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Computing the sets of K-best solutions for 
discrete optimization problems 

1 Abstract 

Magdalena Gajda 
System Research Institute 
Polish Academy of Science 

December 23, 2002 

We present Lawer[l] procedure for finding the K-best solutions of discrete 
optimization problem and alternative Hamacher and Queyranne [4] apprnacli . 
Then we introduce a new algorithm which is based on branch-and-bo'll.nd 
method. 
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3 Introduction 

In some cases it is useful to determinate not only the best solution but also 
2nd the best, ... ,Kth best solution to a given problem. for example, whPn WP 

add some restrictions which are not included in original problem and v<~rify 
obtained solutions [1, 3]. 

We will consider a discrete optimization problem (P) : 

min{f (x) : x E S} (P) 



x = (x1,X2, · · · ,xn) ES<;; JR», 

where ]Rn = {O, 1}». The set of K-best solutions for discrete optimization 
problem (P) is formulated as follows. For given positive integer I< any sPI 

S(K) <;; S, such that for any x E S(K) and y E S\S(K) the inequalit_v 
J(x) ::; J(y) holds, is called the set of K-best solutions of the problem (P). 

3.1 First Basic Computational Procedure 

This simple computational procedure which ranks solutions from tbP first. 
to the Kth has been proposed by Lawer [l]. Assume that if the foasibl<-> 
solution does not exist for some fixed values of variables, the value of an 
optimal solution is taken to be +oo. 

Step O (Start) Compute an optimal solution, without fixing the values of 
any variables, and place this solution in LIST as the only entry. Set k = 1. 

Step 1 (Output kth solution) Remove the least costly solution from LIST 
and output this solution, denoted x<k) = (x;k), xfl, ... , x~kl), as tlw kth solu
tion. 

Step 2 (Test k) If k = K, stop; the computation is completed. 
Step 3 (Augmentation of LIST) Suppose, without loss of generality, that 

x<k) was obtained by fixing the values of x1, x2, ... , x,. Leaving these variables 
fixed as they are, create n - s new problems by fixing the remaining variables 
as follows: 

(1) 
(2) 
(3) 

(n - s) 

(k) 
x,+1 = 1 - x,+t• 

_ (k) _ (k) 
X,+I - X,+1, Xs+2 - 1 - X,+2• 

- w - w - w Xs+I - X 8+1, Xs+2 - Xs+2• Xs+3 - 1 - Xs+3• 

(k) (k) 
X.,+I = Xs+I' Xs+2 = X.,+2• x,, - 1 = :r:i;2,. X,, = 1 - :i:\,kl. 

Compute optimal solutions to each of these n - s problems and place each 
of the n - s solutions in LIST, together with a record of the variables which 
were fixed for each of them. Set k = k + 1. Go to Step 1. 

The branching operation (in Step 3) excludes x(k), from further consid
eration. Lawer [1] describes also an application of this procedure into th<' 
ranking of the K shortest paths between two designated nodes of a nd,work. 
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3.2 Second Basic Computational Procedure 

This procedure has been proposed by Hamacher and Queranne [4]. Let. f lw 
an objective function discrete optimization problem and let S be the fi11ite sl'l 
of all feasible solutions. For any subset S' ~ S let OPT(S') be the set. of all 
optimal solutions restricted to S', i.e. the objective value of any x E OPT(S') 
is better than or equal to the objective value of any y E S'. 

We start with partition {S} of S and calculate the best. solutio11 .,· 1 E 
OPT(S) and the second best solution y1 of S. In the i-step of the algorithlll 
we have a partition PART of S into i sets S1 , · · ·, S;, and Xv E OPT(S,,) (v = 
l, • • • , i) such that {x 1 , • • • ,x;} is an i-optimal solution set of S. Moreover, 
we know the second best solution Yv Es. for all S. with /Sv/ > 1. Terns , 

Yj E OPT{yv : /Sul> l,v = 1, .. •,i} 

is an (i + 1)-best solution in S. Next, we part S1 into two sets S( 1l and S(i) 

with Xj E S(I) and Yj E S(2l. Thus, Xj and y1 are best solutions in S( I) and 
s<2>. For i = 1,2, if /S(il/ > 1 we calculate the second best solution, replace 
Sj by S(ll and s<2l and continue with a new partition. 

4 Branch-and-bound method for determin-
ing K-best solutions 

4.1 Branch-and-Bound tree 

We consider modification of branch-and-bound method to compute K-best. 
solutions. This method ranks solutions from the best to the /\'-best.. for 
predetermined positive integer K. 

The dynamically generated Branch-and-Bound Tree (BBT) consists uf 
nodes which corresponds to fixed values of variables. At first, the BBT has 
only one node: root, which corresponds to the state when none of variables 
is fixed . The BBT is expanded by branching on fixed variables. 

For example consider the problem: 

min{J(x): x ES}. (1) 

If S ~ {O, 1}3, we first divide S into So= {x ES: x 1 = O} 
and S1 = {x ES: x1 = l}. Then we divide So in to Soo and Soi as We'll as S1 
in to S10 and Su, and so on . 
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4.2 Description of the algorithm 

Our problem (P) can be presented as follows: 

min{f(x):xES=SnlRn}, (P') 

where: 
min{f(x) : x ES} 

denotes the continuous relaxation of (P). 
The modified branch-and-bound algorithm is started by c.allinµ; tll(~ pnH·c·

dure EXPLORE, which has three parameters: the node X 0 , t,he li8t. uf uuc.ks 
X and the set L. Initially the list X as well as the set L are empty au<l 
node x 0 is a root. During calculations the set L stores the be8t of found 
solutions. When the algorithm is completed and JSJ > K, then L c·cmt.ains 
K-best solutions discrete optimization problem (P) otherwise L contains A:
best solutions of problem (P) where k = JSJ. The set L is also used to giw 
the treshold value U in following way: if L contains K solutions thPn U is 
equal to the max{f (l) : l E L }; otherwise U is defined as equal to infinity. 
The list X include nodes which will be evaluated. The BBT is expand,•d bv 
fixing values of variables. 

Procedure EXPLORE solves the discrete optimization problem relaxat.iu11 
i.e. the problem: 

min{f(x) : x ES n x 0}, 

denoted by (!, S, X 0), where x 0 = {:i; E S: value x; is fixed fore some 
i E {1, · · ·, n}} is a node chose in X. lffor the obtained solution:,: J(s) < U 
then X 0 is added to list X. If concurrently s E {O, 1 t thm1 .s is a.dd,•d t.o s<'l 

L. 
If x 0 is not a root then procedure EXPLORE is called recurrently with 

parameters: the node x 0 U {x}, where x = l - x, for last fixing value of' 
variable x, the list X and the set L. Next the node x 0 is removed from th..
list X. 

If a list X is not empty then algorithm chooses the new no<lr X 0 from 
X as follows. The X 0 is this node from the X for which the solution J(-5) is 
minimal. Then a branching variable x and value of variable x arr detenninPd , 
and the procedure EXPLORE is called recurrently with pararneters: th<' uod,· 
x 0 u {x}, the list X and the set L. 

The formal description of the modified branch-and-bound algorithm is 
given below. 
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input Discrete optimization problem (!, S) and some integer /\· . 
output A set S(K) of K-best solutions (!, S) problem. 

procedure EXPLORE(X0 , X, L) 
begin 

s E argmin{!(x) : x ES} for given x 0 

if J(s) < U then 
'add X 0 to X' ; 
if k = K then 

ifs E {O, l}n, then 
'remove from L the most costly solution'; 
L = LU {s}; U = max{!(s): s EL}; 

else 
ifs E {O, l}n, then 
L=LU{s};k=k+l; 

end 
if X 1 E X and X 0 t 0 then 

'remove X 1 from list X'; 
EXPLORE(X 1 U {x}, X, L); 

if IXI #. 0 then 
begin 
'find x 0 EX for which obtained solution J(s) is minimal '; 
'determinate a branching variable x'; 
xi =Xo; 
EXPLORE(X0 u {x},X,L); 

end; 

begin 
U = +oo; 
S(K) = 0; 
EXPLORE(©, 0, S(K)); 

end 

5 



5 Conclusions 

In my future work I will modify the procedure of computing the solution of 
discrete optimization problem in C P LEX6. I intend to apply the above• al
gorithm and obtain procedure which computes the K-best solutions of binary 
linear programming problem. 
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