (Here Xj :-:; v :-:; x;.) If i< j, exchange x; <-> xi; then if x; = v, exchange
X; <-> xv and increase p by 1; if Xj = v, exchange Xj <-> Xq and decrease q by 1; return
to E2. If i= j (so that X;= Xj = v), increase i by 1 and decrease j by 1.

E5. [Clcanup.] Set a := ł + j - p + 1 and b := r - q + i - 1. Exchange x[ł: p - 1] <-> x[p: j]
and :r[i: ą] <-> x[ą + 1: r].

Similarly to scheme A, scheme E makes n or n+ 1 key comparisons, and at most n/2
index comparisons at E4. Let n<, n=, n> denote the numbers of low, equal and high keys
(here .i - p + 1, b - a+ 1, q - i+ 1). Step E4 makes at most n/2 - 1 "usual" swaps
1:; <-> xJ, and n= - 1 or n= - 2 "equal" swaps when X; = v or Xj = v. Step E5 makes
min {p - l , n<} + min { r - q, n>} swaps; in particular, at most min {n=, n< + n>} swaps.

5.2 Single-index controlled ternary partition

Our ternary version of scheme B also employs the arrangernents (5.1)-(5.2).

Scheme F (Single-index controlled ternary partition).

Fl. [Initialize.] Set i := ł , p :=i+ 1, j := r + 1 and ą := j - 1.

F2. [Increase i until x, ~ v.] Increase i by 1; then if i :-:; r and x; < v, repeat this step.

F3. [Decrease j until Xj :-:; v.] Decrease j by 1; then if Xj > v, repeat this step.

F4. [Exchange.] (Here Xj :-:; v :-:; X;.) If i< j, exchange X;<-> xi; then if X;= v, exchange
x, <-> xl' and increase p by 1; if xi = v, exchange xi <-> Xq and decrease q by 1; return
to F2. If i= j (so that x; = xi = v), increase i by 1 and decrease j by 1.

F5. [Cleanup.] Set a := ł + j - p + l and b := r - q + i - 1. Exchange x[ł: p - 1] <-> x[p: j]
and x[i: ą] <-> x[q + 1: r] .

The comparison and swap counts of scheme F are similar to those of scheme E; in
particular, step F5 makes min {p - l , n<} + min { r - q, n>} swaps, where p - l + r - q = n=
or n= -1. In contra.st, a similar scherne of Sedgewick [Sed98, Chap. 7, quicksort] swaps all
the n= equal keys in its last step. More importantly, Sedgewick's scheme needn't produce
true ternary partitions (e.g., for x = [O, 1, O] and v = O, it doesn't change the array).

5.3 Double-index controlled ternary partition

We now present our modification of the ternary scheme of [BeM93], described also in
[BeS97, Prog. 1] and [Knu98, Ex. 5.2.2- 41]. It employs the loop invariant (5.1), and the
cross-over arrangement (5.2) with j = ·i - 1 for the swaps leading to the partition (5.3).

Scheme G (Double-index controlled ternary partition).

GL [Initialize.] Set i:= p := ł + 1 and j := q := r.

G2. [Increase i until x; > v.] If i :-:; j and x, < v, increa.se i by 1 and repeat this step. If
i :-:C:: .i and x; = v, exchange :cP <-> x;, increase JJ and i by 1, and repeat this step.

12

G3. [Decrease j untił Xj < v.] If i < j and Xj > v, decrease j by 1 and repeat this step.
If i < j and Xj = v, exchange Xj <--> Xq, decrease j and q by 1, and repeat this step.
If i 2'. j, set j := i - 1 and go to G5.

G4. [Exchange.] Exchange X;<--> Xj, increase i by 1, decrease j by 1, and return to G2.

G5. [Cłeanup.] Set a:= l + i - pand b := r - q + j. Swap x[l:p - 1] <--> x[p:j] and
x[i: ą] <--> x[q + 1: r].

Steps G2 and G3 make n= -1 swaps, step G4 at most min{n<, n>}::; (n-1)/2 swaps,
and step G5 takes min{p - ł, n<}+ rnin{r - q, n>} ::; min{n=, n<+ n>} swaps.

Scherne G rnakes n - 1 comparisons, whereas the versions of [BeM93, Progs. 6 and 7],
[BeS97, §5], [Knu98, Ex. 5.2.2- 41] make one spurious comparison when i = j at step G3.
These versions correspond to repłacing step G3 by

G3'. [Decrease j until Xj < v.] If i::; j and Xj > v, decrease j by 1 and repeat this step.
If i ::; j and Xj = v, exchange Xj <--> Xq, decrease j and q by 1, and repeat this step.
If i 2'. j, go to G5.

Except for making a spurious comparison when i= j, step G3' acts łike G3: If i= j,
then, since x; > v by G2 , they exit to G5 with j = i-1, whereas if i> j, then the generał
invariant i ::; j + 1 yiełds i= j + 1, and G3 maintains this equałity.

Lemma 5.1. Let c E {O, 1} be the number of spurious comparisons made by scheme G
using step G3' . ff the keys are distinct and in random order, then E[c[jv = j] = l-j/(n-1)
for O ::; j < n, and Ee = 1-Ejv / (n-1), where Jv is the number of keys < v. In partieular,
Ee= 1/2 when the pivot v is the median-of-s (for odd s 2'. 1) or the ninther (cf. §3.3); in
these cases scheme G with step G3' makes on average n - 1/2 comparisons.

Proof. For distinct keys, the finał i = a+ 1 and j = a at step G5. If e = 1, then i = j
.and x; > v at G3' yiełd i = a+ 1 ::; n and Xa+I > v. Converseły, suppose a < n and
Xa+I > v on input. If Xa+1 were compared to v first at G3' for j = a+ 1 > i, G3' woułd
set j = a and exit to G5 (since G4 woułd decrease j bełow a) with i ::; a, a contradiction;
hence Xa+I must be compared to v first at G2 for i= a+ 1 ::; j, and again at G3'. Thus
c = 1 iff a < n and Xa+I > v on input. Consequentły, for Jv := a - 1 = j < n - 1,
E[cljv = j] = Pr[xa+l > vljv = j) = (n -1- j)/(n - 1) since there aren - l - j high keys
in random order, and E[cljv = n - 1] = O; the rest is straighforward. O

5.4 Lomuto's ternary partition

Our ternary extension of scheme D empłoys the following "strict" version of (2.5):

j :~ =vlx<vlx>vl ?
--->

l p p i r

Scheme H (Lomuto's ternary partition).

Hl. [Initiałize.] Set i:= ł + 1 and p := j5 := l.

13

lx=vlx<vlx>vl
l P P r

(5.4)

H2. [Check if done.] If i> r, go to H4.

H3. [Exchange if necessary.] If X; < v, increase p by 1 and exchange Xp +---> X; . If X; = v,
increase j5 and p by 1 and exclrnuge x1, +---> :i:; and X;; +---> :1:p. Increase i by 1 and return
to H2.

H4. [Cleanup.] Set a:= l + p - j5 and b := p. Exchange x[ł: fi] +---> x[f5 + 1: p].

Scheme H makes n<+ 2(n; - 1) + min{n; , n<} swaps. Using the arrangements

lx<vlx=vlx>vl ?

l j5 p i r
lx<vlx=vlx>vl

l j5 p r
(5.5)

with obvious modifications, scheme H would make n; - l + 2n< swaps.

5.5 Comparison of binary and ternary schemes

When the keys are distinct, the binary schemes A, B, C, D are equivalent to their ternary
versions E, F, G, Hin the sense that respective pairs of schemes (e.g., A and E) produce
identical partitions, making the same sequences of comparisons and swaps. Hence our
results of §3 extend to the ternary schemes by replacing A, B, C, D with E, F, G, H,
respectively. Since the overheads of the ternary schemes are relatively small, consisting
mostly of additional tests for equal keys, the ternary schemes should run almost as fast as
their binary counterparts in the case of distinct keys.

Let us highlight some differences when equal keys occur. Although schemes A and E
stop the scanning pointers i and j on the same keys, step A4 simply swaps each key to
the other side, whereas step E4 additionally swaps equals to the ends. Schemes B and
F behave similarly. However, in contrast with scheme C, scheme G never swaps equals
to the other side. For instance, w hen all the keys are equal, scheme E makes L n/2 - 1 J
usual swaps and 2Ln/2 - lj vacuous swaps, scheme F makes l(n - l)/2J usual swaps and
'2 L (n - 1) /2 J vacuous swaps, scheme G makes just n - 1 vacuous swaps, and scheme H
makes 2(n - 1) vacuous swaps.

5.6 Preventing vacuous swaps of equal keys

Steps G2 and G3 of scheme G have two drawbacks: they make vacuous swaps when i = p
and j = q, and they need the tests "i ~ j" and "i < j". These drawbacks are eliminated
in the following two-phase scheme, which runs first a special version of scheme G that
docsn't make vacuous swaps until it finds two keys X; < v < Xj. Afterwards no vacuous
swaps occur (because p < i, j < q) and the pointer tests are unnecessary (since Xj > v
stops the i-loop, and x;_ 1 < v stops the j-loop).

Scheme I (Hybrid ternary partition).

Il. [Initialize.] Set i := l + l and j := q := r.

12. [Increase i until x; =I v.] If i ~ j and x; = v, increase i by 1 and repeat this step.
Set p := i. If i= j, set i:= j + l if x; < v , j := ·i - 1 otherwise. If i?: j , go to Il2.

14

13. [Decrease j until Xj fe v.] If i < j and Xj = v, decrease j by 1 and repeat this step.
Set q := j. If i= j , set i:= j + 1 if x, < v, j := i - 1 otherwise, and go to Il2.

14. [Decide which steps to skip.] If x, < v and Xj < v, go to I5. If x, > v and xi > v, go
to I6. If x, > v and xi < v, go to I7. If x, < v and Xj > v, go to IS.

15. [Increase i until x; > v.] Increase i by 1. If i < j and x, < v, repeat this step. If
i < j and x, = v, exchange x,, <--> x; , increase p by 1, and repeat this step. (At this
point, xi < v.) If i< j, go to I7. Set i:= j + 1 and go to Il2 .

16. [Decrease j until Xj < v.] Decrease j by 1. If i < j and xi > v, repeat this step. If
i < j and Xj = v, exchange Xj +-+ Xq, decrease q by 1, and repeat this step. (At this
point, x, > v.) If i= j, set j := i - 1 and go to 112.

17. [Exchange.] (At this point, i< j and Xi> v > Xj,) Exchange x, +-+ Xj·

18. [Enci of first stage.] (At this point, x; < v < Xj and p:::; i< j:::; q.)

19. [Increase i until X; > v.] Increase i by 1. If x, < v, repeat this step. If x; = v,
exchange Xp +-+ Xi, increase p by 1, and repeat this step.

110. [Decrease j until Xj < v.] Decrease j by 1. If xi > v, repeat this step. If Xj = v,
cxchange Xj +-+ Xą, clecrease q by 1, and repeat this step.

111. [Exchange.] If i< j, exchange x; +-+ Xj and return to 19.

112. [Cleanup.] Set a:= ł + i - pand b := r - q + j. Exchange x[l:p- l] +-+ x[p:j] and
x[i: ą] <-+ x[ą + 1: r].

Scheme I makes n + 1 comparisons, or just n - 1 if it finishes in the first stage before
reaching step 19. The two extraneous comparisons can be eliminated by keeping the
strategy of scheme G in the following modification.

Scheme J (Extended double-index controlled ternary partition) .
. Use scheme I with steps I8 through Ill replaced by the following steps.

18. [End of first stage.] Increase i by 1 and decrease j by 1.

19. [Increase i until x; > v.] If i :::; j and X; < v, increase i by 1 and repeat this step. If
i :::; j and x; = v, exchange x,, +-+ X;, increase pand i by 1, and repeat this step.

110. [Decrease j until Xj < v.] If i < j and xi > v, decrease j by 1 and repeat this step.
If i < j and Xj = v, exchange Xj <-+ Xq, decrease j and ą by 1, and repeat this step.
If i~ j, set j := i - 1 and go to 112.

111. [Exchange.] Exchange X; <-+ Xj, increase i by 1, decrease j by 1, and return to 19.

Schemes I and J are equivalent in the sense of producing identical partitions via the
same sequences of swaps. Further, barring vacuous swaps, scheme G is equivalent to
schemes I and Jin the following cases: (a) all keys a.re equal; (b) Xr fe v (e.g., the keys are
clistinct); (c) there is at least one high key > v. In the remaining degenerate case where
the keys aren't equal, x,. = v and there a.re no high keys, scheme G produces i= r+ 1 and
j = r on the first pass, whereas step 13 finds j < r, and either 13 or I5 produce i= j + 1
(i.e. , scheme G swaps r - j more eąual keys to the left enci).

15

I-
If the first stage of schemes I and J is implemented by amore straightforward adaptation

of scheme G, we obtain the following variants.

Scheme K (Alternative hybrid ternary partition).
Use scheme I with steps 12 through 16 replaced by the following steps.

12. [Increase i until x; c/ v.] If ·i :::; j and x; = v, increase i by 1 and repeat this step.
Set p := i. If i :::; j and x, < v, increase i by 1 and go to 13; otherwise go to 14.

13. [Increase i until X; > v.] If i :::; j and X; < v, increase i by 1 and repeat 'this step. If
i :::; j and Xi = v, exchange Xp <--> x;, increase pand i by 1, and repeat this step.

14. [Decrease j until xi i= v.] If i < j and xi = v , decrease j by 1 and repeat this step.
Set q := j. If i< j and Xj > v, decrease j by 1 and go to 15. If i< j and xi < v, go
to 17. Set j := i - 1 and go to Il2.

15. [Decrease j until .xi < v.] If i < j and Xj > v, decrease j by 1 and repeat this step.
If i < j and Xj = v, exchange xi <--> Xą, decrease j and ą by 1, and repeat this step.
If i 2'. j, set j := i - 1 and go to Il2.

Scheme L (Two-stage double-index controlled ternary partition).
Use scheme I with steps 12 through 16 replaced by steps 12 through 15 of scheme K, and
steps 18 through Ill replaced by steps 18 through 111 of scheme J.

In other words, scheme L is obtained from scheme G by using special versions of steps
G2 and G3 on the first pass, with each step split into two substeps to avoid vacuous swaps.

Except for avoiding vacuous swaps, schemes K and L are eąuivalent to scheme G.
Hence schemes G, I, J, K and L are eąuivalent except for the degenerate case discussed
after scheme J; in this case, schemes I and J swap fewer eąual keys than schemes K and L.
Another significant difference between schemes I and K is that scheme I may be ąuicker
in reaching the second stage where the tests "i :::; j" and "i < j" aren't needed. (In fact
scheme I reaches step 18 faster than scheme K iff Xi < v < xi occurs at step 14 of scheme
I; in the remaining three cases of 14 both schemes act eąuivalently.)

5.7 Using sample elements in tripartitioning

In parallel with §4, we now show how to tune the ternary schemes when the pivot v is
selected as the (p + l)th element in a sample of size s, assuming O :::; p < s ::; n and
q := s - 1 - p > o.

First, suppose that after pivot selection, we have the following arrangement:

lx<v lx=vl? lx=vlx>vl
l [p ą f r

(5.6)

with p := l + p + 1, ą := r - q; then we only need to partition the array x[p - 1: ą] of size
fi := n - s + 1. The ternary schemes are modified as follows.

In step El of scheme E, set i := p-1 and j := ą+ l; in step E5 replace I, r by[, f. The
same scheme results from scheme F after analogous changes and omitting the test "i :::; r"

16

Figure 5.1: Decision tree for median of three

in F2 . Similarly, in step Gł of scheme G, set i:= pand j := q; in step G5 replace ł, r by[,
f. Steps Il and Ill of schemes I through L are modified in the same way. Finally, in step
Hl of scheme H set i := p and p := p := i - 1; in step H2 replace r by q; in step H4 set
a :=I+ p- p, b := p- q +rand exchange x[l: p] ,_. x[p + 1: p] and x[p + 1: ą] ,_. x[ą + 1: r].

When the keys are distinct, we have I= l + fi, p = l + I and ą = r = r - ćJ. in (5.6), SO

that schemes E, F, G, Hare eąuivalent to schemes A, B, C, D as modified in §4 (where p,
q correspond to the current fi, ćJ.).

For the median-of-3 selection (fi= ćJ. = 1, p = l + 2, q = r - 1), we may rearrange the
sample keys x1, Xt+i, Xr and find I, f according to Figure 5.1. (For simplicity, as with Fig.
4.1, the left subtree may be used after exchanging a,_. c when a> c.)

As in §4, even if pivot selection doesn 't rearrange the array except for placing the pivot
in x1, scheme E may be simplified by replacing step El with step Fl; the same scheme is
obtained from scheme F by omitting the test "i :::; r" in F2.

6 Experimental results

'6.1 Implemented algorithms

We now sketch the algorithms used in our experiments, starting with a nonrecursive version
of ąuickselect that employs a random pivot and one of the ternary schemes of §5.

Algorithm 6.1 (QuICKSELECT(x, n, k) for selecting the kth smallest of x[l: n]).

Step 1 (Initialize) . Set ł := 1 and r := n.

Step 2 (Handle small file). If ł < r, go to Step 3. If ł > r, set k_ := r+ 1 and k+ := ł-1.
If ł = r, set k_ := k+ := k. Return.

Step 3 (Sclect pivot). Pick a random integer i E [ł,r], swap x, ,_. x; and set v := x,.

Step 4 (Partition). Partition the array x[ł: r] to produce the arrangement (5.3).

Step 5 (Update bo'Unds). If a:::; k, set l := b + l. If k:::; b, set r := a - l. Go to Step 2.

Steps 2 and 5 ensure that on exit :~ [1: k_ - 1] < x[k_: k+J < x[k+ + 1: n], k_ :::; k:::; k+·
The median-of-3 version works as follows. If ł = r - I at Step 2, we swap Xt ,_. Xr if

x1 > x,., set k_ := ł and k+ := r if Xt = Xr, k_ := k+ := k otherwise, and return. At

17

Step 3, we swap X1+1, Xr with random keys in x[ł + 1: r] and x[ł + 2: r], respectively. After
sorting the sample keys x,, X1+ 1 , x,. and finding I, f for (5.6) according to Fig. 5.1, we set
v := x1+1 · Then Step 4 uses one of the modified ternary schemes of §5.7.

When a binary scheme is employed, we omit k_ and k+, use Fig. 4.1 instead of Fig.
5.1, and the modified schemes of §4 with I:= ł + 1, f := r - 1 for the median-of-3.

Our implementations of QUICKSELECT were programmed in Fortran 77 and run on a
notebook PC (Pentium 4M 2 GHz, 768 MB RAM) under MS Windows XP. We used a
double precision input array x[l: n], in-line comparisons and swaps; future work should
test tuned comparison and swap functions for other data types (cf. [BeM93]).

6.2 Testing examples

We used minor modifications of the input sequences of [Va!O0], defined as follows:

random A random permutation of the integers 1 through n.

mod-m A random permutation of the sequence i mod m, i = 1: n, called binary (ternary,
quadrary, quintary) when m = 2 (3, 4, 5, respectively).

sorted The integers 1 through n in increasing order.

rotated A sorted sequence rotated left once; i.e., (2, 3, ... , n, 1).

organpipe The integers (1, 2, ... , n/2, n/2, ... , 2, 1).

m3killer Musser's "median-of-3 killer" sequence with n = 4j and k = n/2:

(1 2 3 4 . . . k - 2 k - l k k + 1 . . . 2k - 2 2k - 1 2k)
1 k + 1 3 k + 3 . . . 2k - 3 k - 1 2 4 . . . 2k - 2 2k - 1 2k .

twofaced Obtained by randomly permuting the elements of an m3killer sequence in po
sitions 4llog2 nj through n/2-1 and n/2 + 4llog2 nj -1 through n - 2.

For each input sequence, its (]ower) median element was selected for k := I n/2l
These input sequences were designed to test the performance of selection algorithms

under a range of conditions. In particular, the binary sequences represent inputs con
taining many duplicates [Sed77]. The rotated and organpipe sequences are difficult for
many implementations of quickselect. The m3killer and twofaced sequences are hard for
implementations with median-of-3 pivots (their original versions [Mus97] were modified to
become difficult when the middle element comes from position k instead of k + 1).

6.3 Computational results

We varied the input size n from 50,000 to 16,000,000. For the random, mod-m and twofaced
sequences, for each input size, 20 instances were randomly generated; for the deterministic
sequences, 20 runs were made to measure the solution time.

Table 6.1 summarizes the performance of four schemes used in Qu1c1<SELECT with
rnedian-of-3. The average, maximum and minimum solution times are in milliseconds (in

18

Table 6.1: Performance of schemes A, E, G, I with median-of-3.

Scheme Sequencc Sizc Time [111sec) Comparisons [n) Pnvg Sl\vg sl~Vg Savg

n avg 1uax min avg max min [lnn) [ni [ni [Cavg)
A random SM 252 360 170 2.59 3.96 1.78 1.64 0.55 0.00 0.21

16M 494 641 371 2.57 3.46 1.93 1.57 0.53 0.00 0.21
organ pipe BM 173 250 111 2.64 4.10 1.77 1.53 0.57 O.DO 0.22

lGM 355 460 270 2.61 3.49 1.94 1.62 0.60 0.00 0.23

binary 8M 254 271 250 2.73 2.92 2.68 1.86 1.00 O.OD 0.37
16M 506 521 500 2.70 2.79 2.68 1.87 1.00 0.00 0.37

ternary SM 246 321 171 2.44 3.27 1.75 1.33 0.82 O.OD 0.34
16M 452 620 360 2.22 3.11 1.75 1.29 0.76 0.00 0.34

quadrary SM 277 340 230 2.78 3.44 2.26 1.83 0.86 O.DO 0.31
16M 537 671 460 2.65 3.37 2.26 1.85 0.84 0.00 0.32

quintary SM 231 350 180 2.31 3.56 1.85 1.34 0.69 O.DO 0.30

lGM 486 671 330 2.44 3.49 1.67 1.36 0.71 0.00 0.29

E iandom SM 284 391 201 2.59 3.96 1.78 1.64 0.55 0.00 0.21

16M 550 711 411 2.57 3.46 1.93 1.57 0.53 0.00 0.21

organ pipe SM 232 321 120 2.73 5.27 1.84 1.54 0.57 O.OD 0.21
lGM 421 571 320 2.92 4.62 1.90 1.58 0.59 0.00 0.20

binary SM 205 231 170 1.28 1.50 1.00 0.10 1.41 0.61 1.11
lGM 381 471 350 1.13 1.50 1.00 0.08 1.19 0.46 1.06

ternary 8M 259 281 240 1.47 2.00 1.00 0.12 1.37 0.37 0.93
16M 505 590 480 1.37 2.00 1.00 0.10 1.25 0.28 0.91

quadrary SM 262 331 210 1.60 2.50 1.00 0.12 1.33 0.28 0.83

lGM 559 661 410 1.66 2.25 1.00 0.13 1.35 0.31 0.81

quintary SM 283 370 210 1.52 2.40 1.00 0.13 1.14 0.14 0.75
16M 582 731 420 1.55 2.40 1.00 0.14 1.13 0.14 0.73

G random SM 301 411 210 2.59 3.96 1.78 1.64 0.55 0.00 0.21

16M 587 761 430 2.57 3.46 1.93 1.57 0.53 0.00 0.21
organpipe SM 186 250 110 2.88 4.20 1.91 1.55 0.61 0.00 0.21

16M 378 511 270 2.77 3.93 1.97 1.59 0.59 0.00 0.21

binary SM 293 331 250 1.27 1.50 1.00 0.10 1.27 0.27 1.00
lGM 549 671 500 1.12 1.50 1.00 0.08 1.12 0.13 1.00

ternary SM 340 420 250 1.47 2.00 1.00 0.12 1.21 0.10 0.82

16M 646 811 501 1.53 2.00 1.00 0.11 1.26 0.10 0.82

quadrary SM 311 450 220 1.42 2.25 1.00 0.12 1.02 0.07 0.72

16M 665 972 440 1.55 2.50 1.00 0.13 1.13 0.09 0.73

quintary SM 319 451 220 1.47 2.00 1.00 0.13 0.96 0.07 0.65

16M 644 1021 440 1.61 2.80 1.00 0.13 0.97 0.04 0.60

random 8M 275 381 190 2.59 3.96 1.78 1.64 0.55 0.00 0.21

16M 536 681 391 2.57 3.46 1.93 1.57 0.53 0.00 0.21

organ pipe SM 183 240 110 2.88 4.20 1.91 1.55 0.61 O.OD 0.21
lGM 357 461 260 2.77 3.93 1.97 1.59 0.59 0.00 0.21

binary 8M 245 261 230 1.27 1.50 1.00 0.10 1.00 0.00 0.78
16M 500 530 480 1.12 1.50 1.00 0.08 1.00 0.00 0.89

ternary SM 323 391 230 1.47 2.00 1.00 0.12 1.11 0.00 0.76
16M 620 761 470 1.53 2.00 1.00 0.11 1.16 0.00 0.76

quadrary 8M 292 440 200 1.43 2.25 1.00 0.12 0.95 0.00 0.66
lGM 630 922 420 1.55 2.50 1.00 0.13 1.04 0.00 0.67

quintary SM 297 431 200 1.47 2.00 1.00 0.13 0.89 0.00 0.60
lGM G14 1042 411 1.61 2.80 1.00 0.13 0.93 0.00 0.58

19

generał, they grow linearly with n, and can't be measured accurately for small inputs;
hence only large inputs are included, with lM := lOu). The comparison counts are in
multiples of n; e.g., column seven gives C,wg/n, where Cavg is the average number of
comparisons made over all instances. Further, Pavg is the average number of partitions in
units of In n, Snvg and S~vg are the average numbers of all swaps and of vacuous swaps in
units of n, and the finał column gives the average number of swaps per comparison. Note
that for random inputs with distinct keys, quickselect with median-of-3 takes on average
2.75n + o(n) comparisons and 1f- ln n+ o(n) partitions [Grii99, KMP97], and thus about
0.55n swaps when there are 1/5 swaps per comparison; e.g., for schemes A, E and G.

For each scheme (and others not included in Tab. 6.1), the results for the twofaced and
m3killer inputs were similar to those for the random and organpipe inputs, respectively.
The sorted and rotated inputs were solved about twice faster than the random inputs.

Recall that in tuned versions, scheme B coincides with A and scheme F with E.
The run times of schemes C and J were similar to those of schemes A and I, respectively;

in other words, the inclusion of pointer tests in the key comparison loops didn't result in
significant slowdowns. Also their comparison and swap counts were similar.

Due to additional tests for equal keys, the ternary schemes were slower than their
binary counterparts on the inputs with distinct keys. Yet the slowdowns were quite mild
(e.g., about ten percent for scheme E vs. A) and could be considered a fair price for being
able to identify all keys equal to the selected one. On the inputs with multiple equal keys,
the numbers of comparisons made by the binary schemes A and C were sirnilar to those
made on the random inputs, but the numbers of swaps increased up to n. In contrast, the
ternary schemes E and G took significantly fewer comparisons and more swaps. Scheme E
produced the largest num bers of swaps, but was stili faster than schemes G and J, whereas
scheme J was noticeably faster than scherne G due to the elimination of vacuous swaps.

On the inputs with distinct keys, Lomuto's scheme D was about sixty percent slower
than scheme A, making about half as many swaps as comparisons (cf. §§3.3.1 and 4). On
the inputs with multiple equal keys, scheme D was really bad: once the current array

' x[ł: r] contains only keys equal to the kth smallest, each partition removes two keys, so
the running time may be quadratic in the number of equal keys. For instance, on a binary
input with k = n/2, at least n(n + 20)/16 - 2 comparisons are used (if the first v = 1, we
get ł = 1, r = k, and then ł increases by 2 while r = k; otherwise the cost is greater).

Our results were similar while us1ng the classic random pivot instead of the median-of-3.
Then, for random inputs with distinct keys, quickselect takes on average 2(1 +In 2)n+o(n)
comparisons [Knu98, Ex. 5.2.2-32], and thus about 0.564n swaps when there are 1/6 swaps
per comparison. Hence, not suprisingly, the running times and comparison counts on the
inputs with distinct keys increased by between 14 and 20 percent, but all the schemes had
essentially the same relative merits and drawbacks as in the rnedian-of-3 case above.

References
[BeM93] .J. L. Bentley and M. D. Mcllroy, Engineering a sort Junction, Softwarc- Practiceancl Experiencc

23 {1993) 1249-1265.

[Ben98] J. L. Bentley, Pmgramming Pearls, Aclclison-Wcslcy, Ilcacling, MA, 1998.

20

[BeS97] J. L. Bentley and R. Seclgewick, Fast algorithms for sorting and searching strings, in Proceecl
ings of the 8th Annual ACM-SIAM Symposium on Discrcte Algorithms (SODA'97), SIAM,
Philaclclphia, 1997, pp. 360-369.

[BFP+72] M. R. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivcst and R. E. Tarjan, Time bounds for
selection, J. Comput. System Sci. 7 (1972) 448-461.

[CHT02] H.-H. Chern, H.-K. Hwang and T.-H. Tsai, An asymptotic theory Jor Cauchy-Euler differential
equations with applications to the analysis of algorithms, J. Algorithms 44 (2002) 177-225.

[Chv02] V. Chvatal, Average-case analysis of quicksort, Lccturc notes, Dept. of Computcr Science,
Rutgers Univ., New Brnnswick, 2002.

[CLR90] T. H. Cormcn, C. E. Leisersou aud R. L. Rivcst, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1990.

[CLRS0l] T. H. Cormen, C. E. Lciserson, R. L. Rivcst and C. Stein, Introduction to Algorithms, second
cd., MIT Prcs.s, Cambridge, MA, 2001.

[Dij76]

[Dur03]

[F1R75]

[Grii99]

[Hoa61a]

[Hoa6lb]

[Hoa62]

[HwT02]

E. W. Oijkstra, A Discipline of Programming, Prentice-Hall, Englewoocl Clilfs, NJ, 1976.

M. Durancl, Asymptotic analysis of an optimized quicksort algorithm, Information Proc. Letters
85 (2003) 73-77.

R. W. Floyd and R. L. Rivcst, EX]Jected time bounds Jor selection, Comm. ACM 18 (1975)
165-172.

R. Griibel, On the median-of-k version of Hoare's selection algo7"ithm, Thcor. Inform. Appl.
33 (1999) 177- 192.

C. A. R. Hoare, Algorithm 63: PARTITION, Comm. ACM 4 (1961) 321-322.

---, Algorithm 65: FIND, Comm. ACM 4 (1961) 321-322.

--, Quicksort, Computer J. 5 (1962) 10-15.

H.-K. Hwang and T.-H. Tsai, Quickselect and Dickman Junction, Combinatorics, Probability
and Computing 11 (2002) 353- 371.

[KMP97) P. Kirschenhofer, C. Martinez and H. Prodinger, Analysis of Hoare's FIND algorithm with
median-of-three partition, Random Stucturcs and Algorithms 10 (1997) 143-156.

[Knu97]

,[Knu98]

[MaR0l]

[Mus97]

[Prc00]

[Scc177]

[Sed78]

[Secl98]

[Va!O0]

[Wcg85]

O. E. Knuth, The Art of Computer Programming. Volume I: Fundamental Algorithms, thircl
cel., Aclclison-Wesley, Reading, MA, 1997.

---, The Art of Computer Programming. Volume 111: Sorting and SeaT'ching, second ecl.,
Aclclison-Wcslcy, Reading, MA, 1998.

C. Martfnez and S. Roura, Optima/ sampling strategies in quicksort and quickselect, SIAM J.
Comput. 31 (2001) 683-705.

O. R. Musser, Introspective sorting and selection algorithms, Software-Practice and Experience
27 (1997) 983-993.

B. R. Preiss, Data Stmctures and Algorithms with Object-Oriented Design Patterns in Java,
.John Wiley & Sons, Chichester, 2000.

R. Seclgewick, Quicksort with equal keys, SIAM J. Comput. 6 (1977) 240-287.

---, lmplementing quicksort programs, Comm. ACM 21 (1978) 847-857.

___ , Algorithms in C++, Pa,·ts 1-4: Fundamentals, Data Structure, Sorting, Searching,
thircl ecl., Aclclison-Wesley, Reading, MA, 1998.

J. O. Valois, Introspective sorting and selection revisited, Softwarc--Practice and Experience 30
(2000) 617-638.

L. M. Wegner, Quickso1't Jor cqnal keys, IEEE TI·ans. Computers C-34 (1985) 362-367.

21

