
Raport Badawczy

Research Report
RB/80/2002

Randomized Selection
with Tripartitioning

K.C. Kiwiel

lnstytut Badan Systemowych
Polska Akademia Nauk

Systems Research Institute
Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badan Systemowych

ul. Newelska 6

01-44 7 Warszawa

tel. : (+48) (22) 8373578

fax : (+48) (22) 8372772

Kierownik Pracowni zglaszajc1ccy prac~:
Prof. dr hab . inz. Krzysztof C. Kiwiel

Warszawa 2002

Randomized selection with tripartitioning

Krzysztof C. Kiwiel*

December 15, 2002

Abstract

We show that several versions of Floyd and Rivest's algorithm SELECT [Comm.
ACM 18 (1975) 173] for finding the kth smallest of n elements require at most
n + min{k, n - k} + o(n) comparisons on average, even when equal elements occur.
This parallels our recent analysis of another variant due to Floyd and Rivest [Comm.
ACM 18 (1975) 165- 172] . Our computational results suggest that both variants
perform well in practice, and may compete with other selection methods, such as
Hoare's FIND or quickselect with median-of-three partitioning.

Key words. Selection, medians, partitioning, computational complexity.

1 Introduction

The selection problem is defined as follows: Given a set X := {xig'=1 of n elements, a
total order< on X, and an integer 1::; k::; n, find the kth smallest element of X, i.e., an
element x of X for which there are at most k - I elements x; < x and at least k elements
Xj ::; X. The median of X is the f n/2lth smallest element of X .

Selection is one of the fundamental problems in computer science; see, e.g., the refer
ences in [DHUZOl, DoZ99, DoZ0l] and [Knu98, §5.3.3]. Most references concentrate on
the number of comparisons between pairs of elements made in selection algorithms. In the
worst case, selection needs at least (2 + f)n comparisons [DoZ0l], whereas the algorithm
of [BFP+72] makes at most 5.43n, that of [SPP76] needs 3n + o(n), and that in [DoZ99]
takes 2.95n + o(n) . In the average case, fork ::; f n/21, at least n + k - 0(1) comparisons
are necessary [CuM89], whereas the best upper bound is n + k + O(n112 In112 n) [Knu98,
Eq. (5.3.3.16)]. The classical algorithm FIND of [Hoa61], also known as quickselect, has
an upper bound of 3.39n + o(n) fork= f n/21 in the average case [Knu98, Ex. 5.2.2- 32],
which improves to 2.75n + o(n) for median-of-three partitioning [Grii99, KMP97].

In practice FIND is most popular. One reason is that the algorithms of [BFP+72,
SPP76] are much slower on the average [Mus97, Val00], whereas [KMP97] adds that other
methods proposed so far, although better than FIND in theory, are not practical because
they are difficult to implement, their constant factors and hidden lower order terms are

•Systems Rc,;earch Institute, Ncwclska 6, 01 - 447 Warsaw, Poland {kiwiell!libspan. waw .pl)

too large, etc. It is quite suprising that these references [KMP97, Mus97, ValO0] ignore
the algorithm SELECT of [FlR75b], since most textbooks mention that SELECT is asymp
totically faster than FIND. In contrast, this paper shows that SELECT can compete with
FIND in both theory and practice, even for moderate values of the input size n.

We now outline our contributions in more detail. The initial two versions of SELECT
[FlR75b] had gaps in their analysis (cf. [Bro76, PRKT83], [Knu98, Ex. 5.3.3- 241); the first
version was validated in [Kiw02], and the second one will be addressed elsewhere. This
paper deals with the third version of SELECT from [FlR75a], which operates as follows.
Using a small random sample, it finds an element v almost sure to be just above the kth
if k < n/2, or below the kth if k 2': n/2. Partitioning X about v leaves min{k,n - k} +
o(n) elements on average for the next recursive call, in which k is near 1 or n with high
probability, so this second call eliminates almost all the remaining elements.

Apparently this version of SELECT has not been analyzed in the literature, even in
the ca.5e of distinct elements. We first revise it slightly to simplify our analysis. Then,
without assuming that the elements are distinct, we show that SELECT needs at must
n+ min{ k, n - k} + O(n213 ln113 n) comparisons on average, with ln113 n replaced by ln112 n
for the original samples of [FlR75a]. Thus the average cost of SELECT reaches the lower
bounds of 1.5n + o(n) for median selection and 1.25n + o(n) for selecting an element of
random rank. For the latter task, FIND has the bound 2n + o(n) when its pivot is set to
the median of a random sample of s elements, withs-, oo, s/n-, oo as n-, oo [MaR0lj;
thus SELECT improves upon FIND mostly by using k, the rank of the element to be found,
for selecting the pivot v in each recursive call.

In principle, SELECT can be implemented like FIND by using any well-known bipar
titioning scheme [Sed77] (an enhancement of the scheme of [FlR75a] is given in §6.3).
However, such schemes can perform quite poorly when equal elements occur, in which
case the ternary scheme of [BeM93, BeS97] may be preferred. This scheme works rather
well in practice, but we present a faster ternary scheme that obviates subscript range
checking. Our scheme is only slightly slower than binary schemes when the elements are
distinct; it thus combines reliability and efficiency. We add that the implementation of
[FlR75a], like several popular implementations of FIND, avoids random number generation
by assuming that the input file is in random order, but this results in poor performance on
some inputs of [ValO0]; hence our implementation of SELECT employs random sampling.

Our computational experience shows that SELECT outperforms even quite sophisticated
implementations of FIND in both comparison counts and computing times. To save space,
only selected results are reported for the version of [Val00], but our experience with other
versions on many different inputs was similar. SELECT turned out to be more stable than
FIND, having much smaller variations of solution times and numbers of comparisons. Quite
suprisingly, contrary to the folklore saying that SELECT is only asymptotically faster than
FIND, SELECT makes significantly fewer comparisons even for small inputs.

To relate our results with those of [Kiw02], let's call QSELECT the quintary method
of [Kiw02] stemming from [FIR75b, §2.1]. QSELECT eliminates almost all elements 011 its
first call by using two pivots, almost sure to be just below and above the kth element,
in a quintary partitioning scheme. Thus most work occurs on the first call of QSELECT,
which corresponds to the first two calls of SELECT. Hence SELECT and QSELECT share

2

the same efficiency estimates, and in practice make similarly many comparisons. However,
QSELECT tends to be slightly faster on median finding: although its quintary scheme is
more complex, most of its work is spent on the first pass through X, whereas SELECT first
partitions X and then the remaining part (about half) of X on its second call to achieve a
similar problem reduction. On the other hand, SELECT makes fewer comparisons on small
inputs. Of course, future work should assess more fully the relative merits of SELECT and
QSELECT. For now, the tests reported in [Kiw02] and in §7 suggest that both SELECT
and QSELECT can compete successfully with refined implementations of FIND [Yal00] .

The paper is organized as follows. A general version of SELECT is introduced in §2,
and its basic features are analyzed in §3. The average performance of SELECT is studied in
§4. A modification that improves practical performance is introduced in §5. Partitioning
schemes are discussed in §6. Finally, our computational results are reported in §7.

Our notation is fairly standard. !Al denotes the cardinality of a set A. In a given
probability space, Pis the probability measure, Eis the mean-value operator and P[-1£] is
the probability conditioned on an event £; the complement of£ is denoted by £'.

2 The algorithm SELECT

In this section we describe a general version of SELECT in terms of two auxiliary functions
s(n) and g(n) (the sample size and rank gap), which will be chosen later. We omit their
arguments in general, as no confusion can arise.

Algorithm 2.1.
SELECT(X,k) (Selects the kth smallest element of X, with 1 S k Sn:= !XI)

Step 1 (Initiation). If n = I, return x 1• Choose the sample sizes Sn- I and gap g > 0.

Step 2 (Sample selection). Pick randomly a sample S := {y1, ... , y.} from X.

Step 3 (Pivot selection). Let v be the output of SELECT(S, iv), where

i ·={min{rks/n+gl,s} ifk<n/2,
v· max{rks/n-gl,l} ifk"2.n/2.

(2.1)

Step 4 (Partitioning). By comparing each element x of X \ S to v, partition X into the
three sets L := {x EX: x < v}, E := {x EX: x = v} and U := {x EX: v < x}.

Step 5 (Stopping test). If ILi < k S IL U El, return v.

Step 6 (Reduction). If k S ILi, set Jc := L, n := IXI and k := k; else set Jc := U,
fl := !XI and k := k - IL U El.
Step 7 (Recursion) . Return SELECT(X, k).

A few remarks on the algorithm are in order.

Remarks 2.2. (a) The correctness and finiteness of SELECT stem by induction from the
following observations. The returns of Steps 1 and 5 deliver the desired element. At Step

3

6, X and k are chosen so that the kth smallest element of X is the kth smallest element
of .f'<, and ii< n (since v </. X). Also ISi < n for the recursive call at Step 3.

(b) When Step 5 returns v, SELECT may also return information about the positions
of the elements of X relative to v. For instance, if X is stored as an array, its k smallest
elements may be placed first via interchanges at Step 4 (cf. §6). Hence Step 4 need only
cornpare v with the elements of X \ S.

(c) The following elementary property is needed in §4. Let c,, denote the maximum
number of comparisons taken by SELECT on any input of size n. Since Step 3 makes at
most c., comparisons with s < n, Step 4 needs at most n - s, and Step 7 takes at most c;,
with ii < n, by induction c,. < oo for all n.

3 Sampling deviations

In this section we analyze general features of sampling used by SELECT. Our analysis
hinges on the following bound on the tail of the hypergeometric distribution established
in [Hoe63] and rederived shortly in [Chv79] .

Fact 3.1. Let s balls be chosen uniformly at random from a set of n balls, of which r
are red, and r' be the random variable representing the number of red balls draum. Let
p := r /n. Then

P [r' 2 ps + g] S e-2921• Vg 2: 0. (3.1)

Denote by xj S ... S x~ and yj S .. . S y; the sorted elements of the input set X and
the sample set S, respectively, so that v = Ylv· The following result will give bounds on
the position of v in the sorted input sequence.

Lemma 3.2. Suppose i" := max{l, min{fKsl,s)}, J1 := max{f Kn - gn/sl, 1}, and Jr:=
min{f Kn+ gn/sl,n}, where -g < KS S s + g, 1 S s Sn and g 2 0. Then:

(a) P[y; < xj,] S e-292/• if 1 2: r KS 1.
(b) P[x;r < v;] s e-292/• if i" s r KS 1-

Proof. Note that -g < KS S s + g implies that J1 S n and Jr 2 1 are well-defined.
(a) If y; < xj,, at least f samples satisfy y; S x;, where r := maxx;<xj, j. In the

setting of Fact 3.1, we have r red elements x; s x;, ps = rs/n and r' 2 f. Now,
1 Sr S J1 -1 implies 2 S Ji= r Kn-gn/sl < Kn-gn/s+ 1, so -rs/n > -Ks+g. Hence
'i - ps - g > Ks - Ks+ g - g = 0, i.e., r' > ps + g. Thus P[y; < xj,] s e-292/.• by (3.1).

(b) If xjr < y;, s - f + 1 samples are at least xj+ 1 with J := maxx; =xjr j. Thus we have
r : = n - J red elements x; 2 xj+ 1, ps = s - Js / n and r' 2 s - f + 1. Since f < KS + 1 and
n > J 2 Jr 2 Kn+ gn/ s, we gets - f + 1 - ps - g > Js/n - KS - g 2 KS+ g - Ks - g = 0.
Hence r' > ps + g and P[xjr < y;] S P[r' 2: ps + g] S e-292/• by (3.1). D

We now bound the position of v relative to xi., xt,, and xZ,, where

kt:= max{ rk- 2gn/sl, 1} and kr := min{ rk + 2gn/sl,n}. (3.2)

4

Table 4.1: Sample size f(n) := n213 Jn 113 n and relative sample size </!(n) := f(n)/n.

" J(n)
</>(n)

190.449 972.953
.190449 .097295

105 106 5 · 106

4864.76 23995.0 72287.1
.048648 .023995 .014557

117248
.011725

5 · 107

353885
.007078

Corollary 3.3. (a) P[v < xi:] :::,; e-292/• if iv = f ks/n + g 1 and k < n/2.
(b) P[xt < v] :::,; e-29'!• if k < n/2.
(c) P[xi: < v] :::,; e-292/• if iv= f ks/n - g 1 and k ~ n/2.
(d) P[v < xi:,] :::,; e-292/• if k ~ n/2 .

568986
.005690

(e) If k < n/2, then iv f fks/n + g 1 iff n < k + gn/ s; similarly, if k ~ n/2, then
iv /c fks/n - 97 iff k:::,; gn/s.

Proof. Use Lem. 3.2 with KS= ks/n + g for (a,b), and KS= ks/n - g for (c,d). D

4 Average case performance

In this section we analyze the average performance of SELECT for various sample sizes.

4.1 Floyd-Rivest's samples

For positive constants a and /3, consider choosing s = s(n) and g = g(n) as

s := min{fa/(n)l,n-1} and g := (,Bslnn) 1l2 with f(n) := n213 Jn113 n . (4.1)

This form of g gives a probability bound e-292!• = n-2/3 for Car. 3.3. To get more feeling,
suppose a = /3 = 1 and s = f(n). Let </!(n) := f(n)/n . Then s/n = g/ s = </!(n) and it
will be seen that the recursive call reduces n at least by the factor 4</!(n) on average, i.e.,
</!(n) is a contraction factor; note that <f!(n) ,;::;j 2.4% for n = 106 (cf. Tab. 4.1).

Theorem 4.1. Let C,.k denote the expected number of comparisons made by SELECT for
s and g chosen as in (4.1) with f3 ~ 1/6. There exists a positive constant 'Y such that

C,.k :::,; n + min{ k, n - k} + 7/(n) 1/1 :::,; k:::,; n. (4.2)

Proof. We need a few preliminary facts. The function <f!(t) := f(t)/t = (In t/t) 113 de-
creases to O on [e,oo), whereas f(t) grows to infinity on [2,oo). Let fl:= 4(,B/a) 112 . Pick
fl ~ 3 large enough so that e - 1 :::,; a/(fl) :::,; fl - 1 and e :::,; 8/(fl). Let a := a+ 1/ /(fl) .
Then, by (4.1) and the monotonicity off and¢, we have for n ~ fl

s:::,; af(n) and f(s):::,; a<f!(af(fl))f(n),

f(lflf(n)J) :::,; f(flf(n)):::,; fl</!(flf(fl))f(n) .

5

(4.3)

(4.4)

For instance, the first inequality of (4.3) yields f(s) :S f(iif(n)), whereas

f(iif(n)) = ii</i(iif(n))f(n) :S ii</>(iif(n))f(n).

Also for n 2'. n, we haves = faf(n)l = af(n) + E with f E [0, 1) in (4.1). Writing
s = af(n) with er:= a+ E/ f(n) E [a, ii), we deduce from (4.1) that

gn/s = (/3/cr)1/2 f(n) :S (/3/a)1/2 f(n) .

In particular, 4gn/s :S 8f(n), since 8 := 4(/3/a) 112. Next, (4.1) implies

ne-292/s :S nl - 2/J = J(n)nl/3-2/Jln-l/3n.

Using the monotonicity of f and </>, increase n if necessary to get for all n 2'. n

(4.5)

(4.6)

2ii</>(iif(n)) + 8</>(8J(n)) + 2n-2/J + 2 max { [8J(n)]213- 2/Jn-2!3 , n-2/J} :S 0.95. (4.7)

By Rem. 2.2(c), there is I such that (4.2) holds for all n :S n; increasing I if necessary,
and using the monotonicity off and the assumption /3 2'. 1/6, we have for all n 2'. fi

2ii + 28 + 5n1/ 3- 2/J 111-1/ 3 n + 3 max { 81- 2/J f(n)- 2/J, n 1/ 3- 2/J 111-1/ 3 n} :S 0.051 . (4.8)

Let n' 2'. n. Assuming (4.2) holds for all n :Sn', for induction let n = n' + l.
We need to consider the following two cases in the first call of SELECT.
Left case: k < n/2. First, suppose the event c, := { xk :S v :S xt} occurs. By the rules

of Steps 4- 6, we have X = L (from xz :S v), k = k and n := IXI :S k, - 1 (from v :S xt);
since kr < k + 2gn/s + 1 by (3.2), we get the two (equivalent) bounds

n<k+2gn/s and n-k<2gn/s. (4.9)

Note that if iv = fks/n + g l then, by Cor. 3.3(a,b), the Boole-Benferroni inequality
and the choice (4.1), the complement c[of c1 has P[c[] :S 2e-292/• = 2n-2/J. Second, if
iv# fks/n+ g l, then n < k + gn/s (Car. 3.3(e)) combined with k < n/2 gives n < 2gn/s;
hence f,,- k < n < n < 2gn/s implies (4.9). Since also c1 implies (4.9), we have

P[A;] :S 2n-2/J for A1 := { f,, - k < 2gn/s} . (4.10)

R·ight case: k 2'. n/2. First, suppose the event Cr := {xZ, :S v :S xn occurs. By the

rules of Steps 4- 6, we have X = U (from v :S xk), n - k = n - k and ft := I.XI :S n - k1
(from xi,, :S v); since k1 2'. k - 2gn/s by (3.2), we get the two (equivalent) bounds

f,, :S n - k + 2gn/ s and k :S 2gn/ s, (4.11)

using n - k = n - k. If iv= fks/n - gl then, by Cor. 3.3(c,d), the complement c; of Cr
has P[c:.J :S 2e-292/• = 2n-2/J . Second, if i., # fks/n - gl, then k :S gn/s (Cor. 3.3(e))
combined with k 2'. n/2 gives n :S 2gn/s; hence k :Sf,,< n :S 2gn/s implies (4.11). Thus

P[A~] :S 2n- 2/J for A,. := { k :S 2gn/s}.

6

(4.12)

Since k < n - kif k < n/2, n - k:::; kif k 2'. n/2, (4.9) and (4.11) yield

P[B']:::; 2n-2P for B := {ii:::; min{ k,n- k} + 2gn/s}. (4.13)

Note that min { k, n - k} :::; l n/2 J :::; n/2; this relation will be used implicitly below.
For the recursive call of Step 7, let s, g and z. denote the quantities generated as in

(4.1) and (2.1) with n and k replaced by ii and k, Jet v be the pivot found at Step 3, and
let X, n and k correspond to X, ii and k at Step 7, so that n := IXI < ii.

The cost of selecting v and 'II at Step 3 may be estimated as

C,;. + C;;;.:::; 1.5s + 7/(s) + 1.5s + 7/(s):::; 3s + 27/(s), (4.14)

since f is increasing and (4.2) holds for s:::; s:::; n - 1 = n' (cf. (4.1)) from ii< n.
Let c := n - s and e := ii - s denote the costs of Step 4 for the two calls. Since

O:::; e < n and Ee= E[eJB]P[B] + E[elB']P[B']:::; E[eJB] + nP[B'], by (4.13) we have

c +Ee:::; n - s + min{ k, n - k} + 2gn/s + 2n1- 2P.

Using (4.2) again with n < n, the cost of finishing up at Step 7 is at most

EC,-,k:::; E [1.5n + 7/(n)] = l.5En + 7E/(n).

Thus we need suitable bounds for En and E/(n), which may be derived as follows.
To generalize (4.13) to the recursive call, consider the events

(4.15)

(4.16)

.B:={n:::;min{k,n-k}+2[Jn/s} and C:={n:::; l8/(n)J}. (4.17)

By (4.10) and (4.12), .B n A 1 and .B n Ar imply C, since 2gn/s + 2gn/s:::; 8/(n) by (4.5)
with ii< n and 8 := 4(/3/0)112. For the recursive call, proceeding as in the derivation of
(4.13) with n replaced by ii= i, k by k, etc., shows that, due to random sampling,

P[.B'IA1, ii = i] :::; 2i-2/3 and P[.B'IA., ii = i] :::; 2i- 2/3.

In the left case of k < n/2, using n < n and P[A;J :::; 2n-2P (cf. (4 .10)), we get

En= E[nlAi]P[Ai] + E[nlA;JP[A;J :::; E[nlAz] + n2n-2P.

(4.18)

Partitioning A1 into the events 'D; := A1 n {ii= i}, i = 0: n - 1 (n < n always), we have

n-1

E[iilAd = I: E[nl'D;]P[VdAd :::; . max E[nl'D;],
i=O i=0:u-1

where E[nl'D;] :::; l8/(n)J if i:::; l8/(n)J + 1, because ii< ii always. As for the remaining
terms, BnA, CC implies P[C'l'D;] :::; P[.B'l'D;] :::; 2i-2/3 by (4.18), where C := {ii.:::; l8/(n)J}
and it< ii= i when the event V, occms, so E[nl'D;] :::; l8/(n)J + i2i-2/3 . Hence

max E[nl'D;]:::; l8/(n)J + max 2i1- 2P,
i=O:n-1 i=[6/(n)J+2:n-l

7

where the final term is omitted if L.5/(n)J > n - 3; otherwise it is at most

since maxi=LJ/(n)J+1,n 2i1- 2P is bounded as above (consider /3 2: 1/2, then /3 < 1/2 and use
8/(n) < L.5/(n)J + 1, the monotonicity off and (4.6) for the final inequality) . Collecting
the preceding estimates, we obtain

En ::; L 8/(n)J + 2n1- 2P + 2 max { .s1- 2P f(n)- 2P, n 1!3- 2P ln- 1/ 3 n} /(n) . (4.19)

Similarly, replacing ft by /(ii) in our derivations and using the monotonicity of/ yields

E/(ii)::; /(l.5/(n)J) + 2/(n)n-2P +. max 2/(i)C2P,
•=[Jf(n)J+2,n-l

where the final term is omitted if L.5/(n)J > n - 3; otherwise it is at most

2max { /(l.5/(n)J + 1) f(n)} < 2max { [.5/(n)J2/3-2Pn- 2/3 n-2p} f(n)
(l.5/(n)J + 1)2P' n2P - ' ·

To see this, use the monotonicity of/ and the fact that for i::; n (cf. (4.1)}

/(i)i-2p/ f(n) = i2/3-2Pn-2/3(ln i/ In n}t/3 :'.S i2/3-2Pn-2/3 .

(4.20a)

(4.20b)

For the right case, replace Ai by Ar in the preceding paragraph to get (4.19)- (4.20).
Add the costs (4.14), (4.15) and (4.16), using (4.19)- (4.20), to get

C.,k :'.S 3s + 21/(s) + n - s + min{ k,n - k} + 2gn/s + 2n1- 2P

+ 1.5L.5/(n)J + 3n1- 2fJ + 3 max { .s1- 2P J(n)- 2P, n1!3- 2P ln- 1/ 3 n} f(n)

+ 1 /(l.5/(n)J) + 21 /(n)n-2P + 21 max { [.5/ (n)] 213- 2Pn-2!3 , n-2P} f(n).

Now, using the bounds (4.3)- (4.4), 2gn/s::; ½8/(n) (cf. (4.5)) and (4.6) gives

C.,k :'.Sn+ min{ k, n - k}

+ [2a + 28 +5n1!3- 2P1n- 1l 3 n + 3max{ .51- 2P f(nt 2P,nl/3- 2P1n-1!3 n}]!(n)

+ [2acf>(a/(ii)} + 8¢(8/(n)) + 2n-2P + 2 max { [8/(n)]213- 2Pn-2!3, n-2P}] ,f(n) .

By (4.7)- (4.8), the two bracketed terms above are at most 0.051 /(n) and 0.951 /(n),
respectively; thus (4.2) holds as required. D

4.2 Other sampling strategies

We now indicate briefly how to adapt the proof of Thm 4.1 to several variations on (4.1);
a choice similar to (4.21) below was used in [Flll75a].

8

Remarks 4.2. (a) Theorem 4.1 remains true for /3 2 1/6 and (4.1) replaced by

s := min {f an2/ 3l , n - 1}, g := (/3s In n) 1l 2 and f(n) := n213 Jn112 n. (4.21)

Indeed, using e3l 2 - 1 ~ an2l 3 ~ n - 1, e3l 2 ~ of(n), a:= a+ n-2l 3 and s = iin2l 3 with
ii E [a, a) yields (4.3)- (4.5) as before, and 111-112 replaces 111-1l3 in (4.6), (4.8) and (4.19) .

(b) Theorem 4.1 holds for the following modification of (4 .1) with fl> 1

s := min {f af (n)l, n - 1} and g := (/3s In'' n) 112 with f(n) := n2/ 3 ln',/3 n. (4.22)

First, using e'' - 1 ~ af(n) ~ n - 1 and e'' ~ of(n) gives (4.3)- (4.5) as before. Next,
fix [3 2 1/6. Let /311 := /3111'1- 1 n. Increase n if necessary so that /3; 2 [3 for all i 2
min{n, r of(n)l}; then replace /3 by [3 and ln-113 by ln-•,/3 in (4.6) and below.

(c) Several other replacements for (4.1) may be analyzed as in [Kiw02, §§4.1- 4.2].
(cl) None of these choices gives f(n) better than that in (4.1) for the bound (4.2) .

We now comment briefly on the possible use of sampling with replacement.

Remarks 4.3. (a) Suppose Step 2 of SELECT employs sampling with replacement. Since
the tail bound (3.1) remais valid for the binomial distribution [Chv79, Hoe63], Lemma
3.2 is not affected. However, when Step 4 no longer skips comparisons with the elements
of S, -sin (4.15) is replaced by O; the resulting change in the bound on Cnk only needs
replacing 2a in (4.8) by 3a. Hence the preceding results remain valid.

(b) Of course, sampling with replacement needs additional storage for S. However,
the increase in both storage and the number of comparisons may be tolerated because the
sample sizes are relatively small.

4.3 Handling small subfiles

Since the sampling efficiency decreases when X shrinks, consider the following modifica
tion. For a fixed cut-off parameter n eut 2 1, let sSelect(X, k) be a "small-select" routine
that finds the kth smallest element of X in at most Ceut < oo comparisons when !XI ~ n eut

(even bubble sort will do). Then SELECT is modified to start with the following

Step O (Small file case). If n := !XI ~ neut, return sSelect(X, k).
Our preceding results remain valid for this modification. In fact it suffices if Ccut

bounds the expected number of comparisons of sSelect(X, k) for n ~ neut· For instance,
(4.2) holds for n ~ neut and 'Y 2 Ceut, and by induction as in Rem. 2.2(c) we have C,.k < oo
for all n, which suffices for the proof of Thm 4.1.

Another advantage is that even small neut (1000 say) limits nicely the stack space for
recursion. Specifically, the tail recursion of Step 7 is easily eliminated (set X := X, k := k
and go to Step 0), and the calls of Step 3 deal with subsets whose sizes quickly reach neut ·

For example, for the choice of (4.1) with a = 1 and neut = 600, at most four recursive
levels occur for n ~ 231 :::::: 2.15 • 109 .

9

5 A modified version

We now consider a modification inspired by a remark of [Bro76] . For k close to r n/21, by
symmetry it is best to choose v as the sample median with iv = rs /21 , thus attempting
to get v close to xi. instead of xfk-gn/•l or xfk+gn/•l; then more elements are eliminated.
Hence we may let

iv:= l rks/n+gl ifk<n/2-gn/s,
r s/21 if n/2 - gn/ s ::; k ::; n/2 + gn/ s,
fks/n - gl if k > n/2 + gn/s.

(5.1)

Note that (5.1) coincides with (2.1) in the left case of k < n/2 - gn/s and the right ca.5e
of k > n/2 + gn/s , but the middle case of n/2 - gn/s ::; k ::; n/2 + gn/s fixes iv at the
median position r s/21; in fact i,, is the median of the three values in (5.1) :

iv:= max { min (rks/n + gl, r s/21)' rks/n - gl} . (5.2)

Corollary 3.3 remains valid for the left and right cases. For the middle case, letting

ji:=max{rn/2-gn/sl,1} and ir:=min{rn/2+gn/sl,n}, (5.3)

we obtain from Lemma 3.2 with 1,, = 1/2 the following complement of Corollary 3.3.

Corollary 5.1. P[v < xj,) ::; e-292/• and P[xj. < v) ::; e-292/• if n/2 - gn/s ::; k ::;
n/2 + gn/s.

Theorem 5.2. Theorem 4.1 holds for SELECT with Step 3 using (5.1).

Proof. We only indicate how to adapt the proof of Thm 4.1 following (4.8) . As noted
after (5.1), the left case now has k < n/2 - gn/ s and the right case has k > n/2 + gn/s,
so we only need to discuss the middle case.

Middle case: n/2- gn/s::; k::; n/2 + gn/s. Suppose the event Em := {xj,::; v::; xjJ
occurs (note that P[£:,.J ::; 2e-292/• = 211-2/J by Cor. 5.1). If X = L then, by the rules of
Steps 4- 6, we have k = k and ii ::; ir - l; since ir < n/2 + gn/s + 1 by (5.3), we get
ii< n/2 + gn/s. Hence k 2: n/2 - gn/s yields ii< k + 2gn/s and ii - k < 2gn/s as in
(4.9) . Next, if X = U then ii - k = n - k and k := k - IL U El, so LUE= {x E X :
x::; v} 3 xj, gives k::; k- j 1• Since k::; n/2 + gn/s and j1 2: n/2 - gn/s by (5.3), we get

k::; 2gn/s and ii::; ii- k + 2gn/s as in (4.11); further, ii::; n -j1 yields ii::; n/2 + gn/s .
Noticing that n/2 - gn/ s ::; k ::; n/2 + gn/ s implies n/2 ::; min { k, n - k} + gn/ s, we have
it ::; min{ k, n - k} + 2gn/ s in both cases.

Thus in the middle case we again have (4.13) and hence (4.15) ; further, by (4.10) and
(4.12), the event£,,. C A1 U Ar is partitioned into£,,. n A1 and£,,. n A; n Ar.

Next, reasoning as before, we see that (4.18) and hence (4.19)- (4.20) remain valid in
the left and right cases, whereas in the middle case we have

P[B'I£,,., A1, ii= i) ::; 2i-2/J and P[B'I£,,., A;, Ar, ii = i) ::; 2i-2/J . (5.4)

10

In the middle case, En = E[filEm]P[fm] + E[nlt::.,]P[E:.,J is bounded by E[iilEm] + 2n1- 211 ,

since P[E:,.] $ 2n-211 and ii < n always. Next, partitioning E111 into E,,, n A1 and Em n
A1 n A,, we obtain E[iilE,..] $ max{E[nlf,,., Ail, E[nlf,,., A1, Ar]}, where E[nlE,,., At] and
E[nlf,.., A1, Ar] may be bounded like E[nlAt] and E[nlAr] in the left and right cases to get
(4.19). Then (4.20) is obtained similarly, and the conclusion follows as before. 0

6 Ternary and binary partitioning

In this section we discuss ways of implementing SELECT when the input set is given as an
array x[l: n] . In particular, we recall the ternary partitioning scheme of [BeM93, BeS97]
and its modification of [Kiw02] that obviates subscript range checking.

The following notation is needed to describe the operations of SELECT in more detail.
Each stage works with a segment x[l: r] of the input array x[l: n], where 1 $ l $ r $ n

are such that X; < x1 for i = 1: l - l, Xr < X; for i = r + 1: n, and the kth smallest
element of x[l: n] is the (k - l + l)th smallest element of x[l: r]. The task of SELECT is
extended: given x[l: r] and l $ k $ r, SELECT(x, l, r, k, k_, k+) permutes x[l: r] and finds
l $ k_ $ k $ k+ $ r such that x; < Xk for all l $ i < k_, x; = Xk for all k_ $ i $ k+,
x; > Xk for all k+ < i $ r . The initial call is SELECT(x, 1, n, k, k_, k+)-

A vector swap denoted by x[a: b] +-> x[b+l: c] means that the first d := min(b+l-a, c-b)
elements of array x[a: c] are exchanged with its last d elements in arbitrary order if d > O;
e.g., we may exchange Xa+i +-> Xc-i for O $ i < d, or Xa+i +-> Xc-d+l+i for O $ i < d.

6.1 Ternary partitions

For a given pivot v := Xk from the array x[l: r], the following ternary scheme partitions
the array into three blocks, with Xm < v for I $ m < a, x111 = v for a $ m $ b, Xm > v for
b < m $ r. The basic idea is to work with the five inner parts of the array

lx<vlx=vlx<vl ? lx>vlx=vlx>vl
l l p ij q r r

until the middle part is empty or just contains an element equal to the pivot

lx=vlx<vlx=vlx>vlx=vl
l p j q r

(6.1)

(6.2)

(i.e., j = i - 1 or j = i - 2), then swap the ends into the middle for the final arrangement

lx<vlx=vlx>vl
l a b r

(6.3)

Al. [Initialize.] Set v := Xk and exchange :c1....., Xk· Seti := l := l, JI:= l + 1, j := f := r,
q := r - 1. If v < x,, set f := r - 1. If v > :er, exchange Xt +-> Xr and set I:= l + l.

A2. [Increase i until x; 2:: v.] Increase i by 1; then if x; < v, repeat this step.

11

A3. [Decrease j until xi .S v.] Decrease j by 1; then if xi > v, repeat this step.

A4. [Exchange.] (Here Xj .S v .S x;.) If i < j, exchange x; xi; then if x; = v, exchange
x; xv and increase p by 1; if xi = v, exchange xi Xq and decrease q by 1; return
to A2. If i = j (so that X; =xi= v), increase i by 1 and decrease j by 1.

A5. [Cleanup.] Exchange x[L:p - 1] x[p:j] and x[i:q] x[q + 1:f]. Finally, set
a := l + j - p + I and b := f - q + i - 1.

Step Al ensures that xi .S v .S Xr, so steps A2 and A3 don't need to test whether i .S j.
However, this scheme involves two extraneous comparisons (only one when i = j at A4}.
Consider, therefore, the following scheme of [BeM93, BeS97] and [Knu97, Ex. 5.2.2-41],
also based on the arrangements (6.1)-(6.3) with I:= l, f :=rand final j = i - 1.

Bl. [Initialize.] Set V := Xk and exchange X/ <-> Xk- Set i := p := l + I, r := l and
j := q := f := r.

B2. [Increase i until x; > v.] If i .S j and x; < v, increase ·i by 1 and repeat this step, If
i .S j and x; = v, exchange x1, <-> x;, increase p and i by 1, and repeat this step.

B3. [Decrease j until xi < v.] If i .S j and xi > v, decrease j by 1 and repeat this step,
If i .S j and xi = v, exchange xi <-> Xq, decrease j and q by 1, and repeat this step,

B4. [Exchange.] If i .S j, exchange x; <-> xi, increase i by 1, decrease j by 1, and return
to B2.

B5. [Cleanup.] Swap x[I: p-1] <-> x[p: j] and x[i: q] <-> x[q + 1: r]. Finally, set a := l +i- p
and b := f - q + j.

Relative to scheme A, scheme B saves one or two v-comparisons at the expense of r - l + 2
comparisons of i vs. j. Since for usual choices of neut, we haver - l » 2 in SELECT and
relatively few small partitions in sSelect, scheme A is faster than B unless the cost of key
comparisons is extremely large,

6.2 Preparing for ternary partitions

At Step 1, r - l + 1 replaces n in findings and g, At Step 2, it is convenient to place the
sample in the initial part of x[I: r] by exchanging x; <-> X;+rand(r-i) for I.Si.Sr,:= l+s-1,
where rand(r - i} denotes a random integer, uniformly distributed between O and r - i.

Step 3 uses i := k- l + 1 and m := r -l + 1 instead of k and n to find the pivot position

k ·= {min{fl-l+is/m+gl,r,} ifi<m/2,
v• max{fl-l+is/m-gl,l} ifi:C::m/2,

so that the recursive call of SELECT(x, I, r., ku, k;;, k;;) produces v := Xk.·

After v has been found, our array looks as follows

lx<vl :c=v lx>vl? I
l k,-; k;; r, r

12

(6.4)

(6.5}

Setting [:= k;;, p := k"/; + l, f := r - r, + k"/; and q := f, we swap x[p: r,] <-+ x[r, + 1: r]; if
k"/; = r., we exchange xkt <-+ Xq and decrease p and q by l. This yields the arrangement
of (6.1), so we may use either scheme A of §6.1 with initial i := p - l, j := q +land step
Al omitted, or scheme B with i := p, j := q and step Bl omitted.

After partitioning l and r are updated by setting l := b + 1 if a ::; k, r := a - 1 if k ::; b.
If l 2-: r, SELECT may return k_ := k+ :=kif l = r, k_ := r + 1 and k+ := l - l if l > r.
Otherwise, instead of calling SELECT recursively, Step 6 may jump back to Step 1, or to
Step O if sSelect is used (cf. §4.3).

A simple version of sSelect is obtained if Steps 2 and 3 choose v := i ;k when r - l + 1 ::;
neut {this choice of [FlR75a] works well in practice, but more sophisticated pivots could be
tried); then the ternary partitioning code can be used by sSelect as well.

6.3 Binary partitions

We now consider a binary version of SELECT, called BSELECT, which employs less refined
but potentially faster partitioning. This version works with x[l: r] such that x, ::; x, for
i = 1: I - 1, x, ::; x, for i = r + 1: n, and its task is standard: given x[l: r] and I ::; k ::; r,
BSELECT{x, l, r, k) permutes x[I: r] so that x, ::; Xk for all I ::; i < k, and Xk ::; x, for all
k < i ::; r; the initial call is nSELECT(x, 1, n, k).

For a given pivot v := Xk from the array x[I: r], the following binary scheme partitions
the array into three blocks, with Xm ::; v for l ::; m < a, Xm = v for a ::; m ::; b, v ::; x,,. for
b < m ::; r; usually a = b and the middle block is singleton.

Cl. [Initialize.] Set v := Xk and exchange x, <-+ Xk- Seti := p := l and j := r. If v > Xr,

exchange x;, +-> x, and set p := r. (Thus x, ::; v = x;,::; x, always.)

C2. [Increase i until x, 2-: v.] Increase i by 1; then if x, < v, repeat this step.

C3. [Decrease j until xi ::; v.] Decrease j by 1; then if x; > v, repeat this step.

C4. [Exchange.] (Here Xj ::; v ::; x,.) If i < j, exchange x, <-+ xi and return to C2. If
i = j (so that x, = x; = v), increase i by 1 and decrease j by 1.

C5. [Cleanup.] If pi= r, exchange x;, <-+ x;, set a := j and b := i - 1; otherwise exchange
x, <-+ x;,, set a:= j + 1 and b := i.

The setup of §6.2 changes as follows. Step 3 calls BSELECT(x, l, r8 , kv) to find v := Xkv;

then (6.5) changes to
lx<vj v jx>vj? I

l kv r8 r
(6.6)

Setting i := p := k. and j := r - r, + kv, we swap x[i + 1: r,] <-+ x[r, + 1: r - 1]. If v > Xr,

we exchange x1; <-+ Xr and set p := r. Then we may use scheme C {with Cl omitted) for
updating l and r, also in sSelect as in §6.2.

The inner loops of schemes A and C (i.e., A2, A3, C2, C3) coincide, whereas C4 is like
A4 without its equality tests and associated updates. When equal elements are absent .
scheme C (although not equivalent to A) yields correct partitions for Step 4. When equal

13

elements occur, its partitions needn't meet the requirements of Step 4, but are still usable,
because r-l shrinks. In effect, BSELECT works like SELECT in the case of distinct elements,
but may require more comparisons otherwise.

7 Experimental results

7.1 Implemented algorithms

An implementation of SELECT was programmed in Fortran 77 and run on a notebook
PC (Pentium II 400 MHz, 256 MB RAM) under MS Windows 98. The input set X was
specified as a double precision array. For efficiency, the recursion was removed and small
arrays with n ::; neut were handled as if Steps 2 and 3 chose v := xk; the resulting version
of sSelect (cf. §§4.3 and 6.2) typically required less than 3.5n comparisons. The choice of
(4.21) was employed, with the parameters a= 0.5, /3 = 0.25 and neut = 600 as proposed
in [FIR75a]; future work should test other sample sizes and parameters.

A similar implementation of BSELECT was programmed as described in §6.3.

7.2 Testing examples

As in [Kiw02], we used minor modifications of the input sequences of [Va!O0]:

random A random permutation of the integers 1 through n.

onezero A random permutation of r n/21 ones and L n/2 J zeroes.

sorted The integers 1 through n in increasing order.

rotated A sorted sequence rotated left once; i.e., (2, 3, ... , n, 1).

organpipe The integers 1 through n/2 in increasing order, followed by n/2 through 1 in
decreasing order.

m3killer Musser's "median-of-3 killer" sequence with n = 4j and k = n/2:

(1 2 3 4 . . . k - 2 k - 1 k k + 1 . . . 2k - 2 2k - 1 2k)
I k + I 3 k + 3 . . . 2k - 3 k - 1 2 4 . . . 2k - 2 2k - 1 2k .

twofaced Obtained by randomly permuting the elements of an m3killer sequence in po
sitions 4llog2 nJ through n/2 - 1 and n/2 + 4llog2 nJ - 1 through n - 2.

For each input sequence, its (lower) median element was found.

14

Table 7.1: Performance of SELECT on randomly generated inputs.

Sequence Size Time [sec] Comparisons [nj 'Ynvg Lnvg Pnvg Nnvg Pavg Savg

It avg max min avg max min [n] [Inn] [lnnj [%n]
random 50K 0.01 0.06 0.01 1.67 1.76 1.60 1.88 1.67 0.45 0.55 8.03 2.63

lOOK 0.02 0.06 0.01 1.62 1.67 1.58 1.68 1.62 0.61 0.69 7.81 2.12
500K 0.06 0.11 0.05 1.56 1.63 1.53 1.41 1.56 0.67 0.75 8.45 1.19

lM 0.13 0.17 0.11 1.55 1.59 1.53 1.23 1.55 0.70 0.77 8.38 0.92
2M 0.23 0.28 0.22 1.54 1.57 1.52 1.19 1.54 0.77 0.84 8.48 0.72
4M 0.47 0.50 0.44 1.53 1.55 1.52 1.13 1.53 0.86 0.92 8.35 0.57
8M 0.91 0.99 0.82 1.52 1.54 1.51 1.05 1.52 0.88 0.94 8.27 0.44

16M 1.82 1.93 1.70 1.52 1.53 1.51 1.11 1.52 O.!J4 1.00 8.33 0.35
onczcro 50K 0.01 0.05 0.01 1.33 1.51 1.00 0.00 1.33 0.24 0.18 1.23 1.99

1001(0.01 0.06 0.01 1.10 1.51 1.00 0.00 1.10 0.21 0.16 1.22 1.27
500K 0.08 0.11 0.05 1.25 1.50 1.00 0.00 1.25 0.26 0.14 1.24 0.86

lM 0.16 0.22 0.11 1.20 1.50 1.00 0.00 1.20 0.23 0.13 1.23 0.65
2M 0.33 0.39 0.22 1.30 1.50 I.DO 0.00 1.30 0.26 0.14 1.19 0.56
4M 0.62 0.72 0.4!) 1.25 1.50 1.00 0.00 1.25 0.22 0.12 1.24 0.43
8M 1.24 1.48 0.99 1.25 1.50 1.00 0.00 1.25 0.22 0.12 1.28 0.34

16M 2.62 2.97 2.03 1.33 1.50 1.00 0.00 1.33 0.22 0.12 1.12 0.29
twofaccd 50K 0.01 0.06 0.01 1.67 1.79 1.60 1.93 1.67 0.4!J 0.58 8.21 2.66

lOOK 0.02 0.06 0.01 1.62 1.67 1.56 1.58 1.62 0.5!J 0.68 7.15 2.10
5001(0.06 0.11 0.05 1.57 1.60 1.54 1.51 1.57 0.67 0.75 8.52 1.20

lM 0.12 0.17 0.11 1.55 1.59 1.53 1.36 1.55 0.72 0.80 8.55 0.93
2M 0.24 0.28 0.21 1.53 1.55 1.52 1.04 1.53 0.72 0.79 8.52 0.72
4M 0.45 0.50 0.44 1.53 1.55 1.51 1.06 1.53 0.82 0.88 8.29 0.56
8M 0.92 0.99 0.87 1.52 1.54 1.51 1.03 1.52 0.86 0.92 8.50 0.44

16M 1.81 1.93 1.71 1.52 1.53 1.51 1.08 1.52 0.95 1.00 8.43 0.35

7.3 Computational results

We varied the input size n from 50,000 to 16,000,000. For the random, onezero and
twofaced sequences, for each input size, 20 instances were randomly generated; for the
deterministic sequences, five runs were made to measure the solution time.

The performance of SELECT on randomly generated inputs is summarized in Table
7.1, where the average, maximum and minimum solution times are in seconds, and the
comparison counts are in multiples of n; e.g., column six gives Cavg/ n, where Cavg is the
average number of comparisons made over all instances. Thus 'Yavg := (Cavg - l.5n)+/ J(n)
estimates the constant 'Yin the bound (4.2); moreover, we have Cavg ~ Lavg, where Lavg
is the average sum of sizes of partitioned arrays. Further, Pavg is the average number of
SELECT partitions, whereas Navg is the average number of calls to sSelect and Pavg is the
average number of sSelect partitions per call; both Pavg and Navg grow slowly with Inn
(linearly on the onezero inputs). Finally, Savg is the average sum of sample sizes; Savg/n213

drops from 0.97 for n = 50K to 0.88 for n = 16M on the random and twofacecl inputs,
and oscillates about 0.7 on the onezero inputs, whereas the initial s/n2/ 3 ~ a = 0.5.
The results for the random and twofaced sequences are very similar: the average solution
times grow linearly with n (except for small inputs whose solution times couldn't be

15

Table 7.2: Performance of SELECT on deterministic inputs.

Sequence Size Time [sec] Comparisons 'Yavg Lavy. Pavg Nv.vg Pavg Savg

n avg max min [n) [n) [Inn) [Inn) [%n)
sorted 501(0.02 0.06 O.Dl 1.76 2.92 1.76 0.55 0.65 6.43 2.88

1001(0.02 0.06 O.Dl 1.73 3.11 1.73 0.69 0.78 6.44 2.33
500K 0.06 0.06 0.06 1.56 1.35 1.56 0.69 0.76 8.50 1.19

IM 0.09 0.11 0.05 1.56 1.51 1.56 0.65 0.72 7.00 0.94
2M 0.17 0.17 0.16 1.5G 1.90 1.56 0.90 0.96 8.21 0.75
4M 0.32 0.33 0.27 1.54 1.73 1.54 0.79 0.86 9.85 0.58
SM 0.62 0.66 0.60 1.53 1.64 1.53 1.07 1.13 7.56 0.45

16M 1.21 1.21 1.20 1.53 1.71 1.53 1.02 1.09 6.61 0.36
rotated 501(0.01 0.05 0.01 1.78 3.16 1.78 0.55 0.65 7.29 2.87

lOOK 0.02 0.06 0.01 1.73 3.13 1.73 0.61 0.69 7.88 2.30
500K 0.04 0.05 0.01 1.56 1.33 1.56 0.61 0.69 9.78 1.18

lM 0.09 0.11 0.06 1.56 1.52 1.56 0.72 0.80 7.36 0.94
2M 0.16 0.17 0.16 1.56 1.92 1.56 0.90 0.96 8.57 0.75
4M 0.32 0.33 0.27 1.54 1.71 1.54 0.86 0.92 8.93 0.58
SM 0.61 0.66 0.60 1.53 1.63 1.53 1.01 1.07 8.00 0.45

16M 1.21 1.21 1.21 1.53 1.72 1.53 1.02 1.09 8.22 0.36
organ pipe 50K 0.01 0.05 0.01 1.66 1.74 1.66 0.46 0.55 8.33 2.59

lOOK 0.01 0.06 0.01 1.59 1.24 1.59 0.52 O.Gl 7.57 2.02
500K 0.05 0.06 0.01 1.54 0.89 1.54 0.61 0.69 8.78 1.15

IM 0.11 0.11 0.11 1.53 0.68 1.53 0.51 0.58 9.13 0.89
2M 0.20 0.22 0.16 1.54 1.33 1.54 0.76 0.83 8.00 0.73
4M 0.40 0.44 0.38 1.53 1.12 1.53 0.92 0.99 7.40 0.57
SM 0.77 0.77 0.76 1.53 1.41 1.53 I.OJ 1.07 7.53 0.45

16M 1.53 1.54 1.48 1.52 1.38 1.52 1.09 1.15 7.42 0.35
m3killer 50K 0.01 0.06 0.01 1.65 1.67 1.65 0.46 0.55 8.83 2.55

1001(0.02 0.05 0.01 1.59 1.17 1.59 0.61 0.69 7.75 2.05
5001(0.05 0.06 0.05 1.54 0.92 1.54 0.61 0.69 6.33 1.16

IM 0.11 0.11 0.11 1.53 0.83 1.53 0.58 0.65 9.89 0.90
2M 0.22 0.22 0.22 1.54 1.33 1.54 0.76 0.83 8.58 0.73
4M 0.43 0.44 0.38 1.53 1.19 1.53 0.92 0.99 8.87 0.57
SM 0.77 0.77 0.77 1.54 1.85 1.54 1.13 1.20 8.37 0.46

16M 1.48 1.49 1.48 1.52 1.08 1.52 1.09 1.15 8.16 0.35

measured accurately), and the differences between maximum and mm1mum times are
quite small (and also partly due to the operating system). Except for the smallest inputs,
the maximum and minimum numbers of comparisons are quite close, and Cavg nicely
approaches the theoretical lower bound of 1.5n; this is reflected in the values of ,'avg· The
results for the onezero inputs essentially average two cases: the first pass eliminates either
almost all or about half of the elements.

Table 7.2 exhibits similar features of SELECT on the deterministic inputs. The result8
for the sorted and rotated sequences are very similar, whereas the solution times on the
organpipe and m3killer sequences are between those for the sorted and random sequences.

The results of Tabs. 7.1- 7.2 were obtained with scheme A of §6.1; to save space, Table
7.3 gives only selected results for scheme B. Scheme B was slower than scheme A by about

16

Table 7.3: Performance of SELECT with ternary scheme B.

Sequence Size Time [secj Comparisons [nj ,'avg Lavg Pavg Nnvg PAvg Savg

n avg max min avg max min [n] [lnnJ [lnnj [%n]
random 2M 0.28 0.33 0.27 1.54 1.57 1.52 1.18 1.54 0.77 0.83 8.18 0.72

4M 0.55 0.61 0.49 1.53 1.55 1.51 1.14 1.53 0.87 0.93 8.12 0.57
BM 1.09 1.16 1.04 1.52 1.54 1.51 1.05 1.52 0.89 0.95 8.14 0.44

16M 2.16 2.26 2.08 1.52 1.53 1.51 1.09 1.52 0.94 1.00 8.29 0.35
onczcro 2M 0.49 0.55 0.38 1.30 1.50 1.00 0.00 1.30 0.26 0.14 1.19 0.56

4M 0.93 1.10 0.77 1.25 1.50 1.00 0.00 1.25 0.22 0.12 1.24 0.43
BM 1.87 2.20 1.53 1.25 1.50 1.00 0.00 1.25 0.22 0.12 1.28 0.34

16M 3.92 4.40 3.02 1.33 1.50 1.00 0.00 1.33 0.22 0.12 1.12 0.29
sorted 2M 0.22 0.22 0.22 1.56 1.56 1.56 1.90 1.56 0.90 0.96 8.43 0.75

4M 0.46 0.50 0.44 1.54 1.54 1.54 l.71 1.54 0.79 0.79 9.42 0.58
BM 0.88 0.88 0.87 1.53 1.53 1.53 1.62 1.53 1.13 1.20 6.79 0.45

16M 1.73 1.76 l.70 1.53 1.53 1.53 1.71 1.53 1.02 1.09 6.61 0.36

20% on the random, twofaced, organpipe and m3killer inputs, 40% on the sorted and
rotated ones, and 50% on the onezero inputs.

The performance of BSELECT with the binary scheme C on the same inputs is given in
Table 7.4. SELECT with scheme A was slower than BSELECT by about 5% on the random,
twofaced, organpipe and m3killer inputs. Both were equivalent on the sorted and rotated
inputs. However, on the onezero inputs, BSELECT was slower by about 40% and made
excessively many comparisons and partitions.

The preceding results were obtained with the modified choice (5.1) of i0 • For brevity,
Table 7.5 gives results for SELECT with scheme A and the standard choice (2.1) of iv on
the random inputs only, since these inputs are most frequently used in theory and practice
for evaluating sorting and selection methods. The modified choice typically requires fewer
comparisons for small inputs, but its advantages are less pronounced for larger inputs. A
similar behavior was observed for SELECT with scheme B and for BSELECT.

For comparison, Table 7.6 extracts from [Kiw02] some results of QSELECT for the
samples (4.1). As noted in §1, QSELECT is slightly faster than SELECT on larger inputs
because most of its work occurs on the first partition (cf. L,wg in Tabs. 7.1 and 7.6). In
Table 7.7 we give corresponding results for RISELECT, a Fortran version of the algorithm of
[Val00]. For these inputs, RISELECT behaves like FIND with median-of-three partitioning
(because the average numbers of randomization steps, Nrnd, arc negligible); hence the
expected value of Cavg is of order 2.75n [KMP97] .

Our final Table 7.8 shows that SELECT beats its competitors with respect to the num
bers of comparisons made (expressed as multiples of n) on small random inputs (100
instances for each input size n).

Our computational results, combined with those in [Kiw02], suggest that both SELECT
and QSELECT may compete with FIND in practice.

Acknowledgment. I would like to thank Olgierd Hryniewicz, Iloger Koenker, Ronald
L. Rivest and John D. Valois for useful discussions.

17

Table 7.4: Performance of BSELECT with binary scheme C.

Sequence Size Time [sec] Comparisons [n] 1'nvg Lnvg Pavg Navg Pavg Suvg

71 avg max min avg rnax min [n] [Inn] [Inn] [%n]
randon1 2M 0.23 0.27 0.22 1.53 1.57 1.52 1.15 1.53 0.75 0.82 8.49 0.72

4M 0.45 0.50 0.38 1.53 1.55 1.52 1.15 1.53 0.85 0.92 8.32 0.57
8M 0.87 0.94 0.82 1.52 1.54 1.51 1.05 1.52 0.88 0.94 8.23 0.44

16M l.75 1.86 l.64 1.52 1.53 1.51 1.09 1.52 0.94 1.00 8.39 0.35
onezcro 2M 0.44 0.49 0.43 2.69 2.69 2.69 39.42 2.69 3.08 3.15 6.05 1.56

4M 0.90 0.94 0.87 2.69 2.69 2.69 48.40 2.69 3.66 3.73 6.05 1.24
8M l.77 1.82 1.75 2.69 2.69 2.69 59.52 2.69 4.20 4.26 6.13 0.98

lGM 3.53 3.58 3.46 2.68 2.69 2.68 73.29 2.68 4.76 4.82 6.18 0.78
sorted 2M 0.17 0.17 0.16 1.56 1.56 1.56 l.88 1.56 0.90 0.96 7.43 0.75

4M 0.33 0.33 0.33 1.54 1.54 1.54 1.72 1.54 0.79 0.86 9.31 0.58
8M 0.62 0.66 0.61 1.53 1.53 1.53 1.63 1.53 1.01 1.07 7.71 0.45

16M 1.21 1.21 1.20 1.53 1.53 1.53 l.70 1.53 1.02 1.09 7.50 0.36

Table 7.5: Performance of SELECT with the standard choice of iv,

Sequence Size Time [sec] Comparisons In] 'Yuvg Lavg Puvg Nnvg Pavg Savg

n avg max min avg max min [n] [Inn] [Inn] [%n]
ran<lorn 501(0.01 0.06 0.01 1.82 1.94 1.67 3.62 l.82 0.59 0.68 8.36 2.98

1001(0.02 0.06 0.01 1.77 1.86 l.71 3.71 1.77 0.76 0.85 7.57 2.40
5001(0.07 0.11 0.05 1.65 1.69 1.61 3.18 1.65 0.80 0.87 8.62 1.29

lM 0.14 0.17 0.11 1.60 1.63 1.55 2.80 1.60 0.89 0.96 8.32 0.99
2M 0.26 0.28 0.22 1.58 l.61 1.54 2.76 1.58 0.96 1.03 8.46 0.77
4M 0.52 0.55 0.49 1.57 1.59 1.54 2.77 1.57 1.16 1.23 8.13 0.60
8M 0.99 1.04 0.98 1.55 1.57 1.53 2.60 1.55 1.18 1.24 8.29 0.47

16M 1.94 1.98 l.92 1.54 1.55 1.53 2.54 1.54 1.19 1.25 8.72 0.36

Table 7.6: Performance of quintary QSELECT on random inputs.

Sequence Size Time !sec] Comparisons In] luvg Lavg Pnvg Nuvg Pavg Savg

n avg max min avg max tnin lnl !Inn] (Inn] [%n]
rnndom /\OK 0.01 0.06 0.01 l.79 1.84 1.74 4.91 1.21 0.46 1.01 7.40 4.10

1001(0.02 0.06 O.oJ l.73 l.77 l.70 4.77 1.15 0.43 0.96 8.03 3.20
5001(0.06 0.11 0.05 1.62 1.63 1.61 4.06 1.08 0.56 1.20 8.00 1.86

lM 0.12 0.17 0.11 1.59 1.60 1.58 3.95 1.06 0.67 1.40 7.95 1.47
2M 0.22 0.22 0.21 1.57 1.58 1.56 3.76 1.04 0.76 1.59 7.90 1.16
4M 0.43 0.44 0.38 1.56 1.56 1.55 3.63 1.03 0.95 1.95 7.29 0.92
8M 0.83 0.88 0.82 1.54 1.55 1.54 3.54 1.03 0.98 2.00 7.41 0.72

WM 1.62 1.65 1.59 1.53 1.54 1.53 3.39 1.02 1.00 2.05 7.77 0.57

18

Table 7.7: Performance of RISELECT on random inputs.

Sequence Size Time [sec] Comparisons [n] Lnvg Nrnc1

n avg max min avg max min [n]
random 501(0.01 0.06 0.01 3.10 4.32 1.88 3.10 0.40

1001(0.03 0.06 O.Dl 2.61 4.20 1.77 2.61 0.25
5001(0.10 0.11 0.05 2.90 4.23 1.69 2.90 0.20

IM 0.18 0.22 0.11 2.81 3.64 1.84 2.81 0.35
2M 0.34 0.44 0.22 2.60 3.57 1.83 2.60 0.30
4M 0.77 1.38 0.44 2.88 4.81 1.83 2.88 0.55
BM 1.38 1.70 1.05 2.60 3.48 1.80 2.60 0.45

16M 3.00 4.01 1.75 2.99 4.49 1.73 2.99 0.45

Table 7.8: Numbers of comparisons made on small random inputs.

Size 1000 2500 5000 7500 10000 12500 15000 17500 20000 25000
avg 2.47 2.07 1.94 1.86 1.84 1.81 1.76 1.75 1.74 1.73

SELECT max 4.79 2.73 2.53 2.12 2.02 2.02 2.01 2.16 1.95 1.91
min 1.51 1.72 1.64 1.63 1.64 1.62 1.07 1.59 1.04 l.61
avg 2.82 2.54 2.26 2.14 2.08 2.04 1.99 1.96 1.95 1.91

QSELECT max 3.90 3.37 2.61 2.45 2.31 2.20 2.12 2.13 2.12 2.07
min 2.05 2.09 1.99 1.92 1.85 1.87 1.86 1.82 1.84 1.82
avg 2.72 2.84 2.66 2.71 2.72 2.82 2.78 2.75 2.75 2.84

RISELECT max 4.41 4.51 4.74 4.38 4.57 4.65 4.66 4.56 4.61 4.64
min 1.68 1.83 1.75 1.59 1.70 1.77 1.78 1.67 1.90 1.71

References
[BcM93]

[BcS97]

[Bro76J

[Chv79]

[CnM89]

[DHUZOl]

[DoZ99]

[DoZOl]

[FIR75aJ

[FIR75b]

,J. L. Bentley and M. D. Mcilroy, Engineering a sort function, Software- Practice and Experi
ence 23 (1993) 1249- 1265.

J. L. Bentley and R. Sedgcwick, Fast algorithms for sorting and searching strings, in Proceed
ings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'97), SIAM,
Philadelphia, 1997, pp. 360- 369.

M. R. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest and R. E. Tarjan, Time bounds Jo,·
selection, J. Comput. System Sci. 7 (1972) 448- 461.

T. Brown, Remark on algorithm 48Y, ACM Trans. Math. Software 3 {1976) 301- 304.

V. Chvatal, The tail of the hyper-geometric distribution, Discrete Math. 25 (1979) 285- 287.

W. Gunto and J. I. Munro, Avemge ca.,e selection, J. of the ACM 36 (1989) 270- 279.

D. Dor, .J . Hastacl, S. Ullberg and U. Zwick, On lower bounds fnr selecting the median, SIAM
.I. Discrete Math. 14 (2001) 299- 311.

D. Dor aud U. Zwick, Selecting the median, SIAM J. Comput. 28 (1999) 1722- 1758.

--, Median selection requir-es (2 + <)N com7,arison.•, SIAM J. Discrete Math. 14 {2001)
312- 325.

R. W. Floyd and R. L. Rivest, The algorithm SELECT- for finding the ith smallest of n
elements (Algorithm 489}, Comm. ACM 18 (1975) 173.

--, Expccteil time bounds for selection, Comm. ACM 18 {1975) 165- 172.

19

[Grii99)

[HoaGl)

[Hoc63)

[Kiw02)

[KMP97]

[Knu97)

[Knu98]

[MaR0l)

[Mus!J7)

R. Griibcl, On the median-of-k version of Hoa,-e's selection algorithm, Theor. Inform. Appl.
33 (1999) 177-192.

C. A. R. Hoare, FIND {Algorithm 65}, Comm. ACM 4 (1961) 321- 322.

W. Hoeffding, Probability inequalities for sums of bounded rondom variables, J. Amer. Stutist.
Assoc. 58 (1963) 13- 30.

K. C. l(iwicl, Randomized selection revisited, Tech. report, Systems Research Institute, War
saw, 2002.

P. Kirschcnhofcr, C. Martinez and H. Prodingcr, Analysis of Hoar-e's Find algorithm with
median-of-three partition, Random St11ct11res and Algorithms 10 (1997) 143- 156.

D. E. Knuth, The Art of Com1mte1· Prngmmming. Volume I: Fundamental Algo.-ithms, third
ed., Addison-Wesley, Reading, MA, 19!J7.

___ , The Art of Computer Progmmming. Volume III: Sorting and Sean:hing, second ed.,
Addison-WL'Slcy, Reading, MA, 1998.

C. Martinez and S. Roura, Optimal sampling strategies in quicksort and quickselect, SIAM .I.
Comput. 31 (2001) 683- 705.

D.R. Musser, Introspective sorting and selection algorithms, Software- Practice and Experience
27 (1997) 983- 993.

[PRKT83) .J. T. Postmus, A. H. G. Itinnooy Kan and G. T. Timmer, An efficient dynamic selection
method, Comm. ACM 26 (1983) 878-881.

[Sed77)

[SPP76]

[ValO0J

R. Sedgcwick, Quickso.-t with equal keys, SIAM J. Comput. 6 (1977) 240-287.

A. Schiinhage, M. Paterson and N. Pippenger, Finding the median, J. Comput. System Sci.
13 (1976) 184- 199.

J. D. Valois, Introspective so.-ting and selection r-evisited, Software-Practice and Experience
30 (2000) 617- 638.

20

