## $41 / 2002$

# Raport Badawczy <br> <br> Research Report 

 <br> <br> Research Report}

## RB/67/2002

## Computing the Sets of $K$-Best Solutions for Discrete Optimization Problems

M. Gajda

# Instytut Badań Systemowych 

 Polska Akademia NaukSystems Research Institute Polish Academy of Sciences


## POLSKA AKADEMIA NAUK

## Instytut Badań Systemowych

ul. Newelska 6
01-447 Warszawa
tel.: $\quad(+48)(22) 8373578$
fax: $\quad(+48)(22) 8372772$

Kierownik Pracowni zgłaszajacy pracę: Prof. dr hab. inż. Krzysztof Kiwiel

# Computing the sets of $K$-best solutions for discrete optimization problems 

Magdalena Gajda<br>System Research Institute<br>Polish Academy of Science

December 23, 2002

## 1 Abstract

We present Lawer[1] procedure for finding the $K$-best solutions of discrete optimization problem and alternative Hamacher and Queyranne [4] approach. Then we introduce a new algorithm which is based on branch-and-bound method.

## 2 Keywords

Discrete optimization, $K$-best solutions, branch-and-bound method.

## 3 Introduction

In some cases it is useful to determinate not only the best solution but also 2nd the best,..., $K$ th best solution to a given problem. For example, when we add some restrictions which are not included in original problem and verify obtained solutions $[1,3]$.

We will consider a discrete optimization problem $(P)$ :

$$
\begin{equation*}
\min \{f(x): x \in \delta\} \tag{P}
\end{equation*}
$$

$$
x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathcal{S} \subseteq \mathbb{B}^{n}
$$

where $\mathbb{B}^{n}=\{0,1\}^{n}$. The set of $K$-best solutions for discrete optimization problem $(P)$ is formulated as follows. For given positive integer $K$ any set $\mathcal{S}(K) \subseteq \mathcal{S}$, such that for any $x \in \mathcal{S}(K)$ and $y \in \mathcal{S} \backslash \mathcal{S}(K)$ the inequality $f(x) \leq f(y)$ holds, is called the set of $K$-best solutions of the problem (P).

### 3.1 First Basic Computational Procedure

This simple computational procedure which ranks solutions from the first to the Kth has been proposed by Lawer [1]. Assume that if the feasible solution does not exist for some fixed values of variables, the value of an optimal solution is taken to be $+\infty$.

Step 0 (Start) Compute an optimal solution, without fixing the values of any variables, and place this solution in LIST as the only entry. Set $k=1$.

Step 1 (Output $k$ th solution) Remove the least costly solution from LIST and output this solution, denoted $x^{(k)}=\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{n}^{(k)}\right)$, as the $k$ th solution.

Step 2 (Test $k$ ) If $k=K$, stop; the computation is completed.
Step 3 (Augmentation of LIST) Suppose, without loss of generality, that $x^{(k)}$ was obtained by fixing the values of $x_{1}, x_{2}, \ldots, x_{s}$. Leaving these variables fixed as they are, create $n-s$ new problems by fixing the remaining variables as follows:

$$
\begin{array}{ll}
(1) & x_{s+1}=1-x_{s+1}^{(k)} \\
(2) & x_{s+1}=x_{s+1}^{(k)}, x_{s+2}=1-x_{s+2}^{(k)}, \\
(3) & x_{s+1}=x_{s+1}^{(k)}, x_{s+2}=x_{s+2}^{(k)}, x_{s+3}=1-x_{s+3}^{(k)}, \\
\vdots & \vdots  \tag{3}\\
(n-s) & x_{s+1}=x_{s+1}^{(k)}, x_{s+2}=x_{s+2}^{(k)}, \cdots, x_{n-1}=x_{n-1}^{(k)}, x_{n}=1-x_{n}^{(k)}
\end{array}
$$

Compute optimal solutions to each of these $n-s$ problems and place each of the $n-s$ solutions in LIST, together with a record of the variables which were fixed for each of them. Set $k=k+1$. Go to Step 1 .

The branching operation (in Step 3) excludes $x^{(k)}$, from further consideration. Lawer [1] describes also an application of this procedure into the ranking of the $K$ shortest paths between two designated nodes of a network.

### 3.2 Second Basic Computational Procedure

This procedure has been proposed by Hamacher and Queranne [4]. Let $f$ be an objective function discrete optimization problem and let $S$ be the finite set of all feasible solutions. For any subset $\mathcal{S}^{\prime} \subseteq \mathcal{S}$ let $O P T\left(\delta^{\prime}\right)$ be the set of all optimal solutions restricted to $\mathcal{S}^{\prime}$, i.e. the objective value of any $x \in O P T\left(\mathcal{S}^{\prime}\right)$ is better than or equal to the objective value of any $y \in \mathcal{S}^{\prime}$.

We start with partition $\{\mathcal{S}\}$ of $\mathcal{S}$ and calculate the best solution $x_{1} \in$ $O P T(\mathcal{S})$ and the second best solution $y_{1}$ of $\mathcal{S}$. In the $i$-step of the algorithm we have a partition PART of $\mathcal{S}$ into $i$ sets $\mathfrak{S}_{1}, \cdots, \mathcal{S}_{i}$, and $x_{v} \in O P T\left(\mathcal{S}_{v}\right)(v=$ $1, \cdots, i)$ such that $\left\{x_{1}, \cdots, x_{i}\right\}$ is an $i$-optimal solution set of $\mathcal{S}$. Moreover, we know the second best solution $y_{v} \in S_{v}$ for all $S_{v}$ with $\left|\delta_{v}\right|>1$. Thus,

$$
y_{j} \in O P T\left\{y_{v}:\left|\mathcal{S}_{v}\right|>1, v=1, \cdots, i\right\}
$$

is an $(i+1)$-best solution in $\delta$. Next, we part $\mathcal{S}_{j}$ into two sets $\mathcal{S}^{(1)}$ and $\mathcal{S}^{(2)}$ with $x_{j} \in \mathcal{S}^{(1)}$ and $y_{j} \in \mathcal{S}^{(2)}$. Thus, $x_{j}$ and $y_{j}$ are best solutions in $\mathcal{S}^{(1)}$ and $\delta^{(2)}$. For $i=1,2$, if $\left|\delta^{(i)}\right|>1$ we calculate the second best solution, replace $\delta_{j}$ by $\mathcal{S}^{(1)}$ and $\mathcal{S}^{(2)}$ and continue with a new partition.

## 4 Branch-and-bound method for determining $K$-best solutions

### 4.1 Branch-and-Bound tree

We consider modification of branch-and-bound method to compute $K$-best solutions. This method ranks solutions from the best to the $K$-best, for predetermined positive integer $K$.

The dynamically generated Branch-and-Bound Tree (BBT) consists of nodes which corresponds to fixed values of variables. At first, the BBT has only one node: root, which corresponds to the state when none of variables is fixed. The BBT is expanded by branching on fixed variables.

For example consider the problem:

$$
\begin{equation*}
\min \{f(x): x \in \mathcal{S}\} \tag{1}
\end{equation*}
$$

If $\mathcal{S} \subseteq\{0,1\}^{3}$, we first divide $\mathcal{S}$ into $\mathcal{S}_{0}=\left\{x \in \mathcal{S}: x_{1}=0\right\}$
and $S_{1}=\left\{x \in \mathcal{S}: x_{1}=1\right\}$. Then we divide $S_{0}$ in to $S_{00}$ and $S_{01}$ as well as $S_{1}$ in to $S_{10}$ and $\mathcal{S}_{11}$, and so on.

### 4.2 Description of the algorithm

Our problem ( $P$ ) can be presented as follows:

$$
\min \left\{f(x): x \in \mathcal{S}=\bar{\delta} \cap \mathbb{B}^{n}\right\}
$$

where:

$$
\min \{f(x): x \in \bar{\delta}\}
$$

denotes the continuous relaxation of $(\mathrm{P})$.
The modified branch-and-bound algorithm is started by calling the procedure EXPLORE, which has three parameters: the node $X^{0}$, the list of nodes $X$ and the set $L$. Initially the list $X$ as well as the set $L$ are empty and node $X^{0}$ is a root. During calculations the set $L$ stores the best of found solutions. When the algorithm is completed and $|\mathcal{S}|>K$, then $L$ contains $K$-best solutions discrete optimization problem ( $P$ ) otherwise $L$ contains $k$-best solutions of problem (P) where $k=|\delta|$. The set $L$ is also used to give the treshold value $U$ in following way: if $L$ contains $K$ solutions then $U$ is equal to the $\max \{f(l): l \in L\}$; otherwise $U$ is defined as equal to infinity. The list $X$ include nodes which will be evaluated. The BBT is expanded by fixing values of variables.

Procedure EXPLORE solves the discrete optimization problem relaxation i.e. the problem:

$$
\min \left\{f(x): x \in \overline{\mathcal{S}} \cap X^{0}\right\}
$$

denoted by $\left(f, \overline{\mathcal{S}}, X^{0}\right)$, where $X^{0}=\left\{x \in \mathcal{S}\right.$ : value $x_{i}$ is fixed fore some $i \in\{1, \cdots, n\}\}$ is a node chose in $X$. If for the obtained solution $s: f(s)<U$ then $X^{0}$ is added to list $X$. If concurrently $s \in\{0,1\}^{n}$ then $s$ is added to) set $L$.

If $X^{0}$ is not a root then procedure EXPLORE is called recurrently with parameters: the node $X^{0} \cup\{\bar{x}\}$, where $\bar{x}=1-x$, for last fixing value of variable $x$, the list $X$ and the set L . Next the node $X^{0}$ is removed from the list $X$.

If a list $X$ is not empty then algorithm chooses the new node $X^{0}$ from $X$ as follows. The $X^{0}$ is this node from the $X$ for which the solution $f(s)$ is minimal. Then a branching variable $x$ and value of variable $x$ are determined, and the procedure EXPLORE is called recurrently with parameters: the node $X^{0} \cup\{x\}$, the list $X$ and the set L .

The formal description of the modified branch-and-bound algorithm is given below.
input Discrete optimization problem $(f, S)$ and some integer $K$. output A set $S(K)$ of $K$-best solutions $(f, \mathcal{S})$ problem.

```
procedure EXPLORE ( }\mp@subsup{X}{}{0},X,L
    begin
        s\in\operatorname{argmin}{f(x):x\in\overline{S}}\mathrm{ for given X }\mp@subsup{X}{}{0}
        if f(s)<U then
            'add X }\mp@subsup{X}{}{0}\mathrm{ to }\mp@subsup{X}{}{\prime}\mathrm{ ;
            if k=K then
                if }s\in{0,1\mp@subsup{}}{}{n}\mathrm{ , then
                    'remove from L the most costly solution';
                    L=LU{s};U=max{f(s):s\inL};
            else
                if }s\in{0,1\mp@subsup{}}{}{n}\mathrm{ , then
                L=L\cup{s};k=k+1;
        end
    if }\mp@subsup{X}{}{1}\inX\mathrm{ and }\mp@subsup{X}{}{0}\not=\emptyset\mathrm{ then
        'remove X '1 from list X';
        EXPLORE ( }\mp@subsup{X}{}{1}\cup{\overline{x}},X,L)
    if }|X|\not=0\mathrm{ then
        begin
        'find }\mp@subsup{X}{}{0}\inX\mathrm{ for which obtained solution f(s) is minimal';
        'determinate a branching variable x';
        X 1}=\mp@subsup{X}{}{0}\mathrm{ ;
        EXPLORE( }\mp@subsup{X}{}{0}\cup{x},X,L)
end;
begin
    U = +\infty;
    S(K)=\emptyset;
    EXPLORE(\emptyset, }\emptyset,S(K))
end
```


## 5 Conclusions

In my future work I will modify the procedure of computing the solution of discrete optimization problem in CPLEX6. I intend to apply the above algorithm and obtain procedure which computes the $K$-best solutions of binary linear programming problem.

## References

[1] E.L. Lawer - A procedure for computing the $k$-best solutions to discrete optimization problems and its applications to the shortest path problem. Managment Science 18 (1972) 401-407.
[2] P. J. Brucker, H. W. Hamacher - K-optimal solution sets for some polynomially solvable scheduling problems. European Journal of Operational Research 41 (1989) 194-202.
[3] E. S. van der Poort, M. Libura, G. Sierksma, J. A. A. van der Veen Solving the $k$-best traveling salesman problem. Computers \& Operations Research 26 (1999) 409-425.
[4] H. W. Hamacher, M. Queyranne - $k$-best solutions to combinatorial optimizations problems. Annals of Operations Research 4 (1985) 123143.
[5] U. Derigs - Some basic exchange properties in combinatorial optimization and their application to constructing the $K$-bes solutions. Discrete Applied Mathematics 11 (1985) 129-141.
<

