
Raport Badawczy 

Research Report 
RB/80/2002 

Randomized Selection 
with Tripartitioning 

K.C. Kiwiel 

lnstytut Badan Systemowych 
Polska Akademia Nauk 

Systems Research Institute 
Polish Academy of Sciences 



POLSKA AKADEMIA NAUK 

Instytut Badan Systemowych 

ul. Newelska 6 

01-44 7 Warszawa 

tel. : (+48) (22) 8373578 

fax : (+48) (22) 8372772 

Kierownik Pracowni zglaszajc1ccy prac~: 
Prof. dr hab . inz. Krzysztof C. Kiwiel 

Warszawa 2002 



Randomized selection with tripartitioning 

Krzysztof C. Kiwiel* 

December 15, 2002 

Abstract 

We show that several versions of Floyd and Rivest's algorithm SELECT [Comm. 
ACM 18 (1975) 173] for finding the kth smallest of n elements require at most 
n + min{k, n - k} + o(n) comparisons on average, even when equal elements occur. 
This parallels our recent analysis of another variant due to Floyd and Rivest [Comm. 
ACM 18 (1975) 165- 172] . Our computational results suggest that both variants 
perform well in practice, and may compete with other selection methods, such as 
Hoare's FIND or quickselect with median-of-three partitioning. 

Key words. Selection, medians, partitioning, computational complexity. 

1 Introduction 

The selection problem is defined as follows: Given a set X := {xig'=1 of n elements, a 
total order< on X, and an integer 1::; k::; n, find the kth smallest element of X, i.e., an 
element x of X for which there are at most k - I elements x; < x and at least k elements 
Xj ::; X. The median of X is the f n/2lth smallest element of X . 

Selection is one of the fundamental problems in computer science; see, e.g., the refer
ences in [DHUZOl, DoZ99, DoZ0l] and [Knu98, §5.3.3]. Most references concentrate on 
the number of comparisons between pairs of elements made in selection algorithms. In the 
worst case, selection needs at least (2 + f)n comparisons [DoZ0l], whereas the algorithm 
of [BFP+72] makes at most 5.43n, that of [SPP76] needs 3n + o(n), and that in [DoZ99] 
takes 2.95n + o(n) . In the average case, fork ::; f n/21, at least n + k - 0(1) comparisons 
are necessary [CuM89], whereas the best upper bound is n + k + O(n112 In112 n) [Knu98, 
Eq. (5.3.3.16)]. The classical algorithm FIND of [Hoa61], also known as quickselect, has 
an upper bound of 3.39n + o(n) fork= f n/21 in the average case [Knu98, Ex. 5.2.2- 32], 
which improves to 2.75n + o(n) for median-of-three partitioning [Grii99, KMP97]. 

In practice FIND is most popular. One reason is that the algorithms of [BFP+72, 
SPP76] are much slower on the average [Mus97, Val00], whereas [KMP97] adds that other 
methods proposed so far, although better than FIND in theory, are not practical because 
they are difficult to implement, their constant factors and hidden lower order terms are 
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too large, etc. It is quite suprising that these references [KMP97, Mus97, ValO0] ignore 
the algorithm SELECT of [FlR75b], since most textbooks mention that SELECT is asymp
totically faster than FIND. In contrast, this paper shows that SELECT can compete with 
FIND in both theory and practice, even for moderate values of the input size n. 

We now outline our contributions in more detail. The initial two versions of SELECT 
[FlR75b] had gaps in their analysis (cf. [Bro76, PRKT83], [Knu98, Ex. 5.3.3- 241); the first 
version was validated in [Kiw02], and the second one will be addressed elsewhere. This 
paper deals with the third version of SELECT from [FlR75a], which operates as follows. 
Using a small random sample, it finds an element v almost sure to be just above the kth 
if k < n/2, or below the kth if k 2': n/2. Partitioning X about v leaves min{k,n - k} + 
o(n) elements on average for the next recursive call, in which k is near 1 or n with high 
probability, so this second call eliminates almost all the remaining elements. 

Apparently this version of SELECT has not been analyzed in the literature, even in 
the ca.5e of distinct elements. We first revise it slightly to simplify our analysis. Then, 
without assuming that the elements are distinct, we show that SELECT needs at must 
n+ min{ k, n - k} + O(n213 ln113 n) comparisons on average, with ln113 n replaced by ln112 n 
for the original samples of [FlR75a]. Thus the average cost of SELECT reaches the lower 
bounds of 1.5n + o(n) for median selection and 1.25n + o(n) for selecting an element of 
random rank. For the latter task, FIND has the bound 2n + o(n) when its pivot is set to 
the median of a random sample of s elements, withs-, oo, s/n-, oo as n-, oo [MaR0lj; 
thus SELECT improves upon FIND mostly by using k, the rank of the element to be found, 
for selecting the pivot v in each recursive call. 

In principle, SELECT can be implemented like FIND by using any well-known bipar
titioning scheme [Sed77] (an enhancement of the scheme of [FlR75a] is given in §6.3). 
However, such schemes can perform quite poorly when equal elements occur, in which 
case the ternary scheme of [BeM93, BeS97] may be preferred. This scheme works rather 
well in practice, but we present a faster ternary scheme that obviates subscript range 
checking. Our scheme is only slightly slower than binary schemes when the elements are 
distinct; it thus combines reliability and efficiency. We add that the implementation of 
[FlR75a], like several popular implementations of FIND, avoids random number generation 
by assuming that the input file is in random order, but this results in poor performance on 
some inputs of [ValO0]; hence our implementation of SELECT employs random sampling. 

Our computational experience shows that SELECT outperforms even quite sophisticated 
implementations of FIND in both comparison counts and computing times. To save space, 
only selected results are reported for the version of [Val00], but our experience with other 
versions on many different inputs was similar. SELECT turned out to be more stable than 
FIND, having much smaller variations of solution times and numbers of comparisons. Quite 
suprisingly, contrary to the folklore saying that SELECT is only asymptotically faster than 
FIND, SELECT makes significantly fewer comparisons even for small inputs. 

To relate our results with those of [Kiw02], let's call QSELECT the quintary method 
of [Kiw02] stemming from [FIR75b, §2.1]. QSELECT eliminates almost all elements 011 its 
first call by using two pivots, almost sure to be just below and above the kth element, 
in a quintary partitioning scheme. Thus most work occurs on the first call of QSELECT, 
which corresponds to the first two calls of SELECT. Hence SELECT and QSELECT share 

2 



the same efficiency estimates, and in practice make similarly many comparisons. However, 
QSELECT tends to be slightly faster on median finding: although its quintary scheme is 
more complex, most of its work is spent on the first pass through X, whereas SELECT first 
partitions X and then the remaining part (about half) of X on its second call to achieve a 
similar problem reduction. On the other hand, SELECT makes fewer comparisons on small 
inputs. Of course, future work should assess more fully the relative merits of SELECT and 
QSELECT. For now, the tests reported in [Kiw02] and in §7 suggest that both SELECT 
and QSELECT can compete successfully with refined implementations of FIND [Yal00] . 

The paper is organized as follows. A general version of SELECT is introduced in §2, 
and its basic features are analyzed in §3. The average performance of SELECT is studied in 
§4. A modification that improves practical performance is introduced in §5. Partitioning 
schemes are discussed in §6. Finally, our computational results are reported in §7. 

Our notation is fairly standard. !Al denotes the cardinality of a set A. In a given 
probability space, Pis the probability measure, Eis the mean-value operator and P[-1£] is 
the probability conditioned on an event £; the complement of£ is denoted by £'. 

2 The algorithm SELECT 

In this section we describe a general version of SELECT in terms of two auxiliary functions 
s(n) and g(n) (the sample size and rank gap), which will be chosen later. We omit their 
arguments in general, as no confusion can arise. 

Algorithm 2.1. 
SELECT(X,k) (Selects the kth smallest element of X, with 1 S k Sn:= !XI) 

Step 1 (Initiation). If n = I, return x 1• Choose the sample sizes Sn- I and gap g > 0. 

Step 2 (Sample selection). Pick randomly a sample S := {y1, ... , y.} from X. 

Step 3 (Pivot selection). Let v be the output of SELECT(S, iv), where 

i ·={min{rks/n+gl,s} ifk<n/2, 
v· max{rks/n-gl,l} ifk"2.n/2. 

(2.1) 

Step 4 (Partitioning). By comparing each element x of X \ S to v, partition X into the 
three sets L := {x EX: x < v}, E := {x EX: x = v} and U := {x EX: v < x}. 

Step 5 (Stopping test). If ILi < k S IL U El, return v. 

Step 6 (Reduction). If k S ILi, set Jc := L, n := IXI and k := k; else set Jc := U, 
fl := !XI and k := k - IL U El. 
Step 7 (Recursion) . Return SELECT(X, k). 

A few remarks on the algorithm are in order. 

Remarks 2.2. (a) The correctness and finiteness of SELECT stem by induction from the 
following observations. The returns of Steps 1 and 5 deliver the desired element. At Step 
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6, X and k are chosen so that the kth smallest element of X is the kth smallest element 
of .f'<, and ii< n (since v </. X). Also ISi < n for the recursive call at Step 3. 

(b) When Step 5 returns v, SELECT may also return information about the positions 
of the elements of X relative to v. For instance, if X is stored as an array, its k smallest 
elements may be placed first via interchanges at Step 4 (cf. §6). Hence Step 4 need only 
cornpare v with the elements of X \ S. 

(c) The following elementary property is needed in §4. Let c,, denote the maximum 
number of comparisons taken by SELECT on any input of size n. Since Step 3 makes at 
most c., comparisons with s < n, Step 4 needs at most n - s, and Step 7 takes at most c;, 
with ii < n, by induction c,. < oo for all n. 

3 Sampling deviations 

In this section we analyze general features of sampling used by SELECT. Our analysis 
hinges on the following bound on the tail of the hypergeometric distribution established 
in [Hoe63] and rederived shortly in [Chv79] . 

Fact 3.1. Let s balls be chosen uniformly at random from a set of n balls, of which r 
are red, and r' be the random variable representing the number of red balls draum. Let 
p := r /n. Then 

P [ r' 2 ps + g] S e-2921• Vg 2: 0. (3.1) 

Denote by xj S ... S x~ and yj S .. . S y; the sorted elements of the input set X and 
the sample set S, respectively, so that v = Ylv· The following result will give bounds on 
the position of v in the sorted input sequence. 

Lemma 3.2. Suppose i" := max{l, min{fKsl,s)}, J1 := max{f Kn - gn/sl, 1}, and Jr:= 
min{f Kn+ gn/sl,n}, where -g < KS S s + g, 1 S s Sn and g 2 0. Then: 

(a) P[y; < xj,] S e-292/• if 1 2: r KS 1. 
(b) P[x;r < v;] s e-292/• if i" s r KS 1-

Proof. Note that -g < KS S s + g implies that J1 S n and Jr 2 1 are well-defined. 
(a) If y; < xj,, at least f samples satisfy y; S x;, where r := maxx;<xj, j. In the 

setting of Fact 3.1, we have r red elements x; s x;, ps = rs/n and r' 2 f. Now, 
1 Sr S J1 -1 implies 2 S Ji= r Kn-gn/sl < Kn-gn/s+ 1, so -rs/n > -Ks+g. Hence 
'i - ps - g > Ks - Ks+ g - g = 0, i.e., r' > ps + g. Thus P[y; < xj,] s e-292/.• by (3.1). 

(b) If xjr < y;, s - f + 1 samples are at least xj+ 1 with J := maxx; =xjr j. Thus we have 
r : = n - J red elements x; 2 xj+ 1, ps = s - Js / n and r' 2 s - f + 1. Since f < KS + 1 and 
n > J 2 Jr 2 Kn+ gn/ s, we gets - f + 1 - ps - g > Js/n - KS - g 2 KS+ g - Ks - g = 0. 
Hence r' > ps + g and P[xjr < y;] S P[r' 2: ps + g] S e-292/• by (3.1). D 

We now bound the position of v relative to xi., xt,, and xZ,, where 

kt:= max{ rk- 2gn/sl, 1} and kr := min{ rk + 2gn/sl,n}. (3.2) 
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Table 4.1: Sample size f(n) := n213 Jn 113 n and relative sample size </!(n) := f(n)/n. 

" J(n) 
</>(n) 

190.449 972.953 
.190449 .097295 

105 106 5 · 106 

4864.76 23995.0 72287.1 
.048648 .023995 .014557 

117248 
.011725 

5 · 107 

353885 
.007078 

Corollary 3.3. (a) P[v < xi:] :::,; e-292/• if iv = f ks/n + g 1 and k < n/2. 
(b) P[xt < v] :::,; e-29'!• if k < n/2. 
(c) P[xi: < v] :::,; e-292/• if iv= f ks/n - g 1 and k ~ n/2. 
(d) P[v < xi:,] :::,; e-292/• if k ~ n/2 . 

568986 
.005690 

(e) If k < n/2, then iv f fks/n + g 1 iff n < k + gn/ s; similarly, if k ~ n/2, then 
iv /c fks/n - 97 iff k:::,; gn/s. 

Proof. Use Lem. 3.2 with KS= ks/n + g for (a,b), and KS= ks/n - g for (c,d). D 

4 Average case performance 

In this section we analyze the average performance of SELECT for various sample sizes. 

4.1 Floyd-Rivest's samples 

For positive constants a and /3, consider choosing s = s(n) and g = g(n) as 

s := min{fa/(n)l,n-1} and g := (,Bslnn) 1l2 with f(n) := n213 Jn113 n . (4.1) 

This form of g gives a probability bound e-292!• = n-2/3 for Car. 3.3. To get more feeling, 
suppose a = /3 = 1 and s = f(n). Let </!(n) := f(n)/n . Then s/n = g/ s = </!(n) and it 
will be seen that the recursive call reduces n at least by the factor 4</!(n) on average, i.e., 
</!(n) is a contraction factor; note that <f!(n) ,;::;j 2.4% for n = 106 (cf. Tab. 4.1). 

Theorem 4.1. Let C,.k denote the expected number of comparisons made by SELECT for 
s and g chosen as in (4.1) with f3 ~ 1/6. There exists a positive constant 'Y such that 

C,.k :::,; n + min{ k, n - k} + 7/(n) 1/1 :::,; k:::,; n. (4.2) 

Proof. We need a few preliminary facts. The function <f!(t) := f(t)/t = (In t/t) 113 de-
creases to O on [e,oo), whereas f(t) grows to infinity on [2,oo). Let fl:= 4(,B/a) 112 . Pick 
fl ~ 3 large enough so that e - 1 :::,; a/(fl) :::,; fl - 1 and e :::,; 8/(fl). Let a := a+ 1/ /(fl) . 
Then, by (4.1) and the monotonicity off and¢, we have for n ~ fl 

s:::,; af(n) and f(s):::,; a<f!(af(fl))f(n), 

f(lflf(n)J) :::,; f(flf(n)):::,; fl</!(flf(fl))f(n) . 
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For instance, the first inequality of (4.3) yields f(s) :S f(iif(n)), whereas 

f(iif(n)) = ii</i(iif(n))f(n) :S ii</>(iif(n))f(n). 

Also for n 2'. n, we haves = faf(n)l = af(n) + E with f E [0, 1) in (4.1). Writing 
s = af(n) with er:= a+ E/ f(n) E [a, ii), we deduce from (4.1) that 

gn/s = (/3/cr)1/2 f(n) :S (/3/a)1/2 f(n) . 

In particular, 4gn/s :S 8f(n), since 8 := 4(/3/a) 112. Next, (4.1) implies 

ne-292/s :S nl - 2/J = J(n)nl/3-2/Jln-l/3n. 

Using the monotonicity of f and </>, increase n if necessary to get for all n 2'. n 

(4.5) 

(4.6) 

2ii</>(iif(n)) + 8</>(8J(n)) + 2n-2/J + 2 max { [8J(n)]213- 2/Jn-2!3 , n-2/J} :S 0.95. (4.7) 

By Rem. 2.2(c), there is I such that (4.2) holds for all n :S n; increasing I if necessary, 
and using the monotonicity off and the assumption /3 2'. 1/6, we have for all n 2'. fi 

2ii + 28 + 5n1/ 3- 2/J 111-1/ 3 n + 3 max { 81- 2/J f(n)- 2/J, n 1/ 3- 2/J 111-1/ 3 n} :S 0.051 . (4.8) 

Let n' 2'. n. Assuming (4.2) holds for all n :Sn', for induction let n = n' + l. 
We need to consider the following two cases in the first call of SELECT. 
Left case: k < n/2. First, suppose the event c, := { xk :S v :S xt} occurs. By the rules 

of Steps 4- 6, we have X = L (from xz :S v), k = k and n := IXI :S k, - 1 (from v :S xt); 
since kr < k + 2gn/s + 1 by (3.2), we get the two (equivalent) bounds 

n<k+2gn/s and n-k<2gn/s. (4.9) 

Note that if iv = fks/n + g l then, by Cor. 3.3(a,b), the Boole-Benferroni inequality 
and the choice (4.1), the complement c[ of c1 has P[c[] :S 2e-292/• = 2n-2/J. Second, if 
iv# fks/n+ g l, then n < k + gn/s (Car. 3.3(e)) combined with k < n/2 gives n < 2gn/s; 
hence f,,- k < n < n < 2gn/s implies (4.9). Since also c1 implies (4.9), we have 

P[A;] :S 2n-2/J for A1 := { f,, - k < 2gn/s} . (4.10) 

R·ight case: k 2'. n/2. First, suppose the event Cr := {xZ, :S v :S xn occurs. By the 

rules of Steps 4- 6, we have X = U (from v :S xk), n - k = n - k and ft := I.XI :S n - k1 
(from xi,, :S v); since k1 2'. k - 2gn/s by (3.2), we get the two (equivalent) bounds 

f,, :S n - k + 2gn/ s and k :S 2gn/ s, (4.11) 

using n - k = n - k. If iv= fks/n - gl then, by Cor. 3.3(c,d), the complement c; of Cr 
has P[c:.J :S 2e-292/• = 2n-2/J . Second, if i., # fks/n - gl, then k :S gn/s (Cor. 3.3(e)) 
combined with k 2'. n/2 gives n :S 2gn/s; hence k :Sf,,< n :S 2gn/s implies (4.11). Thus 

P[A~] :S 2n- 2/J for A,. := { k :S 2gn/s}. 
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Since k < n - kif k < n/2, n - k:::; kif k 2'. n/2, (4.9) and (4.11) yield 

P[B']:::; 2n-2P for B := {ii:::; min{ k,n- k} + 2gn/s}. (4.13) 

Note that min { k, n - k} :::; l n/2 J :::; n/2; this relation will be used implicitly below. 
For the recursive call of Step 7, let s, g and z. denote the quantities generated as in 

(4.1) and (2.1) with n and k replaced by ii and k, Jet v be the pivot found at Step 3, and 
let X, n and k correspond to X, ii and k at Step 7, so that n := IXI < ii. 

The cost of selecting v and 'II at Step 3 may be estimated as 

C,;. + C;;;.:::; 1.5s + 7/(s) + 1.5s + 7/(s):::; 3s + 27/(s), (4.14) 

since f is increasing and (4.2) holds for s:::; s:::; n - 1 = n' (cf. (4.1)) from ii< n. 
Let c := n - s and e := ii - s denote the costs of Step 4 for the two calls. Since 

O:::; e < n and Ee= E[eJB]P[B] + E[elB']P[B']:::; E[eJB] + nP[B'], by (4.13) we have 

c +Ee:::; n - s + min{ k, n - k} + 2gn/s + 2n1- 2P. 

Using (4.2) again with n < n, the cost of finishing up at Step 7 is at most 

EC,-,k:::; E [ 1.5n + 7/(n)] = l.5En + 7E/(n). 

Thus we need suitable bounds for En and E/(n), which may be derived as follows. 
To generalize (4.13) to the recursive call, consider the events 

(4.15) 

(4.16) 

.B:={n:::;min{k,n-k}+2[Jn/s} and C:={n:::; l8/(n)J}. (4.17) 

By (4.10) and (4.12), .B n A 1 and .B n Ar imply C, since 2gn/s + 2gn/s:::; 8/(n) by (4.5) 
with ii< n and 8 := 4(/3/0)112. For the recursive call, proceeding as in the derivation of 
(4.13) with n replaced by ii= i, k by k, etc., shows that, due to random sampling, 

P[.B'IA1, ii = i] :::; 2i-2/3 and P[.B'IA., ii = i] :::; 2i- 2/3. 

In the left case of k < n/2, using n < n and P[A;J :::; 2n-2P (cf. (4 .10)), we get 

En= E[nlAi]P[Ai] + E[nlA;JP[A;J :::; E[nlAz] + n2n-2P. 

(4.18) 

Partitioning A1 into the events 'D; := A1 n {ii= i}, i = 0: n - 1 (n < n always), we have 

n-1 

E[iilAd = I: E[nl'D;]P[VdAd :::; . max E[nl'D;], 
i=O i=0:u-1 

where E[nl'D;] :::; l8/(n)J if i:::; l8/(n)J + 1, because ii< ii always. As for the remaining 
terms, BnA, CC implies P[C'l'D;] :::; P[.B'l'D;] :::; 2i-2/3 by (4.18), where C := {ii.:::; l8/(n)J} 
and it< ii= i when the event V, occms, so E[nl'D;] :::; l8/(n)J + i2i-2/3 . Hence 

max E[nl'D;]:::; l8/(n)J + max 2i1- 2P, 
i=O:n-1 i=[6/(n)J+2:n-l 
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where the final term is omitted if L.5/(n)J > n - 3; otherwise it is at most 

since maxi=LJ/(n)J+1,n 2i1- 2P is bounded as above (consider /3 2: 1/2, then /3 < 1/2 and use 
8/(n) < L.5/(n)J + 1, the monotonicity off and (4.6) for the final inequality) . Collecting 
the preceding estimates, we obtain 

En ::; L 8/(n)J + 2n1- 2P + 2 max { .s1- 2P f(n)- 2P, n 1!3- 2P ln- 1/ 3 n} /(n) . (4.19) 

Similarly, replacing ft by /(ii) in our derivations and using the monotonicity of/ yields 

E/(ii)::; /(l.5/(n)J) + 2/(n)n-2P +. max 2/(i)C2P, 
•=[Jf(n)J+2,n-l 

where the final term is omitted if L.5/(n)J > n - 3; otherwise it is at most 

2max { /(l.5/(n)J + 1) f(n)} < 2max { [.5/(n)J2/3-2Pn- 2/3 n-2p} f(n) 
(l.5/(n)J + 1)2P' n2P - ' · 

To see this, use the monotonicity of/ and the fact that for i::; n (cf. (4.1)} 

/(i)i-2p/ f(n) = i2/3-2Pn-2/3(ln i/ In n}t/3 :'.S i2/3-2Pn-2/3 . 

(4.20a) 

(4.20b) 

For the right case, replace Ai by Ar in the preceding paragraph to get (4.19)- (4.20). 
Add the costs (4.14), (4.15) and (4.16), using (4.19)- (4.20), to get 

C.,k :'.S 3s + 21/(s) + n - s + min{ k,n - k} + 2gn/s + 2n1- 2P 

+ 1.5L.5/(n)J + 3n1- 2fJ + 3 max { .s1- 2P J(n)- 2P, n1!3- 2P ln- 1/ 3 n} f(n) 

+ 1 /(l.5/(n)J) + 21 /(n)n-2P + 21 max { [.5/ (n)] 213- 2Pn-2!3 , n-2P} f(n). 

Now, using the bounds (4.3)- (4.4), 2gn/s::; ½8/(n) (cf. (4.5)) and (4.6) gives 

C.,k :'.Sn+ min{ k, n - k} 

+ [2a + 28 +5n1!3- 2P1n- 1l 3 n + 3max{ .51- 2P f(nt 2P,nl/3- 2P1n-1!3 n} ]!(n) 

+ [2acf>(a/(ii)} + 8¢(8/(n)) + 2n-2P + 2 max { [8/(n)]213- 2Pn-2!3, n-2P}] ,f(n) . 

By (4.7)- (4.8), the two bracketed terms above are at most 0.051 /(n) and 0.951 /(n), 
respectively; thus (4.2) holds as required. D 

4.2 Other sampling strategies 

We now indicate briefly how to adapt the proof of Thm 4.1 to several variations on (4.1); 
a choice similar to (4.21) below was used in [Flll75a]. 
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Remarks 4.2. (a) Theorem 4.1 remains true for /3 2 1/6 and (4.1) replaced by 

s := min {f an2/ 3l , n - 1}, g := (/3s In n) 1l 2 and f(n) := n213 Jn112 n. (4.21) 

Indeed, using e3l 2 - 1 ~ an2l 3 ~ n - 1, e3l 2 ~ of(n), a:= a+ n-2l 3 and s = iin2l 3 with 
ii E [a, a) yields (4.3)- (4.5) as before, and 111-112 replaces 111-1l3 in (4.6), (4.8) and (4.19) . 

(b) Theorem 4.1 holds for the following modification of (4 .1) with fl> 1 

s := min {f af (n)l, n - 1} and g := (/3s In'' n) 112 with f(n) := n2/ 3 ln',/3 n. (4.22) 

First, using e'' - 1 ~ af(n) ~ n - 1 and e'' ~ of(n) gives (4.3)- (4.5) as before. Next, 
fix [3 2 1/6. Let /311 := /3111'1- 1 n. Increase n if necessary so that /3; 2 [3 for all i 2 
min{n, r of(n)l}; then replace /3 by [3 and ln-113 by ln-•,/3 in (4.6) and below. 

(c) Several other replacements for (4.1) may be analyzed as in [Kiw02, §§4.1- 4.2]. 
(cl) None of these choices gives f(n) better than that in (4.1) for the bound (4.2) . 

We now comment briefly on the possible use of sampling with replacement. 

Remarks 4.3. (a) Suppose Step 2 of SELECT employs sampling with replacement. Since 
the tail bound (3.1) remais valid for the binomial distribution [Chv79, Hoe63], Lemma 
3.2 is not affected. However, when Step 4 no longer skips comparisons with the elements 
of S, -sin (4.15) is replaced by O; the resulting change in the bound on Cnk only needs 
replacing 2a in (4.8) by 3a. Hence the preceding results remain valid. 

(b) Of course, sampling with replacement needs additional storage for S. However, 
the increase in both storage and the number of comparisons may be tolerated because the 
sample sizes are relatively small. 

4.3 Handling small subfiles 

Since the sampling efficiency decreases when X shrinks, consider the following modifica
tion. For a fixed cut-off parameter n eut 2 1, let sSelect(X, k) be a "small-select" routine 
that finds the kth smallest element of X in at most Ceut < oo comparisons when !XI ~ n eut 

(even bubble sort will do). Then SELECT is modified to start with the following 

Step O (Small file case). If n := !XI ~ neut, return sSelect(X, k). 
Our preceding results remain valid for this modification. In fact it suffices if Ccut 

bounds the expected number of comparisons of sSelect(X, k) for n ~ neut· For instance, 
(4.2) holds for n ~ neut and 'Y 2 Ceut, and by induction as in Rem. 2.2(c) we have C,.k < oo 
for all n, which suffices for the proof of Thm 4.1. 

Another advantage is that even small neut (1000 say) limits nicely the stack space for 
recursion. Specifically, the tail recursion of Step 7 is easily eliminated (set X := X, k := k 
and go to Step 0), and the calls of Step 3 deal with subsets whose sizes quickly reach neut · 

For example, for the choice of (4.1) with a = 1 and neut = 600, at most four recursive 
levels occur for n ~ 231 :::::: 2.15 • 109 . 
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5 A modified version 

We now consider a modification inspired by a remark of [Bro76] . For k close to r n/21, by 
symmetry it is best to choose v as the sample median with iv = rs /21 , thus attempting 
to get v close to xi. instead of xfk-gn/•l or xfk+gn/•l; then more elements are eliminated. 
Hence we may let 

iv:= l rks/n+gl ifk<n/2-gn/s, 
r s/21 if n/2 - gn/ s ::; k ::; n/2 + gn/ s, 
fks/n - gl if k > n/2 + gn/s. 

(5.1) 

Note that (5.1) coincides with (2.1) in the left case of k < n/2 - gn/s and the right ca.5e 
of k > n/2 + gn/s , but the middle case of n/2 - gn/s ::; k ::; n/2 + gn/s fixes iv at the 
median position r s/21; in fact i,, is the median of the three values in (5.1) : 

iv:= max { min ( rks/n + gl, r s/21)' rks/n - gl} . (5.2) 

Corollary 3.3 remains valid for the left and right cases. For the middle case, letting 

ji:=max{rn/2-gn/sl,1} and ir:=min{rn/2+gn/sl,n}, (5.3) 

we obtain from Lemma 3.2 with 1,, = 1/2 the following complement of Corollary 3.3. 

Corollary 5.1. P[v < xj,) ::; e-292/• and P[xj. < v) ::; e-292/• if n/2 - gn/s ::; k ::; 
n/2 + gn/s. 

Theorem 5.2. Theorem 4.1 holds for SELECT with Step 3 using (5.1). 

Proof. We only indicate how to adapt the proof of Thm 4.1 following (4.8) . As noted 
after (5.1), the left case now has k < n/2 - gn/ s and the right case has k > n/2 + gn/s, 
so we only need to discuss the middle case. 

Middle case: n/2- gn/s::; k::; n/2 + gn/s. Suppose the event Em := {xj,::; v::; xjJ 
occurs (note that P[£:,.J ::; 2e-292/• = 211-2/J by Cor. 5.1). If X = L then, by the rules of 
Steps 4- 6, we have k = k and ii ::; ir - l; since ir < n/2 + gn/s + 1 by (5.3), we get 
ii< n/2 + gn/s. Hence k 2: n/2 - gn/s yields ii< k + 2gn/s and ii - k < 2gn/s as in 
(4.9) . Next, if X = U then ii - k = n - k and k := k - IL U El, so LUE= {x E X : 
x::; v} 3 xj, gives k::; k- j 1• Since k::; n/2 + gn/s and j1 2: n/2 - gn/s by (5.3), we get 

k::; 2gn/s and ii::; ii- k + 2gn/s as in (4.11); further, ii::; n -j1 yields ii::; n/2 + gn/s . 
Noticing that n/2 - gn/ s ::; k ::; n/2 + gn/ s implies n/2 ::; min { k, n - k} + gn/ s, we have 
it ::; min{ k, n - k} + 2gn/ s in both cases. 

Thus in the middle case we again have (4.13) and hence (4.15) ; further, by (4.10) and 
(4.12), the event£,,. C A1 U Ar is partitioned into£,,. n A1 and£,,. n A; n Ar. 

Next, reasoning as before, we see that (4.18) and hence (4.19)- (4.20) remain valid in 
the left and right cases, whereas in the middle case we have 

P[B'I£,,., A1, ii= i) ::; 2i-2/J and P[B'I£,,., A;, Ar, ii = i) ::; 2i-2/J . (5.4) 
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In the middle case, En = E[filEm]P[fm] + E[nlt::.,]P[E:.,J is bounded by E[iilEm] + 2n1- 211 , 

since P[E:,.] $ 2n-211 and ii < n always. Next, partitioning E111 into E,,, n A1 and Em n 
A1 n A,, we obtain E[iilE,..] $ max{E[nlf,,., Ail, E[nlf,,., A1, Ar]}, where E[nlE,,., At] and 
E[nlf,.., A1, Ar] may be bounded like E[nlAt] and E[nlAr] in the left and right cases to get 
(4.19). Then (4.20) is obtained similarly, and the conclusion follows as before. 0 

6 Ternary and binary partitioning 

In this section we discuss ways of implementing SELECT when the input set is given as an 
array x[l: n] . In particular, we recall the ternary partitioning scheme of [BeM93, BeS97] 
and its modification of [Kiw02] that obviates subscript range checking. 

The following notation is needed to describe the operations of SELECT in more detail. 
Each stage works with a segment x[l: r] of the input array x[l: n], where 1 $ l $ r $ n 

are such that X; < x1 for i = 1: l - l, Xr < X; for i = r + 1: n, and the kth smallest 
element of x[l: n] is the (k - l + l)th smallest element of x[l: r]. The task of SELECT is 
extended: given x[l: r] and l $ k $ r, SELECT(x, l, r, k, k_, k+) permutes x[l: r] and finds 
l $ k_ $ k $ k+ $ r such that x; < Xk for all l $ i < k_, x; = Xk for all k_ $ i $ k+, 
x; > Xk for all k+ < i $ r . The initial call is SELECT(x, 1, n, k, k_, k+)-

A vector swap denoted by x[a: b] +-> x[b+l: c] means that the first d := min(b+l-a, c-b) 
elements of array x[a: c] are exchanged with its last d elements in arbitrary order if d > O; 
e.g., we may exchange Xa+i +-> Xc-i for O $ i < d, or Xa+i +-> Xc-d+l+i for O $ i < d. 

6.1 Ternary partitions 

For a given pivot v := Xk from the array x[l: r], the following ternary scheme partitions 
the array into three blocks, with Xm < v for I $ m < a, x111 = v for a $ m $ b, Xm > v for 
b < m $ r. The basic idea is to work with the five inner parts of the array 

lx<vlx=vlx<vl ? lx>vlx=vlx>vl 
l l p ij q r r 

until the middle part is empty or just contains an element equal to the pivot 

lx=vlx<vlx=vlx>vlx=vl 
l p j q r 

(6.1) 

(6.2) 

(i.e., j = i - 1 or j = i - 2), then swap the ends into the middle for the final arrangement 

lx<vlx=vlx>vl 
l a b r 

(6.3) 

Al. [Initialize.] Set v := Xk and exchange :c1....., Xk· Seti := l := l, JI:= l + 1, j := f := r, 
q := r - 1. If v < x,, set f := r - 1. If v > :er, exchange Xt +-> Xr and set I:= l + l. 

A2. [Increase i until x; 2:: v.] Increase i by 1; then if x; < v, repeat this step. 
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A3. [Decrease j until xi .S v.] Decrease j by 1; then if xi > v, repeat this step. 

A4. [Exchange.] (Here Xj .S v .S x;.) If i < j, exchange x; .... xi; then if x; = v, exchange 
x; .... xv and increase p by 1; if xi = v, exchange xi .... Xq and decrease q by 1; return 
to A2. If i = j (so that X; =xi= v), increase i by 1 and decrease j by 1. 

A5. [Cleanup.] Exchange x[L:p - 1] .... x[p:j] and x[i:q] .... x[q + 1:f]. Finally, set 
a := l + j - p + I and b := f - q + i - 1. 

Step Al ensures that xi .S v .S Xr, so steps A2 and A3 don't need to test whether i .S j. 
However, this scheme involves two extraneous comparisons (only one when i = j at A4}. 
Consider, therefore, the following scheme of [BeM93, BeS97] and [Knu97, Ex. 5.2.2-41], 
also based on the arrangements (6.1)-(6.3) with I:= l, f :=rand final j = i - 1. 

Bl. [Initialize.] Set V := Xk and exchange X/ <-> Xk- Set i := p := l + I, r := l and 
j := q := f := r. 

B2. [Increase i until x; > v.] If i .S j and x; < v, increase ·i by 1 and repeat this step, If 
i .S j and x; = v, exchange x1, <-> x;, increase p and i by 1, and repeat this step. 

B3. [Decrease j until xi < v.] If i .S j and xi > v, decrease j by 1 and repeat this step, 
If i .S j and xi = v, exchange xi <-> Xq, decrease j and q by 1, and repeat this step, 

B4. [Exchange.] If i .S j, exchange x; <-> xi, increase i by 1, decrease j by 1, and return 
to B2. 

B5. [Cleanup.] Swap x[I: p-1] <-> x[p: j] and x[i: q] <-> x[q + 1: r]. Finally, set a := l +i- p 
and b := f - q + j. 

Relative to scheme A, scheme B saves one or two v-comparisons at the expense of r - l + 2 
comparisons of i vs. j. Since for usual choices of neut, we haver - l » 2 in SELECT and 
relatively few small partitions in sSelect, scheme A is faster than B unless the cost of key 
comparisons is extremely large, 

6.2 Preparing for ternary partitions 

At Step 1, r - l + 1 replaces n in findings and g, At Step 2, it is convenient to place the 
sample in the initial part of x[I: r] by exchanging x; <-> X;+rand(r-i) for I.Si.Sr,:= l+s-1, 
where rand(r - i} denotes a random integer, uniformly distributed between O and r - i. 

Step 3 uses i := k- l + 1 and m := r -l + 1 instead of k and n to find the pivot position 

k ·= {min{fl-l+is/m+gl,r,} ifi<m/2, 
v• max{fl-l+is/m-gl,l} ifi:C::m/2, 

so that the recursive call of SELECT(x, I, r., ku, k;;, k;;) produces v := Xk.· 

After v has been found, our array looks as follows 

lx<vl :c=v lx>vl? I 
l k,-; k;; r, r 
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Setting [ := k;;, p := k"/; + l, f := r - r, + k"/; and q := f, we swap x[p: r,] <-+ x[r, + 1: r]; if 
k"/; = r., we exchange xkt <-+ Xq and decrease p and q by l. This yields the arrangement 
of (6.1), so we may use either scheme A of §6.1 with initial i := p - l, j := q +land step 
Al omitted, or scheme B with i := p, j := q and step Bl omitted. 

After partitioning l and r are updated by setting l := b + 1 if a ::; k, r := a - 1 if k ::; b. 
If l 2-: r, SELECT may return k_ := k+ :=kif l = r, k_ := r + 1 and k+ := l - l if l > r. 
Otherwise, instead of calling SELECT recursively, Step 6 may jump back to Step 1, or to 
Step O if sSelect is used ( cf. §4.3). 

A simple version of sSelect is obtained if Steps 2 and 3 choose v := i ;k when r - l + 1 ::; 
neut {this choice of [FlR75a] works well in practice, but more sophisticated pivots could be 
tried); then the ternary partitioning code can be used by sSelect as well. 

6.3 Binary partitions 

We now consider a binary version of SELECT, called BSELECT, which employs less refined 
but potentially faster partitioning. This version works with x[l: r] such that x, ::; x, for 
i = 1: I - 1, x, ::; x, for i = r + 1: n, and its task is standard: given x[l: r] and I ::; k ::; r, 
BSELECT{x, l, r, k) permutes x[I: r] so that x, ::; Xk for all I ::; i < k, and Xk ::; x, for all 
k < i ::; r; the initial call is nSELECT(x, 1, n, k). 

For a given pivot v := Xk from the array x[I: r], the following binary scheme partitions 
the array into three blocks, with Xm ::; v for l ::; m < a, Xm = v for a ::; m ::; b, v ::; x,,. for 
b < m ::; r; usually a = b and the middle block is singleton. 

Cl. [Initialize.] Set v := Xk and exchange x, <-+ Xk- Seti := p := l and j := r. If v > Xr, 

exchange x;, +-> x, and set p := r. (Thus x, ::; v = x;,::; x, always.) 

C2. [Increase i until x, 2-: v.] Increase i by 1; then if x, < v, repeat this step. 

C3. [Decrease j until xi ::; v.] Decrease j by 1; then if x; > v, repeat this step. 

C4. [Exchange.] (Here Xj ::; v ::; x,.) If i < j, exchange x, <-+ xi and return to C2. If 
i = j (so that x, = x; = v), increase i by 1 and decrease j by 1. 

C5. [Cleanup.] If pi= r, exchange x;, <-+ x;, set a := j and b := i - 1; otherwise exchange 
x, <-+ x;,, set a:= j + 1 and b := i. 

The setup of §6.2 changes as follows. Step 3 calls BSELECT(x, l, r8 , kv) to find v := Xkv; 

then (6.5) changes to 
lx<vj v jx>vj? I 

l kv r8 r 
(6.6) 

Setting i := p := k. and j := r - r, + kv, we swap x[i + 1: r,] <-+ x[r, + 1: r - 1]. If v > Xr, 

we exchange x1; <-+ Xr and set p := r. Then we may use scheme C {with Cl omitted) for 
updating l and r, also in sSelect as in §6.2. 

The inner loops of schemes A and C (i.e., A2, A3, C2, C3) coincide, whereas C4 is like 
A4 without its equality tests and associated updates. When equal elements are absent . 
scheme C (although not equivalent to A) yields correct partitions for Step 4. When equal 
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elements occur, its partitions needn't meet the requirements of Step 4, but are still usable, 
because r-l shrinks. In effect, BSELECT works like SELECT in the case of distinct elements, 
but may require more comparisons otherwise. 

7 Experimental results 

7.1 Implemented algorithms 

An implementation of SELECT was programmed in Fortran 77 and run on a notebook 
PC (Pentium II 400 MHz, 256 MB RAM) under MS Windows 98. The input set X was 
specified as a double precision array. For efficiency, the recursion was removed and small 
arrays with n ::; neut were handled as if Steps 2 and 3 chose v := xk; the resulting version 
of sSelect (cf. §§4.3 and 6.2) typically required less than 3.5n comparisons. The choice of 
(4.21) was employed, with the parameters a= 0.5, /3 = 0.25 and neut = 600 as proposed 
in [FIR75a]; future work should test other sample sizes and parameters. 

A similar implementation of BSELECT was programmed as described in §6.3. 

7.2 Testing examples 

As in [Kiw02], we used minor modifications of the input sequences of [Va!O0]: 

random A random permutation of the integers 1 through n. 

onezero A random permutation of r n/21 ones and L n/2 J zeroes. 

sorted The integers 1 through n in increasing order. 

rotated A sorted sequence rotated left once; i.e., (2, 3, ... , n, 1 ). 

organpipe The integers 1 through n/2 in increasing order, followed by n/2 through 1 in 
decreasing order. 

m3killer Musser's "median-of-3 killer" sequence with n = 4j and k = n/2: 

( 1 2 3 4 . . . k - 2 k - 1 k k + 1 . . . 2k - 2 2k - 1 2k ) 
I k + I 3 k + 3 . . . 2k - 3 k - 1 2 4 . . . 2k - 2 2k - 1 2k . 

twofaced Obtained by randomly permuting the elements of an m3killer sequence in po
sitions 4llog2 nJ through n/2 - 1 and n/2 + 4llog2 nJ - 1 through n - 2. 

For each input sequence, its (lower) median element was found. 
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Table 7.1: Performance of SELECT on randomly generated inputs. 

Sequence Size Time [sec] Comparisons [nj 'Ynvg Lnvg Pnvg Nnvg Pavg Savg 

It avg max min avg max min [n] [Inn] [lnnj [%n] 
random 50K 0.01 0.06 0.01 1.67 1.76 1.60 1.88 1.67 0.45 0.55 8.03 2.63 

lOOK 0.02 0.06 0.01 1.62 1.67 1.58 1.68 1.62 0.61 0.69 7.81 2.12 
500K 0.06 0.11 0.05 1.56 1.63 1.53 1.41 1.56 0.67 0.75 8.45 1.19 

lM 0.13 0.17 0.11 1.55 1.59 1.53 1.23 1.55 0.70 0.77 8.38 0.92 
2M 0.23 0.28 0.22 1.54 1.57 1.52 1.19 1.54 0.77 0.84 8.48 0.72 
4M 0.47 0.50 0.44 1.53 1.55 1.52 1.13 1.53 0.86 0.92 8.35 0.57 
8M 0.91 0.99 0.82 1.52 1.54 1.51 1.05 1.52 0.88 0.94 8.27 0.44 

16M 1.82 1.93 1.70 1.52 1.53 1.51 1.11 1.52 O.!J4 1.00 8.33 0.35 
onczcro 50K 0.01 0.05 0.01 1.33 1.51 1.00 0.00 1.33 0.24 0.18 1.23 1.99 

1001( 0.01 0.06 0.01 1.10 1.51 1.00 0.00 1.10 0.21 0.16 1.22 1.27 
500K 0.08 0.11 0.05 1.25 1.50 1.00 0.00 1.25 0.26 0.14 1.24 0.86 

lM 0.16 0.22 0.11 1.20 1.50 1.00 0.00 1.20 0.23 0.13 1.23 0.65 
2M 0.33 0.39 0.22 1.30 1.50 I.DO 0.00 1.30 0.26 0.14 1.19 0.56 
4M 0.62 0.72 0.4!) 1.25 1.50 1.00 0.00 1.25 0.22 0.12 1.24 0.43 
8M 1.24 1.48 0.99 1.25 1.50 1.00 0.00 1.25 0.22 0.12 1.28 0.34 

16M 2.62 2.97 2.03 1.33 1.50 1.00 0.00 1.33 0.22 0.12 1.12 0.29 
twofaccd 50K 0.01 0.06 0.01 1.67 1.79 1.60 1.93 1.67 0.4!J 0.58 8.21 2.66 

lOOK 0.02 0.06 0.01 1.62 1.67 1.56 1.58 1.62 0.5!J 0.68 7.15 2.10 
5001( 0.06 0.11 0.05 1.57 1.60 1.54 1.51 1.57 0.67 0.75 8.52 1.20 

lM 0.12 0.17 0.11 1.55 1.59 1.53 1.36 1.55 0.72 0.80 8.55 0.93 
2M 0.24 0.28 0.21 1.53 1.55 1.52 1.04 1.53 0.72 0.79 8.52 0.72 
4M 0.45 0.50 0.44 1.53 1.55 1.51 1.06 1.53 0.82 0.88 8.29 0.56 
8M 0.92 0.99 0.87 1.52 1.54 1.51 1.03 1.52 0.86 0.92 8.50 0.44 

16M 1.81 1.93 1.71 1.52 1.53 1.51 1.08 1.52 0.95 1.00 8.43 0.35 

7.3 Computational results 

We varied the input size n from 50,000 to 16,000,000. For the random, onezero and 
twofaced sequences, for each input size, 20 instances were randomly generated; for the 
deterministic sequences, five runs were made to measure the solution time. 

The performance of SELECT on randomly generated inputs is summarized in Table 
7.1, where the average, maximum and minimum solution times are in seconds, and the 
comparison counts are in multiples of n; e.g., column six gives Cavg/ n, where Cavg is the 
average number of comparisons made over all instances. Thus 'Yavg := (Cavg - l.5n)+/ J(n) 
estimates the constant 'Yin the bound (4.2); moreover, we have Cavg ~ Lavg, where Lavg 
is the average sum of sizes of partitioned arrays. Further, Pavg is the average number of 
SELECT partitions, whereas Navg is the average number of calls to sSelect and Pavg is the 
average number of sSelect partitions per call; both Pavg and Navg grow slowly with Inn 
(linearly on the onezero inputs). Finally, Savg is the average sum of sample sizes; Savg/n213 

drops from 0.97 for n = 50K to 0.88 for n = 16M on the random and twofacecl inputs, 
and oscillates about 0.7 on the onezero inputs, whereas the initial s/n2/ 3 ~ a = 0.5. 
The results for the random and twofaced sequences are very similar: the average solution 
times grow linearly with n (except for small inputs whose solution times couldn't be 
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Table 7.2: Performance of SELECT on deterministic inputs. 

Sequence Size Time [sec] Comparisons 'Yavg Lavy. Pavg Nv.vg Pavg Savg 

n avg max min [n) [n) [Inn) [Inn) [%n) 
sorted 501( 0.02 0.06 O.Dl 1.76 2.92 1.76 0.55 0.65 6.43 2.88 

1001( 0.02 0.06 O.Dl 1.73 3.11 1.73 0.69 0.78 6.44 2.33 
500K 0.06 0.06 0.06 1.56 1.35 1.56 0.69 0.76 8.50 1.19 

IM 0.09 0.11 0.05 1.56 1.51 1.56 0.65 0.72 7.00 0.94 
2M 0.17 0.17 0.16 1.5G 1.90 1.56 0.90 0.96 8.21 0.75 
4M 0.32 0.33 0.27 1.54 1.73 1.54 0.79 0.86 9.85 0.58 
SM 0.62 0.66 0.60 1.53 1.64 1.53 1.07 1.13 7.56 0.45 

16M 1.21 1.21 1.20 1.53 1.71 1.53 1.02 1.09 6.61 0.36 
rotated 501( 0.01 0.05 0.01 1.78 3.16 1.78 0.55 0.65 7.29 2.87 

lOOK 0.02 0.06 0.01 1.73 3.13 1.73 0.61 0.69 7.88 2.30 
500K 0.04 0.05 0.01 1.56 1.33 1.56 0.61 0.69 9.78 1.18 

lM 0.09 0.11 0.06 1.56 1.52 1.56 0.72 0.80 7.36 0.94 
2M 0.16 0.17 0.16 1.56 1.92 1.56 0.90 0.96 8.57 0.75 
4M 0.32 0.33 0.27 1.54 1.71 1.54 0.86 0.92 8.93 0.58 
SM 0.61 0.66 0.60 1.53 1.63 1.53 1.01 1.07 8.00 0.45 

16M 1.21 1.21 1.21 1.53 1.72 1.53 1.02 1.09 8.22 0.36 
organ pipe 50K 0.01 0.05 0.01 1.66 1.74 1.66 0.46 0.55 8.33 2.59 

lOOK 0.01 0.06 0.01 1.59 1.24 1.59 0.52 O.Gl 7.57 2.02 
500K 0.05 0.06 0.01 1.54 0.89 1.54 0.61 0.69 8.78 1.15 

IM 0.11 0.11 0.11 1.53 0.68 1.53 0.51 0.58 9.13 0.89 
2M 0.20 0.22 0.16 1.54 1.33 1.54 0.76 0.83 8.00 0.73 
4M 0.40 0.44 0.38 1.53 1.12 1.53 0.92 0.99 7.40 0.57 
SM 0.77 0.77 0.76 1.53 1.41 1.53 I.OJ 1.07 7.53 0.45 

16M 1.53 1.54 1.48 1.52 1.38 1.52 1.09 1.15 7.42 0.35 
m3killer 50K 0.01 0.06 0.01 1.65 1.67 1.65 0.46 0.55 8.83 2.55 

1001( 0.02 0.05 0.01 1.59 1.17 1.59 0.61 0.69 7.75 2.05 
5001( 0.05 0.06 0.05 1.54 0.92 1.54 0.61 0.69 6.33 1.16 

IM 0.11 0.11 0.11 1.53 0.83 1.53 0.58 0.65 9.89 0.90 
2M 0.22 0.22 0.22 1.54 1.33 1.54 0.76 0.83 8.58 0.73 
4M 0.43 0.44 0.38 1.53 1.19 1.53 0.92 0.99 8.87 0.57 
SM 0.77 0.77 0.77 1.54 1.85 1.54 1.13 1.20 8.37 0.46 

16M 1.48 1.49 1.48 1.52 1.08 1.52 1.09 1.15 8.16 0.35 

measured accurately), and the differences between maximum and mm1mum times are 
quite small (and also partly due to the operating system). Except for the smallest inputs, 
the maximum and minimum numbers of comparisons are quite close, and Cavg nicely 
approaches the theoretical lower bound of 1.5n; this is reflected in the values of ,'avg· The 
results for the onezero inputs essentially average two cases: the first pass eliminates either 
almost all or about half of the elements. 

Table 7.2 exhibits similar features of SELECT on the deterministic inputs. The result8 
for the sorted and rotated sequences are very similar, whereas the solution times on the 
organpipe and m3killer sequences are between those for the sorted and random sequences. 

The results of Tabs. 7.1- 7.2 were obtained with scheme A of §6.1; to save space, Table 
7.3 gives only selected results for scheme B. Scheme B was slower than scheme A by about 
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Table 7.3: Performance of SELECT with ternary scheme B. 

Sequence Size Time [secj Comparisons [nj ,'avg Lavg Pavg Nnvg PAvg Savg 

n avg max min avg max min [n] [lnnJ [lnnj [%n] 
random 2M 0.28 0.33 0.27 1.54 1.57 1.52 1.18 1.54 0.77 0.83 8.18 0.72 

4M 0.55 0.61 0.49 1.53 1.55 1.51 1.14 1.53 0.87 0.93 8.12 0.57 
BM 1.09 1.16 1.04 1.52 1.54 1.51 1.05 1.52 0.89 0.95 8.14 0.44 

16M 2.16 2.26 2.08 1.52 1.53 1.51 1.09 1.52 0.94 1.00 8.29 0.35 
onczcro 2M 0.49 0.55 0.38 1.30 1.50 1.00 0.00 1.30 0.26 0.14 1.19 0.56 

4M 0.93 1.10 0.77 1.25 1.50 1.00 0.00 1.25 0.22 0.12 1.24 0.43 
BM 1.87 2.20 1.53 1.25 1.50 1.00 0.00 1.25 0.22 0.12 1.28 0.34 

16M 3.92 4.40 3.02 1.33 1.50 1.00 0.00 1.33 0.22 0.12 1.12 0.29 
sorted 2M 0.22 0.22 0.22 1.56 1.56 1.56 1.90 1.56 0.90 0.96 8.43 0.75 

4M 0.46 0.50 0.44 1.54 1.54 1.54 l.71 1.54 0.79 0.79 9.42 0.58 
BM 0.88 0.88 0.87 1.53 1.53 1.53 1.62 1.53 1.13 1.20 6.79 0.45 

16M 1.73 1.76 l.70 1.53 1.53 1.53 1.71 1.53 1.02 1.09 6.61 0.36 

20% on the random, twofaced, organpipe and m3killer inputs, 40% on the sorted and 
rotated ones, and 50% on the onezero inputs. 

The performance of BSELECT with the binary scheme C on the same inputs is given in 
Table 7.4. SELECT with scheme A was slower than BSELECT by about 5% on the random, 
twofaced, organpipe and m3killer inputs. Both were equivalent on the sorted and rotated 
inputs. However, on the onezero inputs, BSELECT was slower by about 40% and made 
excessively many comparisons and partitions. 

The preceding results were obtained with the modified choice (5.1) of i0 • For brevity, 
Table 7.5 gives results for SELECT with scheme A and the standard choice (2.1) of iv on 
the random inputs only, since these inputs are most frequently used in theory and practice 
for evaluating sorting and selection methods. The modified choice typically requires fewer 
comparisons for small inputs, but its advantages are less pronounced for larger inputs. A 
similar behavior was observed for SELECT with scheme B and for BSELECT. 

For comparison, Table 7.6 extracts from [Kiw02] some results of QSELECT for the 
samples (4.1). As noted in §1, QSELECT is slightly faster than SELECT on larger inputs 
because most of its work occurs on the first partition (cf. L,wg in Tabs. 7.1 and 7.6). In 
Table 7.7 we give corresponding results for RISELECT, a Fortran version of the algorithm of 
[Val00]. For these inputs, RISELECT behaves like FIND with median-of-three partitioning 
(because the average numbers of randomization steps, Nrnd, arc negligible); hence the 
expected value of Cavg is of order 2.75n [KMP97] . 

Our final Table 7.8 shows that SELECT beats its competitors with respect to the num
bers of comparisons made (expressed as multiples of n) on small random inputs (100 
instances for each input size n). 

Our computational results, combined with those in [Kiw02], suggest that both SELECT 
and QSELECT may compete with FIND in practice. 

Acknowledgment. I would like to thank Olgierd Hryniewicz, Iloger Koenker, Ronald 
L. Rivest and John D. Valois for useful discussions. 
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Table 7.4: Performance of BSELECT with binary scheme C. 

Sequence Size Time [sec] Comparisons [n] 1'nvg Lnvg Pavg Navg Pavg Suvg 

71 avg max min avg rnax min [n] [Inn] [Inn] [%n] 
randon1 2M 0.23 0.27 0.22 1.53 1.57 1.52 1.15 1.53 0.75 0.82 8.49 0.72 

4M 0.45 0.50 0.38 1.53 1.55 1.52 1.15 1.53 0.85 0.92 8.32 0.57 
8M 0.87 0.94 0.82 1.52 1.54 1.51 1.05 1.52 0.88 0.94 8.23 0.44 

16M l.75 1.86 l.64 1.52 1.53 1.51 1.09 1.52 0.94 1.00 8.39 0.35 
onezcro 2M 0.44 0.49 0.43 2.69 2.69 2.69 39.42 2.69 3.08 3.15 6.05 1.56 

4M 0.90 0.94 0.87 2.69 2.69 2.69 48.40 2.69 3.66 3.73 6.05 1.24 
8M l.77 1.82 1.75 2.69 2.69 2.69 59.52 2.69 4.20 4.26 6.13 0.98 

lGM 3.53 3.58 3.46 2.68 2.69 2.68 73.29 2.68 4.76 4.82 6.18 0.78 
sorted 2M 0.17 0.17 0.16 1.56 1.56 1.56 l.88 1.56 0.90 0.96 7.43 0.75 

4M 0.33 0.33 0.33 1.54 1.54 1.54 1.72 1.54 0.79 0.86 9.31 0.58 
8M 0.62 0.66 0.61 1.53 1.53 1.53 1.63 1.53 1.01 1.07 7.71 0.45 

16M 1.21 1.21 1.20 1.53 1.53 1.53 l.70 1.53 1.02 1.09 7.50 0.36 

Table 7.5: Performance of SELECT with the standard choice of iv, 

Sequence Size Time [sec] Comparisons In] 'Yuvg Lavg Puvg Nnvg Pavg Savg 

n avg max min avg max min [n] [Inn] [Inn] [%n] 
ran<lorn 501( 0.01 0.06 0.01 1.82 1.94 1.67 3.62 l.82 0.59 0.68 8.36 2.98 

1001( 0.02 0.06 0.01 1.77 1.86 l.71 3.71 1.77 0.76 0.85 7.57 2.40 
5001( 0.07 0.11 0.05 1.65 1.69 1.61 3.18 1.65 0.80 0.87 8.62 1.29 

lM 0.14 0.17 0.11 1.60 1.63 1.55 2.80 1.60 0.89 0.96 8.32 0.99 
2M 0.26 0.28 0.22 1.58 l.61 1.54 2.76 1.58 0.96 1.03 8.46 0.77 
4M 0.52 0.55 0.49 1.57 1.59 1.54 2.77 1.57 1.16 1.23 8.13 0.60 
8M 0.99 1.04 0.98 1.55 1.57 1.53 2.60 1.55 1.18 1.24 8.29 0.47 

16M 1.94 1.98 l.92 1.54 1.55 1.53 2.54 1.54 1.19 1.25 8.72 0.36 

Table 7.6: Performance of quintary QSELECT on random inputs. 

Sequence Size Time !sec] Comparisons In] luvg Lavg Pnvg Nuvg Pavg Savg 

n avg max min avg max tnin lnl !Inn] (Inn] [%n] 
rnndom /\OK 0.01 0.06 0.01 l.79 1.84 1.74 4.91 1.21 0.46 1.01 7.40 4.10 

1001( 0.02 0.06 O.oJ l.73 l.77 l.70 4.77 1.15 0.43 0.96 8.03 3.20 
5001( 0.06 0.11 0.05 1.62 1.63 1.61 4.06 1.08 0.56 1.20 8.00 1.86 

lM 0.12 0.17 0.11 1.59 1.60 1.58 3.95 1.06 0.67 1.40 7.95 1.47 
2M 0.22 0.22 0.21 1.57 1.58 1.56 3.76 1.04 0.76 1.59 7.90 1.16 
4M 0.43 0.44 0.38 1.56 1.56 1.55 3.63 1.03 0.95 1.95 7.29 0.92 
8M 0.83 0.88 0.82 1.54 1.55 1.54 3.54 1.03 0.98 2.00 7.41 0.72 

WM 1.62 1.65 1.59 1.53 1.54 1.53 3.39 1.02 1.00 2.05 7.77 0.57 
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Table 7.7: Performance of RISELECT on random inputs. 

Sequence Size Time [sec] Comparisons [n] Lnvg Nrnc1 

n avg max min avg max min [n] 
random 501( 0.01 0.06 0.01 3.10 4.32 1.88 3.10 0.40 

1001( 0.03 0.06 O.Dl 2.61 4.20 1.77 2.61 0.25 
5001( 0.10 0.11 0.05 2.90 4.23 1.69 2.90 0.20 

IM 0.18 0.22 0.11 2.81 3.64 1.84 2.81 0.35 
2M 0.34 0.44 0.22 2.60 3.57 1.83 2.60 0.30 
4M 0.77 1.38 0.44 2.88 4.81 1.83 2.88 0.55 
BM 1.38 1.70 1.05 2.60 3.48 1.80 2.60 0.45 

16M 3.00 4.01 1.75 2.99 4.49 1.73 2.99 0.45 

Table 7.8: Numbers of comparisons made on small random inputs. 

Size 1000 2500 5000 7500 10000 12500 15000 17500 20000 25000 
avg 2.47 2.07 1.94 1.86 1.84 1.81 1.76 1.75 1.74 1.73 

SELECT max 4.79 2.73 2.53 2.12 2.02 2.02 2.01 2.16 1.95 1.91 
min 1.51 1.72 1.64 1.63 1.64 1.62 1.07 1.59 1.04 l.61 
avg 2.82 2.54 2.26 2.14 2.08 2.04 1.99 1.96 1.95 1.91 

QSELECT max 3.90 3.37 2.61 2.45 2.31 2.20 2.12 2.13 2.12 2.07 
min 2.05 2.09 1.99 1.92 1.85 1.87 1.86 1.82 1.84 1.82 
avg 2.72 2.84 2.66 2.71 2.72 2.82 2.78 2.75 2.75 2.84 

RISELECT max 4.41 4.51 4.74 4.38 4.57 4.65 4.66 4.56 4.61 4.64 
min 1.68 1.83 1.75 1.59 1.70 1.77 1.78 1.67 1.90 1.71 
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