
Raport Badawczy

Research Report
RB/67/2002

Computing the Sets of K-Best
Solutions for Discrete

Optimization Problems

M. Gajda

lnstytut Badan Systemowych
Polska Akademia Nauk

Systems Research Institute
Polish Academy of Sciences

POLSKA AKADEMIA NAUK

lnstytut Badan Systemowych

ul. N ewelska 6

01-447 Warszawa

tel. : (+48) (22) 8373578

fax: (+48) (22) 8372772

Kierownik Pracowni zglaszajclCY prac~:
Prof dr hab. inz. Krzysztof Kiwi el

Warszawa 2002

Computing the sets of K-best solutions for
discrete optimization problems

1 Abstract

Magdalena Gajda
System Research Institute
Polish Academy of Science

December 23, 2002

We present Lawer[l] procedure for finding the K-best solutions of discrete
optimization problem and alternative Hamacher and Queyranne [4] apprnacli .
Then we introduce a new algorithm which is based on branch-and-bo'll.nd
method.

2 Keywords

Discrete optimization, K-best solutions, branch-and-bound method .

3 Introduction

In some cases it is useful to determinate not only the best solution but also
2nd the best, ... ,Kth best solution to a given problem. for example, whPn WP

add some restrictions which are not included in original problem and v<~rify
obtained solutions [1, 3].

We will consider a discrete optimization problem (P) :

min{f (x) : x E S} (P)

x = (x1,X2, · · · ,xn) ES<;; JR»,

where]Rn = {O, 1}». The set of K-best solutions for discrete optimization
problem (P) is formulated as follows. For given positive integer I< any sPI

S(K) <;; S, such that for any x E S(K) and y E S\S(K) the inequalit_v
J(x) ::; J(y) holds, is called the set of K-best solutions of the problem (P).

3.1 First Basic Computational Procedure

This simple computational procedure which ranks solutions from tbP first.
to the Kth has been proposed by Lawer [l]. Assume that if the foasibl<->
solution does not exist for some fixed values of variables, the value of an
optimal solution is taken to be +oo.

Step O (Start) Compute an optimal solution, without fixing the values of
any variables, and place this solution in LIST as the only entry. Set k = 1.

Step 1 (Output kth solution) Remove the least costly solution from LIST
and output this solution, denoted x<k) = (x;k), xfl, ... , x~kl), as tlw kth solu
tion.

Step 2 (Test k) If k = K, stop; the computation is completed.
Step 3 (Augmentation of LIST) Suppose, without loss of generality, that

x<k) was obtained by fixing the values of x1, x2, ... , x,. Leaving these variables
fixed as they are, create n - s new problems by fixing the remaining variables
as follows:

(1)
(2)
(3)

(n - s)

(k)
x,+1 = 1 - x,+t•

_ (k) _ (k)
X,+I - X,+1, Xs+2 - 1 - X,+2•

- w - w - w Xs+I - X 8+1, Xs+2 - Xs+2• Xs+3 - 1 - Xs+3•

(k) (k)
X.,+I = Xs+I' Xs+2 = X.,+2• x,, - 1 = :r:i;2,. X,, = 1 - :i:\,kl.

Compute optimal solutions to each of these n - s problems and place each
of the n - s solutions in LIST, together with a record of the variables which
were fixed for each of them. Set k = k + 1. Go to Step 1.

The branching operation (in Step 3) excludes x(k), from further consid
eration. Lawer [1] describes also an application of this procedure into th<'
ranking of the K shortest paths between two designated nodes of a nd,work.

2

3.2 Second Basic Computational Procedure

This procedure has been proposed by Hamacher and Queranne [4]. Let. f lw
an objective function discrete optimization problem and let S be the fi11ite sl'l
of all feasible solutions. For any subset S' ~ S let OPT(S') be the set. of all
optimal solutions restricted to S', i.e. the objective value of any x E OPT(S')
is better than or equal to the objective value of any y E S'.

We start with partition {S} of S and calculate the best. solutio11 .,· 1 E
OPT(S) and the second best solution y1 of S. In the i-step of the algorithlll
we have a partition PART of S into i sets S1 , · · ·, S;, and Xv E OPT(S,,) (v =
l, • • • , i) such that {x 1 , • • • ,x;} is an i-optimal solution set of S. Moreover,
we know the second best solution Yv Es. for all S. with /Sv/ > 1. Terns ,

Yj E OPT{yv : /Sul> l,v = 1, .. •,i}

is an (i + 1)-best solution in S. Next, we part S1 into two sets S(1l and S(i)

with Xj E S(I) and Yj E S(2l. Thus, Xj and y1 are best solutions in S(I) and
s<2>. For i = 1,2, if /S(il/ > 1 we calculate the second best solution, replace
Sj by S(ll and s<2l and continue with a new partition.

4 Branch-and-bound method for determin-
ing K-best solutions

4.1 Branch-and-Bound tree

We consider modification of branch-and-bound method to compute K-best.
solutions. This method ranks solutions from the best to the /\'-best.. for
predetermined positive integer K.

The dynamically generated Branch-and-Bound Tree (BBT) consists uf
nodes which corresponds to fixed values of variables. At first, the BBT has
only one node: root, which corresponds to the state when none of variables
is fixed . The BBT is expanded by branching on fixed variables.

For example consider the problem:

min{J(x): x ES}. (1)

If S ~ {O, 1}3, we first divide S into So= {x ES: x 1 = O}
and S1 = {x ES: x1 = l}. Then we divide So in to Soo and Soi as We'll as S1
in to S10 and Su, and so on .

3

4.2 Description of the algorithm

Our problem (P) can be presented as follows:

min{f(x):xES=SnlRn}, (P')

where:
min{f(x) : x ES}

denotes the continuous relaxation of (P).
The modified branch-and-bound algorithm is started by c.allinµ; tll(~ pnH·c·

dure EXPLORE, which has three parameters: the node X 0 , t,he li8t. uf uuc.ks
X and the set L. Initially the list X as well as the set L are empty au<l
node x 0 is a root. During calculations the set L stores the be8t of found
solutions. When the algorithm is completed and JSJ > K, then L c·cmt.ains
K-best solutions discrete optimization problem (P) otherwise L contains A:
best solutions of problem (P) where k = JSJ. The set L is also used to giw
the treshold value U in following way: if L contains K solutions thPn U is
equal to the max{f (l) : l E L }; otherwise U is defined as equal to infinity.
The list X include nodes which will be evaluated. The BBT is expand,•d bv
fixing values of variables.

Procedure EXPLORE solves the discrete optimization problem relaxat.iu11
i.e. the problem:

min{f(x) : x ES n x 0},

denoted by (!, S, X 0), where x 0 = {:i; E S: value x; is fixed fore some
i E {1, · · ·, n}} is a node chose in X. lffor the obtained solution:,: J(s) < U
then X 0 is added to list X. If concurrently s E {O, 1 t thm1 .s is a.dd,•d t.o s<'l

L.
If x 0 is not a root then procedure EXPLORE is called recurrently with

parameters: the node x 0 U {x}, where x = l - x, for last fixing value of'
variable x, the list X and the set L. Next the node x 0 is removed from th..
list X.

If a list X is not empty then algorithm chooses the new no<lr X 0 from
X as follows. The X 0 is this node from the X for which the solution J(-5) is
minimal. Then a branching variable x and value of variable x arr detenninPd ,
and the procedure EXPLORE is called recurrently with pararneters: th<' uod,·
x 0 u {x}, the list X and the set L.

The formal description of the modified branch-and-bound algorithm is
given below.

4

input Discrete optimization problem (!, S) and some integer /\· .
output A set S(K) of K-best solutions (!, S) problem.

procedure EXPLORE(X0 , X, L)
begin

s E argmin{!(x) : x ES} for given x 0

if J(s) < U then
'add X 0 to X' ;
if k = K then

ifs E {O, l}n, then
'remove from L the most costly solution';
L = LU {s}; U = max{!(s): s EL};

else
ifs E {O, l}n, then
L=LU{s};k=k+l;

end
if X 1 E X and X 0 t 0 then

'remove X 1 from list X';
EXPLORE(X 1 U {x}, X, L);

if IXI #. 0 then
begin
'find x 0 EX for which obtained solution J(s) is minimal ';
'determinate a branching variable x';
xi =Xo;
EXPLORE(X0 u {x},X,L);

end;

begin
U = +oo;
S(K) = 0;
EXPLORE(©, 0, S(K));

end

5

5 Conclusions

In my future work I will modify the procedure of computing the solution of
discrete optimization problem in C P LEX6. I intend to apply the above• al
gorithm and obtain procedure which computes the K-best solutions of binary
linear programming problem.

References

[l] E.L. Lawer - A procedure for computing the k-best solutions to <liscret.1·
optimization problems and its applications to the shortest path problem.
Managment Science 18 (1972) 401-407.

(2] P. J. Brucker, H. W. Hamacher - K-optimal solution sPts for son11• poly
nomially solvable scheduling problems. European Journal of Operational
Research 41 (1989) 194-202.

[3] E. S. van der Poort, M. Libura, G. Sierksma, J. A. A. van dnr \!c,!'11 -

Solving the k-best traveling salesman problem. Computern & Operations
Research 26 (1999) 409-425.

(4] H. W. Hamacher, M. Queyranne - k-best solutions to combinatorial
optimizations problems. Annals of Operations Research 4 (1985) 12:1-
143.

[5] U. Derigs - Some basic exchange properties in combinatorial optimiza
tion and their application to constructing the K-bes solutions. Discrc•I I'

Applied Mathematics 11 (1985) 129 - 141.

6

