
Raport Badawczy

Research Report
RB/79/2002

Randomized Selection
Revisited

K.C. Kiwiel

lnstytut Badaii Systemowych
Polska Akademia Nauk

Systems Research Institute
Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badan Systemowych

ul. Newelska 6

01-447 Warszawa

tel. : (+48) (22) 8373578

fux : (+48)(22)8372772

Kierownik Pracowni zglaszaj&.cy prac~:
Prof dr hab . inz. Krzysztof C. Kiwiel

Warszawa 2002

Randomized selection revisited

Krzysztof C. Kiwiel*

April 15, 2002

Abstract

We show that severnl versions of Floyd and Rivcst's algorithm SELECT for finding
the kth smallest of n elements require at most n + min{k, 11 - k} + o(n) comparisons
on average and with high probability. This rectifies the analysis of Floyd and Rivest.,
and extends it to the case of nondistinct clements. Our computational results confirm
that SELECT may be the best algorithm in practice.

Key words. Selection, medians, partitioning, computational complexity.

1 Introduction

The selection problem is defined as follows: Given a set X := { xi g•=I of n elements, a
total order < on X, and an integer 1 ~ k ~ n, find the kth smallest element of X, i.e.,
an element x of X for which there are at most k - 1 elements xi < x and at least k
elements Xj ~ X . The median of X is the r n/21 th smallest element of X. (Since we are
not assuming that the clements are distinct, X may be regarded as a multiset).

Selection is one of the fundamental problems in computer science. It is used in the
solution of other basic problems such as sorting and finding convex hulls. Hence its lit­
erature is too vast to be reviewed here; see, e.g., [DHUZ0l, DoZ99, DoZ0l] and [Knu98,
§5.3.3] . We only stress that most references employ a comparison model (in which a SL~

lection algorithm is charged only for comparisons between pairs of elements), assuming
that the elements are distinct. Then, in the worst case, selection needs at least (2 + f)n
comparisons [DoZ0lj, whereas the pioneering algorithm of [BFP+72] makes at most 5.43n,
its first improvement of [SPP76] needs 3n + o(n), and the most recent improvement in
[DoZ99] takes 2.95n+o(n). Thus a gap of almost 50% still remains between the best lower
and upper bounds in the worst case.

The average case is better understood. Specifically, for k ~ f n/21, at least n + k - 2
comparisons are necessary [CuM89], [Knu98, Ex. 5.3.3- 25], whereas the best upper bound
is n + k + O(n112 Jn 112 n) [Knu98, Eq. (5.3.3.16)]. Yet this bound holds for a hardly
implementable theoretical scheme [Knu98, Ex. 5.3.3- 24], whereas a similar frequently cited
bound for the algorithm SELECT of [FIIl75b] doesn't have a full proof, as noted in [Knu98,

'Systems Research Institute, Ncwclska G, 01 - 447 Warsaw, Polaud (kiwiel<Oibspan . waw . pl)

Ex. 5.3.3- 24] and [PRKT83]. Significantly worse bounds hold for the classical algorithm
FIND of [Hoa61], also known as quickselect, which partitions X by using the median of a
random sample of size s ?: 1. In particular, for k = r n/21, the upper bound is 3.39n + o(n)
for s = 1 [Knu98, Ex. 5.2.2- 32] and 2.75n + o(n) for s = 3 [Grii99, KMP97], whereas for
finding an element of random rank, the average cost is 3n + o(n) for s = 1, 2.5n + o(n) for
s = 3 [KMP97], and 2n + o(n) when s -+ oo, s/n-+ 0 as n-+ oo [MaR0l]. In practice
FIND is most popular, because the algorithms of [BFP+72, SPP76] are much slower on
the average [Mus97, Va!O0]. For the general case of nonclistinct elements, little is known
in theory about these algorithms, but again FIND performs well in practice [Va!O0].

Our aim is to rekindle theoretical and practical interest in the algorithm SELECT of
[FIR.75b, §2.1] (the versions of [FIR75b, §2.3] and [FlR75a] will be aclclressecl elsewhere) .
We show that SELECT performs very well in both theory and practice, even when equal
elements occur. To outline our contributions in more detail, we recall that SELECT operates
as follows. Using a small random sample, two elements u and v almost sure to be just
below and above the kth are found. The remaining elements are compared with u and v
to create a small selection problem on the clements between u and v that is quickly solved
recursively. By taking a random subset as the sample, this approach docs well against any
input ordering, both on average and with high probability.

First, we revise SELECT slightly to simplify our analysis. Then, without assuming
that the elements are distinct, we show that SELECT needs at most n + min{k, n - k} +
O(n213 ln1/:i n) comparisons on average; this agrees with the result of [FlR75b, §2.2] which
is based on an unproven assumption [PRKT83, §5]. Similar upper bounds are established
for versions that choose sample sizes as in [FlR75a, Meh00, Rei85] and [MoR95, §3.3] .
Thus the average costs of these versions reach the lower bounds of 1.5n + o(n) for median
selection and 1. 25n + o(n) for selecting an element of random rank (yet the original sample
size of [FIR75b, §2.2] has the best lower order term in its cost). We also prove that nonre-­
cursive versions of SELECT, which employ other selection or sorting algorithms for small
subproblems, require at most n + min { k, n - k} + o(n) comparisons with high probability
(e.g., 1 - 4n-2.B for a user-specified (3 > 0); this extends and strengthens the results of
[GeS96, Thm 2], [Meh00, Thm 2] and [MoR95, Thm 3.5].

Since theoretical bounds alone needn't convince practitioners (who may worry about
hidden constants, etc.), a serious effort was made to design a competitive implementation
of SELECT. Here, as with FIND and quicksort [Scd77], the partitioning efficiency is crucial.
In contrast with the observation of [FlR75b, p. 169] that "partitioning X about both u
and v [is] an inherently inefficient operation", we introduce several quintary schemes which
perform well in practice. As a byproduct, we give a modification of the ternary partitioning
scheme of [BeM93, BeS97] that obviates subscript. range checking.

Relative to FIND, SELECT requires only small additional stack space for recursion,
because sampling without replacement can be clone in place. Still, it might seem that
random sampling needs too much time for random number generation. (Hence several
popular implementations of FIND don't sample randomly, assuming that the input file is
in random order, whereas others [Va!O0] invoke random sampling only when slow progress
occurs.) Yet our computational experience shows that sampling doesn't hurt even on
random inputs, and it helps a lot on more difficult inputs (in fact our interest in SELECT

2

was sparked by the poor performance of the implementation of [FIR75a] on several inputs
of [ValO0]). Most importantly, even for examples with relatively low comparison costs,
SELECT beats quite sophisticated implementations of FIND by a wide margin, in both
comparison counts and computing times. To save space, only selected results are reported,
but our experience on many other inputs was similar. In particular, empirical estimates
of the constants hidden in our bounds were always quite small. F\uther, the performance
of SELECT is extremely stable across a variety of inputs, even for small input sizes (cf.
§7.3). A theoretical explanation of these features will be undertaken elsewhere. For now,
our experience supports the claim of [FlR75b, §1] that "the algorithm presented here is
probably the best practical choice" .

The paper is organized as follows. A general version of SELECT is introduced in §2,
and its basic features are analyzed in §3. The average performance of SELECT is studied
in §4. High probability bounds for nonrecursive versions are derived in §5. Partitioning
schemes are discussed in §6. Finally, our computational results are reported in §7.

Our notation is fairly standard. JAi denotes the cardinality of a set A. In a given
probability space, P is the probability measure, and E is the mean-value operator.

2 The algorithm SELECT

In this section we describe a general version of SELECT in terms of two auxiliary functions
s(n) and g(n) (the sample size and rank gap), which will be chosen later. We omit their
arguments in general, as no confusion can arise.

SELECT picks a small random sample S from X and two pivots u and v from S such that
u '.S xi, '.S v with high probability, where xi, is the kth smallest element of X. Partitioning
X into elements less than u, between u and v, greater than v, and equal to u or v, SELECT
either detects that tt or v equals xZ,, or determines a subset Jc of X and an integer k such
that xi, may be selected recursively as the kth smallest element of Jc.

Below is a detailed description of the algorithm.

Algorithm 2.1.
SELECT(X,k) (Selects the kth smallest element of X, with 1 :S k '.Sn:= [XI)

Step 1 (Initiation). If n = 1, return x 1 • Choose the sample size s :S n - 1 and gap g > 0.

Step 2 (Sample selection). Pick randomly a sample S := {y1 , •• • , y.} from X .

Step 3 (Pivot selection) . Set iu := max{rks/n- Yl, l}, iv := min{rks/n + Yl,s}. Let u
and v be the i,.th and ivth smallest clements of S, found by using SELECT recursively.

Step 4 (Partitioning). Dy comparing each element x of X to u and v, partition X into
A := {x E X : x < u}, B := {x E X : x = ·u}, C := {x E X : u < x < v},
D := {x EX: x = v}, E := {x EX: v < x}. If k < n/2, xis compared to v first, and to
u only if x < v and u < v. If k 2: n/2, the order of the comparisons is reversed.

Step 5 (Stopping test). If JAi < k '.S [AUDI then return u; else if IAUBUCJ < k '.S n-lEI
then return v .

3

Step_ 6 (Reduction). If k :-::; IAj, set X := -'.'.1, and k := k; else if n - IEI. < k, set X := E
and k := k - n + IEI; else set X := C and k := k - IA U Bl, Set ft:= IXI,
Step 7 (Recursion). Return SELECT(X, k).

A few remarks on the algorithm are in order.

Remarks 2.2. (a) The correctness and finiteness of SELECT stem by induction from the
following observations. The returns of Steps 1 and 5 deliver the desired element. At Step
6, X and k ar~ chosen so that the kth smallest element of X is the kth smallest element
of X, and ft < n (since u, v if. X). Also ISi < n for the recursive calls at Step 3.

(b) When Step 5 returns u (or v), SELECT may also return information about the
positions of the elements of X relative to u (or v). For instance, if Xis stored as an array,
its k smallest elements may be placed first via interchanges at Step 4 (cf. §6) . Hence after
Step 3 finds u, we may remove from S its first i,. smallest elements before extracting v.
F\1rther, Step 4 need only compare u and 11 with the elements of X \ S.

(c) The following elementary property is needed in §4. Let c,.. denote the maximum
number of comparisons taken by SELECT on any input of size n . Since Step 3 makes at
most Cs+ c.,-i,. comparisons withs< n, Step 4 needs at most 2(n - s), and Step 7 takes
at most e;, with ft < n, by induction c,, < oo for all n.

3 Preliminary analysis

In this section we analyze general features of sampling used by SELECT.

3.1 Sampling deviations and expectation bounds

Our analysis hinges on the following bound on the tail of the hypergeometric distribution
established in [Hoe63] and rederived shortly in [Chv79] .

Fact 3.1. Let s balls be chosen uniformly at random from a set of n balls, of which r
are red, and r' be the random variable representing the number of red balls drown. Let
p := r /n. Then

P [r' 2'. ps + g] :-::; e-2921·• Vg 2'. 0. (3.1)

We shall also need a simple version of the (left) Chebyshev inequality (Kor78, §2.4.2].

Fact 3.2. Let z be a nonnegative random variable such that P[z ~ (] = 1 for some
constant (. Then Ez ~ t + (P[z > t] for all nonnegative re11l numbers t.

3.2 Sample ranks and partitioning efficiency

Denote by xi ~ ... ::; x;, and 11i ~ ... ::; 11; the sorted elements of the input set X and
the sample set S, respectively. Thus xi, is the kth smallest element of X, whereas u = 11: ..
and 11 = 117. at Step 3. This notation facilitates showing that for the bounding indices

k1 := max{ rk- 2gn/sl, 1} and k,. := min { rk + 2gn/sl ,n }, (3.2)

we have .1:i,, ~ u ~ xi, ~ v ~ :i:!., with high probability for suitable choices of s and g.

4

Lemma 3.3. (a) P[xi, < u]:::; e- 292!• if iu = rks/n - gl.
(b) P[u < x;:,,] S e-292/• .

(c) P[v < x;:,] S e- 292/• if iv= rks/n + g 1-
(d) P[.1:!, < v] S e-292/•.

(e) i,. 1' rks/n - gl iif ks gn/s; i., 1' fl.:s/n + gl iff n < k + gn/s .

Proof. (a) If x;:, < y;", at leasts - iu + 1 samples satisfy y; 2: xj+1 with J := maxx;=xz j.
In the setting of Fact 3.1, we haver := n - J red elements x; 2: xj+i• ps = s - Js/n
and r' 2: s - i,. + 1. Since i,. = r ks/n - Y l < ks/n - g + l and J 2: k, we get r' >
ps + (J- k)s/n + g 2: ps + g. Hence P[x;:, < u] S P[r' 2: ps + g] S e- 292!• by (3.1).

(b) If Yiu < xZ,, i,. samples are at most x;, where r := maxx;<xz, j. Thus we haver red

elements Xj S x;, ps = rs/n and r' 2: i,. . Now, 1 S r S k1 -1 implies 2 S k, = r k-2gn/ s l
by (3.2) and thus k1 < k - 2gn/s + l, so -rs/n > -ks/n + 2g. Hence i,. - ps - g 2:
ks/n - g - rs/n - g > 0, i.e., r' > ps + g; invoke (3.1) as before.

(c) If Yi,, < xi,, iv samples are at most x;, where r := maxx;<xz j. Thus we haver red
elements x; S x;, ps = rs/n and r' 2: iv. I3ut iv - ps - g 2: ks/n + g - rs/n - g 2: 0
implies r' 2: ps + g, so again (3.1) yields the conclusion.

(d) If xZ, < y7., s-iv+ 1 samples are at least xj+1, where J := maxx;=xz.. j. Thus we have
r := n- J red elements x; 2: xj+l• ps = s- Js/n and r' 2: s -iv+ l. Now, iv < ks/n+ g+ 1
andJ2: kr 2: k+2gn/s {cf. {3.2)) yield s-iv+l-ps-g 2: Js/n-ks/n-g-l+l-g 2: 0.
Thus xi., < v implies r' 2: ps + g; hence P[xt < v] S P[r' 2: ps + g] S e-29'!• by (3.1).

(e) Follows immediately from the properties of f·l [Knu97, §1.2.4]. D

We may now estimate the partitioning costs of Step 4. We assume that only necessary
comparisons are made (but it will be seen that up to s extraneous comparisons may be
accomodated in our analysis; cf. Rem. 5.4{a)) .

Lemma 3.4. Let c denote the number of comparisons made at Step 4. Then

P[c Sc] 2: 1 - e-292!• and Ee Sc+ 2{n - s)e-292!• with

c := n + min{ k,n- k} - s + 2gn/s.

{3.3a)

(3.3b)

Proof. Consider the event A := { c S c} and its complement A' := { c > c} . If u = ·u then
c = n - s Sc; hence P[A'] = P[A' n {u < v}], and we may assume u < v below.

First, suppose k < n/2. Then c = n - s + l{x E X \ S : x < v}I, since n - s
elements of X \Sare compared to v first. lu particular, c S 2(n - s). Since k < n/2,
c = n + k - s + 2gn / s. If v S xi,,., then { x E X \ S : x < v} C { x E X : x S v} \ { u, v}
yields l{x EX\ S: x < v}I S kr - 2, soc Sn - s + k~ - 2; since kr < k + 2gn/s + 1, we
get c Sn+ k - s + 2gn/s - 1 Sc. Thus u < v S xi:, implies A. Therefore, A' n {u < v}
implies {xt < v} n {u < v}, so P[A' n {u < v}] S P[xt < v] S e-292/• {Lem. 3.3(d)).
Hence we have (3.3), since Ee S c+2(n-s)e-292/• by Fact 3.2 (with z := c, (:= 2(n-s)) .

Next, suppose k 2: n/2. Now c = n - s + l{x EX\ S: u < x}I, since n - s elements
of X \Sare compared to u first. If xi,, S u, then {.1; E X \ S : 11 < :i;} C {x E X :
u S 1;} \ {u,v} yields l{x EX\ S: u < x}I Sn - k1 - 1; hence kt 2: k - 2gn/s gives
c:::; n - s + (n - k) + 2gn/s - 1 Sc. Thus A' n {u < v} implies {u < :ci.J n {·u < u}, so
P[A' n {u < 11}]:::; P[u < J:t.,j S e-292/• (Lem. 3.3(b)), and we get (3.3) as before. D

5

The following result will imply that, for suitable choices of s and g, the set Jc selected
at Step 6 will be "small enough" with high probability and in expectation; we let Jc := 0
and ii:= 0 if Step 5 returns u or v, but we don't consider this case explicitly.

Lemma 3.5. P [n < 4gn/ s] ?: 1 - 4e-292I•, and En ::; 4gn/ s + 4ne-21H•.

Proof. The first bound yields the second one by Fact 3.2 (with z := n < n). In each case
below, we define an event £ that implies the event B := { ii < 4gn/ s}.

First, consider the middle case of i,. = f ks/n-g 1 and i., = f ks/n+ g l Let£ := {xi:, ::;
u ::; xic ::; v::; xZ,}. By Lem. 3.3 and the Boole-Benferroni inequality, its complement£'
has P[&'] ::; 4e-2ri2/s, so P[&] ?: 1 - 4e-292I•. By the rules of Steps 4- 6, u ::; xi, ::; v implies
Jc = C, whereas xi:, ::; u ::; v::; xic, yields n::; kr - k1 + 1 - 2; since kr < k + 2_qn/s + 1
and k1 ?: k - 2gn/ s by (3.2), we get ii< 4gn/ s. Hence£ C B and thus P[B] ?: P[&].

Next, consider the left case ofi,. I fks/n-91, i.e., k::; gn/s (Lem. 3.3(e)). If
i., I fks/n + 97, then n < k + gn/s (Lem. 3.3(e)) gives n < n < k + gn/s::; 2gn/s; take
& := {n < k + 9n/s}, a certain event. For i., = fks/n + 97, let & :={xi,::; v::; xi,J; again
P[&] ?: 1 - 2e-292/• by Lem. 3.3(c,d). Now, xic ::; v implies Jc C AU C, whereas v::; xZ,
gives ii ::; kr - 1 < k + 2_qn/ s ::; 39n/ s; therefore £ C B.

Finally, consider the right case of i., # f ks/n+ 91, i.e., n < k+ gn/ s. If i,. # fks/n-g 1
then k ::; 9n/s gives n < n < 2gn/s; take£ := {k ::; gn/s} . For i,. = fks/n - gl,
& := {xi,, ::; u ::; xZ} has P[&] ?: 1 - 2e-292/• by Lem. 3.3(a,b). Now, u ::; xi, implies

Jc C CUE, whereas xZ, ::; u yields n ::; n - k1 with k1 ?: k - 29n/ s and thus ii < 3gn/ s.
Hence£ CB. D

Corollary 3.6. P [c ::; c and n < 4gn/ s] ?: 1 - 4e-2Y2
/•.

Proof. Check that £ implies A in the proofs of Lems. 3.4 and 3.5; note that n ::; 29n/s
yields c::; 2(n - s)::; c (cf. (3.3b)) in the left and right subcases. D

Remark 3. 7. Suppose Step 3 resets i,. := i., if k ::; gn/ s, or i., := i,. if n < k + 9n/s,
finding a single pivot u = v in these cases. The preceding results remain valid.

4 Analysis of the recursive version

In this section we analyze the average performance of SELECT for various sample sizes.

4.1 Floyd-Rivest's samples

For positive constants a and {J, consider choosing s = s(n) and .<J = 9(n) as

s := min{faf(n)l,n-1} and g := ({Jslnn) 112 with f(n) := n213 1n 113 n. (4.1)

This form of 9 gives a probability bound e-292I• = n-2/J for Lems. 3.4- 3.5. To get more
feeling, suppose a= (3 = 1 ands= f(n). Let </J(n) := f(n)/n. Then s/n = 9/s = </J(n)
and ii/n is at most 4</>(n) with high probability (at least 1-4/n2), i.e., </J(n) is a contraction
factor; note that </J(n) ~ 2.4% for n = 106 (cf. Tab. 4.1).

G

Table 4.1: Sample size f(n) := n2131n11:1 n and relative sample size </>(n) := f(n)/n .

n
/(11)
</>(n)

190.449 972.953 4864. 76 23995.0 72287.1
.190449 .097295 .048648 .023995 .014557

107 5 . 107 108

117248 353885 568986
.011725 .007078 .005690

Theorem 4.1. Let C,.k denote the expected number of comparisons made by SELECT for
s and g chosen as in (4.1) with fJ 2: 1/6. There exists a positive constant 'Y such that

C,.k ~ n + min{ k, n - k} + 'Yf(n) \fl ~ k ~ n. (4.2)

Proof. We need a few preliminary facts. The function </>(t) := J(t)/t = (In t/t) 113 de­
creases to O on [e,oo), whereas f(t) grows to infinity on [2,oo). Leto:= 4(fJ/a)112• Pick
ii. 2: 3 large enough so that e - l ~ af(n) ~ n - 1 and e ~ of(n). Let a:= a+ 1/ f(n).
Then, by (4.1) and the monotonicity off and</>, we have for n 2: n

s ~ af(n) and f(s) ~ a<fi(af(n))f(n),

f(of(n)) ~ 0¢(0/(n))f(n).

For instance, the firnt inequality of (4.3) yields f(s) ~ f(af(n)), whereas

' f(af(n)) = a<fi(af(n))f(n) ~ a<fi(af(n))f(n).

(4.3)

(4.4)

Also for n 2: n, we haves = raf(n)l = af(n) + E with f. E [O, 1) in (4.1). Writing
s = iif(n) with a:= a+ f.j f(n) E [a, a), we deduce from {4.1) that

gn/s = (fJ/ii) 112 J(n) ~ (fJ/a) 112 J(n).

In particular, 4gn/s ~ of(n), since o := 4(fJ/a)112 • For fJ 2: 1/6, (4.1) implies

ne-292/s ~ n1-2µ = /(n)nl/3-2f3 Jn-1/3 n ~ f(n) ln-1/3 n.

Using the monotonicity of ¢ and / on [e, oo), increase n if necessary to get

2ii</i(af(n)) + 0¢(0/(n)) + 4¢(n)n113- 2f3111- 1!3 n ~ 0.95.

{4.5)

(4.6)

(4.7)

By Rem. 2.2{c), there is 'Y such that (4.2) holds for all n ~ n; increasing 'Y if necessary, we
have

{4.8)

Let n' 2: n. Assuming (4.2) holds for all n ~ n', for induction let n = n' + l.
The cost of Step 3 can be estimated as follows. We may first apply SELECT recursively

to S to find u = v7 .. , and then extract v = Y7. from the elements Y7 .. + 1, ••• , y; (assuming
i,. < iv; otherwise v = u). Since s ~ n', the expected number of comparisons is

C,; .. + C,-,,.,;.-; .. ~ 1.5s + 'Yf(s) + l.5{s - i,.) + 'Yf(s - i,.) ~ 3s - 1.5 + 2'Yf(s). (4.9)

7

The partitioning cost of Step 4 is estimated by {3.3) as

Ee:::; n + min{ k,n- k} - s + 2gn/s + 2ne-292I••. (4.10)

The cost of finishing up at Step 7 is at most C;,;, :::; 1.5ft + -y/{ft). But by Lem. 3.5,
P[ft 2: 4gn/s] ::; 4e-292I•, and ft< n, so (cf. Fact 3.2 with z := 1.5ii + -y/(ii))

E [1.5ft +-y/(ft)] ::; 1.5 · 4gn/s + -yf(4gn/s) + [1.5n + ~tf(n)] 4e-292/•.

Since 4gn/ s:::; of(n), f is increasing, and f(n) = ¢,(n)n above, we get

EC,-,i,:::; 6gn/s +-yf(of(n)) + [1.5 + -y<f,(n)] 4ne-292!•_

Add the costs (4.9), (4.10) and (4.11) to get

C,.k:::; 3s -1.5+ 2-y/(s) +n + min{ k,n - k} - s + 2gn/s + 2ne-292/•

+ 6gn/ s + -y/(8/(n)) + [1.5 + -y<f,(n)] 4ne- 292/ ·•

:::; n + min{ k, n - k} + [2s + 8gn/ s + 8ne-292!•]
+ 'Y [2/(s) + /(8/(n)) + 4ne-292l•¢,(n)].

(4.11)

(4.12a)

(4.12b)

By (4.3)- (4.G), the bracketed term in (4.12a) is at most 0.05-yf(n) cine to (4.8), and that
in (4.12b) is at most 0.95/(n) from (4.7); thus (4.2) holds as required. D

We now indicate briefly how to adapt the preceding proof to several variations on (4.1);
choices similar to (4.13) and (4.17) are used in [MehOO] and [FIR 75a], respectively.

Remarks 4.2. (a) Theorem 4.1 holds for the following modification of (4.1):

s := min {ra/(n)l, n - 1} and g := ({3s ln0s) 112 with f(n) := n 213 tn1/ 3 n, (4.13)

provided that {3 =::: 1/4, where 0 > 0. Incleecl, the analogue of (4.5) (cf. (4.1), (4.13))

gn/s = ({3/a) 112f(n)(ln0s/Inn) 112 :::; ({3/o.) 112/(n)(ln0s/lnn) 1/ 2 (4.14)

works like (4.5) for large n (since lim,.-00
1i'~~; = 2/3), whereas replacing (4.6) by

ne-292/• = n(Bs)-2/J:::; /(n)(o:0)-2/Jn(l-4/J)/3 1n-<1+2/J)/3 n, (4.15)

we may replace n 1/ 3- 2/J by (0:0) - 2/Jn(H/J)/3 in (4.7)- (4.8) .
(b) Theorem 4.1 holds for the following modification of (4.1):

s := min{ra/(n)l,n-1} and g := ({3sln''n) 112 with J(n) := n213 tn•rl3 n, (4.16)

provided either t1 = 1 and {3 =::: 1/6, or t1 > 1. Indeed, since (4.16)=(4.1) for t1 = 1,
suppose t1 > 1. Clearly, (4.3)- (4.52 hold with ¢,(t) := f(t)/t . Fm~/1 2: 1/6 ~nd n larg~
enough, we have g2/s = {31n''n =::: {31nn; hence, replacing 2(3 by 2(3 and ln- 11·1 by ln-••/3

in (4.6)- (4.8), we may use the proof of Thm 4.1.
(c) Theorem 4.1 remains true if we use {3 2'. 1/6,

s := min {r o.n2/:il , n - 1} , g := ({3s In n) 1f2 and f(n) := n213 ln 112 n. (4.17)

Again (4.3)- (4.5) hold with ¢,(t) := f(t)/t , and 111- 1/ 2 replaces 111- 1/ 3 in (4.G)- (4.8).
(cl) None of these choices gives f(n) better than that in (4.1) for the hound (4.2).

8

Table 4.2: Relative sample sizes <I>,(n) and probability bounds e-2n•.

<l>,(11) := (t'/ In t) 113 cxp{-211')
n 105 10" 5 · 106 101 105 10G 5 · lOG

1/4 l.lG 1.32 1.45 1.52 3.G · 10-w 3.4. 10-28 8.4 · 10-•2

f 1/G .840 .898 .94G .9(i!) 1.2 · 10-G 2.1 · 10-0 4.4 · 10- 12

1/9 .678 .695 .711 .719 7.G· 10-4 9.3 · 10-5 1.5. 10-5

4.2 Reischuk's samples

For positive constants a and /J, consider using

S := min { f an'·l, n - l} and g := ((Jsn')112 with

TJ := max { 1 + (E - E,)/2, E8 } < 1 for some fixed O < E < E.,.

101

1.4. 10-49
1.8. 10-12
6.2 · 10-G

(4.18a)

(4.18b)

Theorem 4.3. Let Cnk denote the expected number of compar-isons made by SELECT for
s and g chosen as in (4.18). There exists a positive constant 'Y,, such that for all k::; n

c .. k::; n + min{ k, n - k} + 'Y.,f.,(n) with f.,(n) := n'I, (4.19)

Proof. The function f,1(t) := t'1 grows to oo on (0, oo), whereas </>,,(t) := f.,(t)/t = t71- 1

decreases to 0, so f,1 and </>., may replace f and </> in the proof of Thm 4.1. Indeed,
picking fl 2'. 1 such that an'• ::; fl - 1, for n 2'. fl we may use s = an'• ::; tif,1(n) with
a::; a::; a:= 1 + 1/n'• to get analogues (4.3)- (4.4) and the following analogue of (4.5)

gn/s = (/J/ii)1/2111+(,-,,)/2::; (/J/a)l/2 f.,(n). (4.20)

Since g2/s = (Jn' by (4.18), and te-2P11/t'I decreases to O fort 2'. t,1 := (~)11', we may
replace (4.6) by

(4.21)

Hence, with n 1-•1e-211"' replacing n I/3- 2P 111-1/ 3 n in (4. 7)- (4.8), the proof goes through. D

Remarks 4.4. (a) For a fixed EE (0, 1), minimi:dng 7/ in (4.18) yields the optimal sample
size parameter

Es := (2 + E)/3, (4.22)

with TJ = Es > 2/3 and f,1(n) = n<2+•J/3 ; note that ifs= an'• in (4.18), then g = (af3) 1l2n'"
with E9 := (1 + 2E)/3. To compare the bounds (4.2) and (4.19) for this optimal choice, let
<I>,(t) := (t'/ In t) 1l3, so that <I>,(t) = f,,(t)/ f(t) = </>,,(t)/</>(t). Since lim,Hoo <I>,(n) = oo,
the choice (4.1) is asymptotically superior to (4.18) . However, <l>,(n) grows quite slowly,
and <l>,(n) < 1 even for fairly large n when f is small (cf. Tab. 4.2). On the other hand,
for small E and /J = 1, the probability hound e-292/s = e-211• of (4.18) is weak relative to
e- 2ri2/s = n- 2 eusured by (4.1) .

9

{b) Consider using s := min {fan'• l, n - I} and g := f3 112n'• with fs, fg E (0, 1) such
that f := 2E9 - Es > 0 and r, := max{ 1 + E9 - Es, f.,} < l. Theorem 4.3 covers this choice.
Indeed, the equality 1 + E9 - Es = l + (f - fs)/2 shows that (4.18b) and (4.20) remain valid,
and we have the following analogue of (4.21)

{4.23)

so compatible modifications of (4.7)- (4.8) suffice for the rest of the proof. Note that
T/ 2'. (2 + F.)/3 by (a); for the choice Es=½, E9 = tl; of [Rei85], f = i and r, = t¾ -

4.3 Handling small subfiles

Since the sampling efficiency decreases when X shrinks, consider the following modifica­
tion. For a fixed cut-off parameter neut 2'. 1, let sSelect(X, k) be a "small-select" routine
that finds the kth smallest element of X in at most Ceut < oo comparisons when IXI :S neut

{even bubble sort will do) . Then SELECT is modified to start with the following

Step O (Small file case). Ifn := IXI :S neut, return sSelect(X,k).
Our preceding results remain valid for this modification. In fact it suffices if Ccut

bounds the expected number of comparisons of sSelect(X, k) for n :S neut· For instance,
(4.2) holds for n :S neut and 1 2'. Ceut, and by induction as in Rem. 2.2(c) we have Cnk < oo

for all n, which suffices for the proof of Thm 4.1.
Another advantage is that even small neut {1000 say) limits nicely the stack space for

recursion. Specifically, the tail recursion of Step 7 is easily eliminated (set X := Jc , k := k:
and go to Step 0), and the calls of Step 3 deal with subsets whose sizes quickly reach neut•

For example, for the choice of (4.1) with a = 1 and neut = 600, at most four recursive
levels occur for n :S 231 ~ 2.15 • 109 •

5 Analysis of nonrecursive versions

Consider a nonrccursive version of SELECT in which Steps 3 and 7, instead of SELECT, em­
ploy a linear-time routine (e.g., PICK [BFP+72]) that finds the ith smallest of m elements
in at most 1pm comparisons for some constant 1 p > 2.

Theorem 5.1. Let c,.k denote the number of comparisons made by the nonrecursive ver­
sion of SELECT for a given choice of s and g. Suppose s < n - l.

(a) For the choice of (4.1) with f(n) := n2l3 ln1/ 3 n, we have

P [c,.k :Sn+ min{ k, n - k} + "fpf(n)] 2'. 1 - 4n- 2/J with

"fp := {4,p + 2)(/3/a) 1l2 + (2,p - 1) [a+ 1/ J(n)] ,

(5.la)

(5.lb)

also with f(n) in (5.lb) replaced by f(3) > 2 (since n 2'. 3). Momiver, if /3 2'. 1/6, then

Ec,.k :S n + min{ k , n - k} + ("fp + 41p + 2) f(n) . (5.2)

10

(b) For the choice of (4.13), if Os $ n, then (5.la) holds with n-2fi replaced by
(a0) - 2fin- 4fi/ 3 Jn- 2fi/3 n. Moreover, if f3 ?: 1/4, then (5.2) holds with 41p + 2 replaced
by (4,p + 2)(a0)-2fi.

(c) For the choice of (4.18), (5.1) holds with f(n) replaced by fin) := n 11 and n - 2fi
by e-2fi 11'. Moreover, if n 1- •1e-2fi 11' $ 1, then (5.2) holds with f replaced by f,1•

Proof. The cost c,.k of Steps 3, 4 and 7 is at most 21ps + c + 1pfi. By Cor. 3.6, the event
C := { c $ c, fi < 4gn/ s} has probability P[C] ?: 1 - 4e-292/• . If C occurn, then

c,,k $ n + min{ k,n - k} - s + 2gn/s+ 21 ps +,PL4gn/sJ

$ n + min{k,n- k} + (41 p + 2)gn/s + (21p - 1)s.

Similarly, since Ec,.k $ 21ps +Ee+ 1pEfi, Lems. 3.4- 3.5 yield

(5.3)

Ec,,k $ n+ min{ k,n- k} + (41p + 2)gn/s + (21p -1)s + (41p + 2)ne-292I•. (5.4)

(a) Since e-2a2/• = n-2fi, s = raf(n)l $ iif(n) from s < n - land (4.3), and gn/s is
bounded by (4.5), (5.3) implies (5.1) . Then (5.2) follows from (4.6) and (5.4).

(b) Proceed as for (a), invoking (4.14)- (4.15) instead of (4.5) and (4 .6).
(c) Argue as for (a), using the proof of Thm 4.3, in particular (4.20)- (4.21) . D

Corollary 5.2. The nonrecursive version of SELECT requires n + min{k, n - k} + o(n)
comparisons with probability at least l - 4n-2fi for the choice of (4.1), at least l -
4(aB)-2fin- 4fi/3 for the choice of (4.13), and at least l - 4e-2fin' for the choice of (4.18).

Remarks 5.3. (a) Suppose Steps 3 and 7 simply sort S and Jc by any algorithm that
takes at most ,s(s Ins + ft Ju ft) comparisons for a constant ,s. This cost is at most
(s + fi),s Inn, because s, ft < n, so we may replace 21p by ,s Inn and 41p by 41s Inn in
(5.3)- (5.4), and hence in (5.1)- (5.2). For the choice of (4.1), this yields

P[c,.k $ n+min{k,n-k} +i'sf(n)lnn] 2: 1-4n- 2fi with

i's:= (4,s + 2 ln-1 n)(/J/0) 112 + (,s -111- 1 n) [a+ 1/ f(n)],

Ec,,k $ n + min{ k,n- k} + (i's+ 4,s + 2111-1 n) f(n)lnn,

(5.5a)

(5.5b)

(5.6)

where ln- 1 n may be replaced by ln-1 3, and (5.6) still needs (J 2: 1/6; for the choices (4.13)
and (4.18), we may modify (5.5)- (5.6) as in Thm 5.l(b,c). Corollary 5.2 remains valid.

(b) The bound (5.2) holds if Steps 3 and 7 employ a routine (e.g., FIND [Hoa61],
[AHU74, §3.7]) for which the expected number of comparisons to find the ith smallest of
m elements is at most 1pm (then Ec,.k $ 21ps +Ee+ 1pEft is bounded as before).

(c) Suppose Step 6 returns to Step 1 if fi?: 4gn/s. By Cor. 3.6, such loops are finite
wp 1, and don't occur with high probability, for n large enough.

(d) Our results improve upon [GeS96, Thm 2), which only gives an estimate like (5.la),
but with 4n-2fi replaced by O(n 1- 2#/3), a much weaker bound. Further, the approach of
[GeS96, §3] is restricted to distinct elements.

11

We now comment briefly on the possible use of sampling with replacement.

Remarks 5.4. (a) Suppose Step 2 of SELECT employs sampling with replacement. Since
the tail bound (3.1) remais valid for the binomial distribution [Chv79, Hoe63], Lemma 3.3
is not affected. However, when Step 4 no longer skips comparisons with the elements of
S, -sin {3.3) and (4.10) is replaced by 0 (cf. the proof of Lem. 3.4), 2s in (4.12a) by 3s
and 2a in (4.8) by 3a. Similarly, adding s to the right sides of (5.3)- (5.4) boils down to
omitting -1 in (5.lb) and -ln- 1 n in (5.5b). Hence the preceding results remain valid.

{b) Of course, sampling with replacement needs additional storage for S. This is
inconvenient for the recursive version, but tolerable for the nonrecursive ones because the
sample sizes are relatively small (hence (3.3) with -s omitted is not too bad).

(c) Our results improve upon [Moll95, Thm 3.5], corresponding to (4.18) with t = 1/4
and /3 = l, where the probability bound 1 - O(n- 114) is weaker than our 1 - 4e-2n'1',

sampling is done with replacement and the elements are distinct.
(d) Our results subsume [Meh00, Thm 2], which gives an estimate like (5.2) for the

choice (4.13) with /3 = l, using quickselect (cf. Rem. 5.3(b)) and sampling with replacement
in the case of distinct elements.

6 Ternary and quintary partitioning

In this section we discuss ways of implementing SELECT when the input set is given as
an array x[l: n]. We introduce a modification of the ternary partitioning scheme [BeM93,
BeS97] that obviates subscript range checking, and give extensions to quintary partitioning.

The following notation is needed to describe the operations of SELECT in more detail.
Each stage works with a segment x[l: r] of the input array x[l: n], where 1 :S l :Sr :Sn

are such that x; < x, for i = 1: I - 1, Xr < X; for i = r + 1: n, and the kth smallest
clement of x[l: n] is the (k - l + l)th smallest element of x[l: r]. The task of SELECT is
extended: given x[l:r] and I :S k :Sr, SELECT(x,l,r,k,k_,k+) permutes x[l:r] and finds
l :S k_ :S k :S k+ :S r such that X; < Xk for all I :S i < k_, x; = Xk for all k_ :S i :S k+,
x; > xk for all k+ < i :S r. The initial call is SELECT(x, 1, n, k, k_, k+)-

A vector swap denoted by x[a: b] +--t x[b+ 1: c] means that the first d := min(b+ 1-a, c-b)
clements of array x[a: c] are exchanged with its last d elements in arbitrary order if d > 0;
e.g., we may exchange Xa+i +--t Xc-i for 0 :Si < d, or Xa+i +--t Xc-d+l+i for O :Si < d.

6.1 Ternary partitions

For a given pivot v := :ck from the array x[I: r], the following ternary scheme partitions
the array into three blocks, with x,,. < v for I :S rn < a, x,,. = v for a :S m :S d, x,,. > v for
d < m :S r. The basic idea is to work with the five inner parts of the array

j:c<vlx=vl:r:<v l ? 1--i:>vl :r=vlx>vl
l [p ij q f r

(6.1)

12

until the middle part is empty or just contains an element equal to the pivot

lx=vlx<vlx=vlx>vlx=vl
l p j q r

{6.2)

(i.e., .i = i - 1 or j = i - 2), then swap the ends into the midclle for the final arrangement

l x<'U lx=vli:>v l
l lL d f

{6.3)

Al. [Initialize.] Set v := Xk and exchange x, +-+ Xk- Seti := l := l, p := l + 1, j := f := r,
q := r - 1. If v < x,., set f := r - 1. If v > Xr, exchange x, +-+ Xr and set l := l + 1.

A2. [Increase i until x; 2:: v.] Increase i by l; then if X; < v, repeat this step.

A3. [Decrea.~e j until Xj :=; v.] Decrease j by 1; then if Xj > v, repeat this step.

A4. [Exchange.] (Here xi:=; 11 :=; x;.) If i < j, exchange x, +-+ xi; then if x, = v, exchange
x, +-+ x,, and increase p by 1; if xi = v, exchange xi +-+ Xq and decrease q by l; return
to A2. If i = j (so that x, = xi = v), increase i by 1 and decrease j by 1.

A5. [Cleanup.] Exchange x[l:p - 1] +-+ x[p: j] and x[i:q] <-> x[q + l:f]. Finally, set
a := l + j - p + l and d := r - q + i - 1.

Step Al ensures that x1 :=; v :=; x,., so steps A2 and A3 don't need to test whether i :=; j;
thus their loops can run faster than those in the schemes of [BeM93, BeS97] and [Knu97,
Ex. 5.2.2-41] {which do need such tests, since, e.g., there may be no element X; > v).

6.2 Preparing for quintary partitions

At Step 1, r - l + l replaces n in finding sand g. At Step 2, it is convenient to place the
sample in the initial part of x[l: r] by exchanging X; +-+ X;+,and(r-i) for l :=; i :S r. := l + s-1,
where rand(r - i) denotes a random integer, uniformly distributed between O and r - i .

Step 3 uses ku := max{ r1-1 +is/m-g l, I} and k. := min{fl-1 +is/m+ Yl, r.} with
i := k-l + l and m := r-l + 1 for the recursive calls. If SELECT(x, I, r., ku, k,";", k;;) returns
k;; 2:: kv, we have v := u := Xk,., so we only set k;; := kv, k;; := k;; and reset k;; := kv - 1.
Otherwise the second call SELECT(x, k;; + 1, r., kv, k;;, k;;) produces v := Xkv•

After u and v have been found, our array looks as follows

lx<ul x=u lu<x<vl x=v lx>vl? I
l k,-;- k;; k;; k;; r, r

(6.4)

Setting l := k,";", fi := k;; + l, f := r - r, + k;;, if:= f- k;; + k;; - 1, we exchange
x[k;; + 1: r,] +-+ x[r. + 1: r] and then x[k;;: k;;] +-+ x[k;; + 1: f] to get the arrangement

lx<ul:z:=ulu<x<'UI? lx=vlx>vl
l l fi if f r

(6.5)

The third part above is missing precisely when u = v; in this case {G.5) reduces to (6.1)
with initial p := p, q := if, i := p - 1 and j := q + 1. Hence the case of u = v is handled
via the ternary partitioning scheme of §6.1, with step Al omitted.

13

6.3 Quintary partitions

For the case of k < l(r + l)/2J and u < v, Step 4 may use the following quintary scheme
to partition .-r[I: r] into five blocks, with x,.. < u for I :'S m < a., x.,. = u for a. '.S m < b,
u < x,.. < v for /J :'Sm :'Sc, x,.. = v for c < m :'S d, Xm > v ford< m :'Sr. The basic idea
is to work with the six-part array stemming from (6.5)

jx=ulu<x<vl:c<ul ? lx>vlx=vl
l ii p ij q t

until i and j cross

j x=u I u<x<v I x<u I x>v I x=v I.
l p p j i q - ' r

we may then swap the second part with the third one to bring it into the middle

j x=u I x<u I u<x<v I x>v I x=v I
l p b ci q f

(6.6)

(6.7)

(6.8)

and finally swap the extreme parts with their neighbors to get the desirc<l arrangement

j x<u I x=u I u<x<v I x=v I x>v I
l a b c d f

(6.9)

Bl. [Initialize.] Set p := k;;, q := ij, i := p - 1 and j := q + 1.

B2. [Increase i nntil .-r; 2': 11.] Increase i by 1. If X; 2". v, go to B3. If X; < u, repeat this
step. (At this point, u '.S x; < v.) If X; = u, exchange x; <-> Xp and Xp <-> x;; and
increase p by 1; otherwise exchange x; <-> Xp. Increase p by 1 and repeat this step.

B3. [Decrease j until xi < v.] Decrease j by 1. If xi > v, repeat this step. If xi = v,
exchange xi <-> xq, decrease q by 1 and repeat this step.

B4. [Exchange.] If i 2': j, go to B5. Exchange X; <-> xi. If X; = u, exchange x; <-> Xp

and Xv <-> x 1, and increase p and p by 1. Otherwise if x; > u, exchange 1;; <-> x 1, and
increase p by 1. If Xj = v, exchange xi <-> Xq and decrease q by 1. Return to B2.

B5. [Cleanup.] Set a := f + j - p + 1, b := p - p + i, c := j and d := f - q + i - 1. Swap
x[p: p - 1] <-> x[p: j], x[f: 1> - 1] <-> x[p: b - 1], and finally x[i: q] <-> x[q + 1: f].

For the case of k 2". l(r+l)/2J and 11 < v, Step 4 may use the following quintary scheme,
which is a symmetric version of the preceding one obtained by replacing (6.6)- (6.8) by

jx=ulx<ul ? 1-'r>vltt<x<vlx=vl
[p i j q ij f

(6.10)

I :i; = u I .'!: < u I .'r > 1J i 11 < X < V I X = V I
[pjiq ij f'

(6.11)

I :r<u I x=u I u<x<v I x>v I x=v I
I (! b C ij f

(6.12)

14

Cl. [Initialize.] Set p := p, q := fj - k;; +kt+ 1, i := p - 1 and j := q + 1, and swap
x[p: k;; - 1] <-> x[k;; : fi].

C2. [Increase i until X; > u.] Increase i by 1. If x; < u, repeat this step. If x; = u,
exchange x; <-> Xp, increase p by 1 and repeat this step.

C3. [Decrease j until x1 ::; u.] Decrease j by 1. If xi ::; u, go to C4. If x 1 > v, repeat this
step. (At this point, u < x1 ::; v.) If xi = v, exchange .'Ci <-> Xq and Xq <-> x,7 and
decrease fj by 1; otherwise exchange Xj <-> Xq , Decrease q by 1 and repeat this st,ep.

C4. [Exchange.] If i 2: j, go to C5. Exchange x; <-> x1. If x; = u, exchange X; <-> Xp and
increase p by 1. If x1 = v, exchange x1 <-> Xq and Xq <-> x;; and decrease fj and q by
1. Otherwise if xi > v, exchange xi <-> Xq and decrease q by 1. Return to C2.

C5. [Cleanup.] Set a := [+ j - p + 1, b := i, c := fj - q + j and d := r - q + i - 1. Swap
x[i: q] <-> x[q + 1: fi], x[c + 1: fi] <-> x[fj + 1: r], and finally x[I: p - 1] +--> x[p: j] .

To make (6.3) and (6.9) compatible, the ternary scheme may set b := d + 1, c := a - 1.
After partitioning l and r are updated by setting l := b if a ::; k, then l := d + 1 if c < k;
r := c if k ::; d, then r := a - 1 if k < b. If l 2: r, SELECT may return k_ := k+ := k
if l = r, k_ := r + 1 and k+ := l - 1 if l > r. Otherwise, instead of calling SELECT
recursively, Step 6 may jump back to Step 1, or Step O if sSelect is used (cf. §4.3) .

A simple version of sSelect is obtained if Steps 2 and 3 choose u := v := xk when
r - l + 1 ::; neut (this choice of [FIR75a] works well in practice, but more sophisticated
pivots could be tried); then the ternary partitioning code can be used by sSelect as well .

In fact steps A5, B5 and C5 may also share code: resetting fj := q and p := p for
A5, fj := q for B5, and p := p for C5, we may swap x[p: p - 1] +--> x[p:j] if p > p,
x[[: ji - 1] <-> x[p: p - p + j], x[i: q] <-> x[q + 1: fi] if q < fj, x[i + fj - q: q] <-> x[fj + 1: r] .

Even when outcomes of previous comparisons are utilized, our schemes still involve two
extraneous comparisons (scheme A only one when i = j at A4). Consider, therefore, the
following alternative to scheme B, also based on the arrangements (6.6)- (6.9).

D1. [Initialize.] Set p := k;;, q := fj, i := p, j := q.

D2. [Increase i until x ; 2: v.] If i > j or x; 2: v, go to D3. If x; = u, exchange x; <-> Xv

and xv <--> x 1,, and increase p and p by 1; otherwise if x; > u, exchange x; <--> Xp and
increase p by 1. Increase i by 1 and repeat this step.

D3. [Decrease j until xi < v.] If i > j or x1 < v, go to D4. If x1 = v, exchange x1 <-> Xq

and decrease q by 1. Decrease j by 1 and repeat this step.

D4. [Exchange.] If i 2: j, go to D5. Exchange :i:; <-> xi . If :1:; = u, exchange 1:; <-> x1,

and x,, <-> x1, and increase ji and p by 1. Otherwise if X; > u, exchange x; <-> x,, and
increase p by 1. If Xj = v, exchange xi <--> Xq and decrease q by 1. Increase i by 1,
decrease .i by 1, and return to D2.

D5. [Cleanup.] Set n := [+ .i - p + 1, b := p - p + i, c := j and d := ·r - q + i - 1. Swap
.'IJ[p: p - 1] <-> x[p: j] , x[l: p - 1] <-> x[J}: b - 1], and finally x[i: q] <-> x[q + 1: -r] .

15

Relative to scheme B (which makes r - r., + 2 comparisons to v), scheme D saves two
v-comparisons at the expense of r - r, + 2 comparisons of i vs. j. Since r - r, » 2
for usual choices of neut, scheme B is faster than D unless the cost of key comparisons
is extremely large. Scheme C compares in the same way with a symmetric variant of D.
The situation with scheme A is similar, even for the small partitions produced in sSelect:
although the schemes of [BeM93, BeS97] can save two v-comparisons, such savings are
insignificant when relatively few small partitions occur (cf. §7.3).

6.4 Poor man's partitions

We now consider a poor man's version of SELECT, called PMSELECT, which employs less
refined but hopefully faster partitioning. This version works with x(I: r] such that X; ::; x1

for i = 1: 1-1, Xr::; x; for i = r+ 1: n, and its task is standard: given x[l: r] and I::; k::; r,
PMSELECT(x, l, r, k) permutes x[I: r] so that x; ::; Xk for all I ::; i < k, and Xk ::; x; for all
k < i ::; r; the initial call is PMSELECT(x, 1, n, k). We start with binary partitions.

For a given pivot v := Xk from the array x[I: r], the following binary scheme partitions
the array into three blocks, with x,,. ::; v for l ::; m < a, x.,. = v for a ::; m ::; d, v ::; Xm

for d < m ::; r; usually a = d and the middle block is singleton.

El. [Initialize.] Set v := Xk and exchange x, <-> Xk. Seti:= fi := I and j := r. If v > Xr,

exchange x, <-> Xr and set fi := r. (Thus v = x;; always.)

E2. (Increase i until x; 2'. v.] Increase i by 1; then if x; < v, repeat this step.

E3. (Decrease j until xi ::; v.] Decrease j by 1; then if xi > v, repeat this step.

E4. [Exchange.] (Here xi ::; v ::; x;.) If i < j, exchange x; <-> xi and return to E2. If
i = j (so that x; = xi = v), increase ·i by 1 and decrease j by 1.

E5. (Cleanup.] If fi =Ir, exchange x;, <-> Xj, set a:= j and d := i - 1; otherwise exchange
x; <-> x1;, set a := j + 1 and d := i.

The setup of §6.2 changes as follows. Step 3 calls PMSELECT(x, I, r,, ku) to find ·u :=

Xk,., and then PMSELECT(x, ku + 1, r,, kv) to get v := xk., assuming k,. < kv; then (6.4)
changes to

lx:::::ul u lu::;x~vl v lx>vl? I
l k,. - kv Ts r

(6.13)

Setting l := k,., p := kv, f := r - Ts+ p, we exchange x[p + 1: r,] <-> x[r, + 1: r] and then
x,, <-> xf to get the arrangement

lx:::::ul ·ulu::;x::;vl? lvlx:2'.vl
l l p r r

(6.14)

If u = v, setting i := p - l and j := f, we may use scheme E with step El omitted and E5
replaced by A5 with q := f - 1; i.e., E5 now reads

E5. [Cleanup.] Set a:= l + j - p +land d := i. Swap x[l:p- 1] <-> x[JJ: j] and xd....., xf,

16

For the case of k < l(r + l)/2 J and u < v, we may use the following quintary scheme,
obtained by replacing (6.6)- (6.8) with the arrangements

lulu<x<vlx<ul? lx>vlvl
[p i j f

(6.15)

lulu::;x::;vlx::;ulx2vlvl
[JJ j i f '

(6.16)

lulx::;ulu::;x::;vlvlx2vl
[a j f '

(6.17)

lx::;ululu::;x::;vlvlx2vl
l a b c d f

(6.18)

Fl. [Initialize.] Seti := JJ - 1 and j := f.

F2. [Increase i until x; 2 v.] Increase i by 1. If x; 2 v, go to F3. If x; ~ u, repeat this
step. (Here u < :c; < v.) Exchange x, <--> Xp, increase p by 1 and repeat this step.

F3. [Decrease j until x1 < v.] Decrease j by 1. If x1 2 v, repeat this step.

F4. [Exchange.] If i 2 j, go to F5. Exchange X; <--> x1. If x; > u, exchange x, <--> Xv and
increase p by 1. Return to F2.

F5. [Cleanup.] Set a:= [+i-p, b := a+ 1, c := j and d := j + 1. Swap x[l + l:p-1] <-->

x[p:j], Xf <--> Xa and finally Xd <--> x,.

In fact scheme F may produce j < i - 1 on the first pass if Xm 2 v for all m 2 kv - 1.
For the case of k 2 l(r + 1)/2J and u < v, we may use the following quintary scheme,

which is a symmetric version of scheme F obtained by replacing (6.15)- (6.17) by

Julx<ul ? lx>vlu<x<vlvl
l i j q f

(6.19)

Julx::;ulx2vlu::;x::;vlvl
[j i q f '

(6.20)

j:1:~ululu::;x::;vlx2vlvl
[j i d f

(G.21)

Gl. [Initialize.] Set q := r-r, +l, i := l, j := q+ 1, and swap x[l + 1:p-1] <--> x[p: f-1] .

G2. [Increase i until x, > u.] Increase i by 1. If x, ::; u, repeat this step.

G3. [Decrease j until xi ::; u.] Decrease j by 1. If x1 ~ ·u, go to G4. If .1:1 2 v , repeat this
step. (Here 11 < :1:1 < v.) Exchange xi<--> Xq, decrease q by 1 and repeat this step.

17

I
G4. [Exchange.] If i 2: j, go to G5. Exchange X; +--> xi. If xi < v, exchange xi+--> Xq and

decrease q by 1. Return to G2.

G5. [Cleanup.] Set a:= j, b :=a+ 1, d := f - q + j and c := d - 1. Exchange x1 <--> x 0 ,

x[i: q] +--> x[q + 1: f - 1], and finally :i:,1 +--> Xr-

Also scheme G may produce j < i - 1 on the first pass if x,,. < v for all m ::; q + 1.
Schemes E, F and G are like A, B and C without their equality tests and associated

updates. When equal elements are absent, the inequalities in (6.13)- (6.21) are strict, so
E, F and G (although not equivalent to A, B and C) yield correct partitions for Step 4.
When equal clements occur, the partitions of E, F and G needn't meet the requirements of
Step 4, but are still usable. Namely, r - l shrinks when a, b, c and dare used for updating
I and r, and sSelect may employ scheme E instead of A as in §6.3. In effect, PMSELECT
works like SELECT in the case of distinct elements, but may require more comparisons
otherwise. In practice PMSELECT tends to be slightly faster (cf. §7.3).

7 Experimental results

7.1 Implemented algorithms

An implementation of SELECT was programmed in Fortran 77 and run on a notebook
PC (Pentium II 400 MHz, 256 MB RAM) under MS Windows 98. The input set X was
specified as a double precision array. For efficiency, the recursion was removed and small
arrays with n ::; neut were handled as if Steps 2 and 3 chose u := v := xk; the resulting
version of sSelect (cf. §§4.3 and 6.3) typically required less than 3.5n comparisons. The
choice of (4.1) was employed, with the parameters a, = 0.5, /3 = 0.25 and neut = 600 as
proposed in [FIR75a]; future work should test other sample sizes and parameters.

A similar implementation of PMSELECT was programmed as described in §6.4.
For comparisons we developed a Fortran 77 implementation of the RISELECT algorithm

of [Va!O0]. Briefly, RISELECT behaves like quickselect using the median of the first, middle
and last elements, these elements being exchanged with randomly chosen ones only if the
file doesn't shrink sufficiently fast. To ensure O(n) time in the worst case, RISELECT may
switch to the algorithm of [DFP+72], but this never happened in our experiments. Ap­
parently RISELECT represents the state-of-the-art in quickselect implementations (several
other implementati011s fared worse in out tests).

7.2 Testing examples

We used minor modifications of the input sequences of [Va!O0], defined as follows:

random A rnmlom permutation of the integers 1 through n.

onezero A random permutation of r n/21 ones and ln/2 J zeroes.

sorted The integers 1 through n in increasing order.

18

rotated A sorted sequence rotated left once; i.e., (2, 3, ... , n, 1).

organpipe The integers 1 through n/2 in increasing order, followed by n/2 through 1 in
decreasing order.

m3killer Musser's "median-of-3 killer" sequence with n = 4j and k = n/2:

(1 2 3 4 . . . k - 2 k - 1 k k + 1 . . . 2k - 2 2k - 1 2k)
1 k + 1 3 k + 3 . . . 2k - 3 k - 1 2 4 . . . 2k - 2 2k - 1 2k .

twofaced Obtained by randomly permuting the elements of an m3killcr sequence in po­
sitions 4llog2 nJ through n/2 - 1 and n/2 + 4llog2 nJ - 1 through n - 2.

For each input sequence, its (lower) median element was found.
These input sequences were designed to test the performance of selection algorithms

under a range of conditions. In particular, the onczero sequences represent inputs con­
taining many duplicates [Sed77] . The rotated and organpipc sequences are difficult for
many implementations of quickselect. The m3killer and twofaced sequences are hard for
implementations with median-of-3 pivots (their original versions [Mus97] were modified to
become difficult when the middle element comes from position k instead of k + 1) .

7.3 Computational results

We varied the input size n from 50,000 to 16,000,000. For the random, onezero and
twofaced sequences, for each input size, 20 instances were randomly generated; for the
deterministic sequences, five runs were made to measure the solution time.

The performance of SELECT on randomly generated inputs is summarized in Table
7.1, where the average, maximum and minimum solution times are in seconds, and the
comparison counts are in multiples of n; e.g., column six gives Cavg/n, where Cavg is the
average number of comparisons made over all instances. Thus 'Yavg := (C,wg - l.5n)/ /(n)
estimates the constant 'Yin the bound (4.2); moreover, we have Cavg ~ l.5L,wg, where Lavg
is the average sum of sizes of partitioned arrays. Further, Pavg is the average number of
SELECT partitions, whereas Navg is the average number of calls to sSelcct and Pavg is the
average number of sSelect partitions per call; both Pavg and Navg grow slowly with Inn.
Finally, Savg is the average sum of sample sizes; Savg/ /(n) drops from 0.68 for n = 50K to
0.56 for n = 16M on the random and twofaced inputs, and from 0.57 to 0.52 on the onezero
inputs, whereas the initial s/ f(n) ~ a = 0.5. The average solution times grow linearly
with n (except for small inputs whose solution times couldn't be measured accurately),
and the differences between maximum and minimum times are fairly small (and also partly
due to the operating system). Except for the smallest inputs, the maximum and minimum
numbers of comparisons are quite close, and Cavg nicely approaches the theoretical lower
bound of 1.5n; this is reflected in the values of 'Yavg• Note that the results for the random
and twofaccd sequences arc almost identical, whereas the onezero inputs only highlight
the efficiency of our partitioning.

Table 7.2 exhibits similar features of SELECT on the deterministic inputs. The results

l!J

Table 7.1: Performance of SELECT on randomly generated inputs.

Sequence Size Time [sec] Comparisons [11] 1'uvg Lavg .Rwg Navg Puvg Snvg

11 avg max min avg max miu [n] [Inn] [Inn] [%n]
rando111 501(0.01 O.OG 0.01 1.79 1.84 1.74 4.91 1.21 0.4G I.OJ 7.40 4.10

!OOK 0.02 O.OG 0.01 1.73 1.77 1.70 4.i7 1.15 0.43 0.9G 8.03 3.20
5001(0.06 0.11 0.05 1.62 1.63 I.GI 4.0G 1.08 0.56 1.20 8.00 1.86

IM 0.12 0.17 0.11 1.59 1.60 1.58 3.95 !.OG 0.67 1.40 7.95 1.47
2M 0.22 0.22 0.21 1.57 1.58 1.56 3.76 1.04 0.76 1.59 7.90 l.lG
4M 0.43 0.44 0.38 1.56 1.56 1.55 3.63 1.03 0.95 1.95 7.29 0.92
8M 0.83 0.88 0.82 1.54 1.55 1.54 3.54 1.03 0.98 2.00 7.41 0.72

16M 1.62 1.65 1.59 1.53 1.54 1.53 3.39 1.02 1.00 2.05 7.77 0.57
onczero 501(0.01 0.06 0.01 1.52 1.52 1.50 0.25 1.02 0.28 0.27 1.17 3.41

!OOK 0.02 0.06 0.01 1.51 1.51 1.50 0.24 I.OJ 0.26 0.25 1.24 2.72
5001(0.07 0.11 0.05 1.51 1.51 1.51 0.26 1.01 0.23 0.23 1.15 1.61

lM 0.13 0.17 0.11 1.51 1.51 1.51 0.26 1.01 0.22 0.22 1.15 1.29
2M 0.27 0.28 0.22 1.51 1.51 1.50 0.26 1.01 0.28 0.27 1.09 1.03
4M 0.54 0.55 0.49 1.50 1.50 1.50 0.26 1.00 0.33 0.26 1.16 0.83
BM 1.()2 1.05 0.98 1.50 1.50 1.50 0.2G 1.00 0.38 0.25 1.10 0.66

16M 2.04 2.09 2.03 1.50 1.50 1.50 0.26 1.00 0.36 0.24 1.13 0.53
twofacc<l 501(0.02 0.06 0.01 1.81 1.84 1.76 5.11 1.21 0.46 1.02 7.78 4.13

1()()1(0.01 0.06 0.01 1.73 1.77 1.71 4.81 1.16 0.44 0.96 8.01 3.20
5001(0.07 0.11 0.05 1.62 1.63 1.59 4.10 1.08 0.56 1.20 8.15 1.86

IM 0.11 0.16 0.10 1.59 1.60 1.58 3.89 1.06 0.64 1.36 7.82 1.47
2M 0.22 0.27 0.22 1.57 1.58 1.56 3.63 1.04 0.75 1.58 7.63 1.16
4M 0.42 0.44 0.38 1.56 1.56 1.55 3.57 1.03 0.96 1.97 7.29 0.92
SM 0.83 0.88 0.82 1.54 1.55 1.54 3.50 1.03 0.97 2.00 7.43 0.72

16M 1.62 1.65 1.59 1.53 1.54 1.53 3.40 1.02 1.00 2.03 7.57 0.57

for the sorted and rotated sequences are almost the same, whereas the solution times on the
organpipe and m3killer sequences are between those for the sorted and random sequences.

The performance of PMSELECT on the same inputs is given in Tables 7.3 and 7.4.
SELECT is slower than PMSELECT (but not too much: about 9% on random and twofaced,
44% on onezero, 16% on sorted and rotated, 13% on organpipe, 10% on m3killer) . Except
for timings and the onezero results, Tables 7.3- 7.4 almost coincide with 7.1- 7.2.

The performance of RJSELECT on the same inputs is described in Tables 7.5 and 7.6,
where Nrn<l denotes the average number of randomization steps. Note that for RJSELECT,
Cavg :::; Lavg, i.e., the cost of median-of~3 finding is negligible. On the random sequences,
the expected value of Cavg is of order 2.75n [KMP97], but Table 7.5 exhibits significant
fluctuations in the numbers of comparisons made. The results for the one.-:ero sequences
confirm that quicksort-like partitioning may handle equal keys quite efficiently [Sed77].
The results for the twofaced, rotated and m3killer inputs are quite good, since some
versions of quickselect may behave very poorly on these inputs [Va!O0] (note that we used
the "sorted-median" partitioning variant as suggested in [Va!O0]). Finally, the median-of-3
strategy employed by RJSELECT really shines on the sorted inputs.

As always, limited testing doesn't warrant firm conclusions, but a comparison of SE-
LECT and RJSELECT is in order, especially for the random sequences, which are most

20

Table 7.2: Performance of SELECT on deterministic inputs.

Sequence Size Time [sec] Comparisons /avg Lavg PR.vg Navg Puvg Snvg

n avg mnx min [n] [n] [Inn] [Inn] [%nj
sorted 501(0.02 0.06 0.01 1.79 4.91 1.23 0.46 1.02 8.36 4.12

1001(0.01 0.Ql 0.01 1.73 4.6!! 1.16 0.43 0.96 8.55 3.21
5001(0.04 0.06 0.01 1.60 3.33 1.07 0.61 1.:JO 7.71 l.8(j

lM 0.0!J 0.11 0.05 1.57 3.07 1.06 0.65 1.38 6.58 1.47
2M 0.14 0.17 0.11 1.56 2.!J!J 1.04 0.76 1.59 7.57 1.15
4M 0.28 0.28 0.28 1.55 3.02 1.03 0.99 2.04 8.06 0.92
SM 0.55 0.55 0.55 1.54 3.12 1.03 1.01 2.01 7.13 0.72

lGM 1.05 1.10 1.04 1.53 3.20 1.02 1.02 2.11 7.46 0.57
rota ted 501(0.Ql 0.06 0.Ql 1.80 4.92 1.23 0.46 1.02 8.55 4.12

1001(0.01 0.01 0.Dl 1.73 4.69 1.16 0.43 0.96 8.55 3.21
5001(0.Q2 0.06 0.01 1.60 3.33 1.07 0.61 1.30 7.82 1.86

lM 0.09 0.11 0.05 1.57 3.08 1.06 0.65 1.38 6.74 1.47
2M 0.15 0.17 0.11 1.56 2.99 1.04 0.76 1.59 7.13 1.15
4M 0.28 0.28 0.27 1.55 3.02 1.03 0.99 2.04 7.71 0.92
SM 0.55 0.55 0.54 1.54 3.12 1.03 1.01 2.01 7.19 0.72

16M 1.05 1.10 1.04 1.53 3.20 1.02 1.02 2.11 7.46 0.57
organ pipe 50K 0.Dl 0.05 0.01 1.83 5.43 1.22 0.46 1.02 8.55 4.11

1001(0.03 0.06 0.ot 1.74 4.99 1.16 0.43 0.96 6.64 3.19
500K 0.04 0.06 0.ot 1.62 3.97 1.07 0.61 1.30 6.65 1.87

lM 0.11 0.11 0.11 1.59 3.77 1.06 0.72 1.52 7.33 1.48
2M 0.19 0.22 0.17 1.56 3.35 1.04 0.76 1.59 6.30 1.16
4M 0.34 0.38 0.33 1.55 3.32 1.03 0.92 l.!ll 6.79 0.92
8M 0.66 0.66 0.65 1.54 2.91 1.03 1.01 2.08 7.48 0.72

16M 1.26 1.27 1.26 1.53 3.05 1.02 1.02 2.11 7.51 0.57
m3killer 50K 0.01 0.05 0.Dl 1.80 5.05 1.22 0.46 1.02 7.91 4.14

1001(0.01 0.05 0.01 1.74 4.95 1.16 0.43 0.96 6.82 3.19
500K 0.05 0.06 0.05 1.63 4.22 1.08 0.61 1.30 7.76 1.86

lM 0.11 0.11 0.11 1.60 4.06 1.06 0.58 1.23 7.94 1.46
2M 0.17 0.17 0.16 1.57 3.76 1.04 0.69 1.45 8.19 1.15
4M 0.36 0.39 0.33 1.56 3.80 1.03 0.99 2.04 7.42 0.92
8M 0.69 0.71 0.66 1.55 3.60 1.03 0.94 1.89 8.60 0.72

16M 1.34 1.38 1.32 1.54 3.67 1.02 1.02 2.05 7.03 0.57

frequently used in theory and practice for evaluating sorting and selection algorithms. On
the random inputs, the ratio of the expected numbers of comparisons for RISELECT and
SELECT is asymptotically 2.75/1.5;:::: 1.83; incidentally, the ratio of their computing times
approaches 3/1.62;:::: 1.85 (cf. Tabs. 7.1 and 7.5) . Note that SELECT isn 't just asymptoti-
cally faster; in fact RISELECT is about 50% slower even on middle-sized inputs. The same
slow-down factor of about 50% is observed on the onezero sequences. The performance
gains of SELECT over RISELECT are much more pronounced on the remaining inputs, ex-
cept for the sorted sequences on which SELECT may be slower by up to 88%. (However,
the sorted input is quite special : increasing k by 1 (for the upper median) doubled the
solution times of RISELECT without influencing those of SELECT and PMSELECT; e.g., for
n = lGM the respective times were 1.12, 1.07 and 0.90). Note that , relative to RISELECT,

21

Table 7.3: Performance of PMSELECT on randomly generated inputs.

Sequence Si~e Time [sec] Comparisons [n] ')'avg Luvg Pavg Nuvg Pavg .Savg

n avg max min avg 1nax min [nl [Inn] [Inn] [%n]
rando1n 501(0.01 0.06 o.oi 1.79 1.84 1.74 4.91 1.21 0.46 1.01 7.40 4.10

1001(0.01 0.06 0.01 1.73 1.77 1.70 4.77 1.15 0.43 0.96 8.03 3.20
5001(0.05 0.06 0.05 1.62 1.63 1.61 4.06 1.08 0.56 1.20 8.00 1.86

lM 0.11 0.11 0.11 1.59 1.60 1.58 3.95 1.06 0.67 1.40 7.95 1.47
2M 0.21 0.22 0.16 1.57 1.58 1.56 3.76 1.04 0.76 1.59 7.90 1.16
4M 0.39 0.44 0.38 1.56 1.56 1.55 3.63 1.03 0.95 1.95 7.29 0.92
SM 0.76 0.77 0.71 1.54 1.55 1.54 3.54 1.03 0.98 2.00 7.41 0.72

16M 1.49 1.54 1.48 1.53 1.54 1.53 3.39 1.02 1.00 2.05 7.77 0.57
unezcro 501(0.01 0.06 0.01 I.GO 1.60 1.58 1.64 1.10 0.46 1.01 5.63 3.72

1001(0.02 0.06 0.01 1.58 1.58 1.56 1.57 1.08 0.43 0.95 G.06 2.94
5001(0.05 0.06 0.01 1.54 1.55 1.52 1.46 1.04 0.66 1.39 5.98 1.79

lM 0.07 0.11 0.05 1.54 1.54 1.54 1.49 1.04 0.67 1.42 6.37 1.42
2M 0.19 0.22 0.16 1.53 1.53 1.53 1.47 1.03 0.83 1.72 6.28 1.14
4M 0.36 0.39 0.32 1.52 1.52 1.52 1.42 1.02 1.43 2.92 5.37 0.92
SM 0.71 0.72 0.71 1.52 1.52 1.52 1.40 1.02 1.53 3.13 5.54 0.72

16M 1.42 1.43 1.37 1.51 1.51 1.51 1.38 1.01 1.76 3.58 5.54 0.58
twofaced 501(o.oi 0.06 0.01 1.81 1.84 1.76 5.11 1.21 0.46 1.02 7.78 4.13

1001(0.02 O.OG 0.01 1.73 1.77 1.71 4.81 1.16 0.44 0.96 8.01 3.20
5001(0.06 0.11 0.05 1.62 1.63 1.59 4.10 1.08 0.56 1.20 8.15 1.86

IM 0.11 0.11 0.05 1.59 l.(iQ 1.58 3.89 1.06 0.64 1.36 7.82 1.47
2M 0.20 0.22 0.16 1.57 1.58 1.56 3.63 1.04 0.75 1.58 7.63 1.16
4M 0.39 0.44 0.38 1.56 1.56 1.55 3.57 1.03 0.96 1.97 7.29 0.92
BM 0.76 0.77 0.71 1.54 1.55 1.54 3.50 1.03 0.97 2.00 7.43 0.72

16M 1.49 1.54 1.48 1.53 1.54 1.53 3.40 1.02 1.00 2.03 7.57 0.57

the solution times and comparison counts of SELECT and PMSELECT are much more stable
across all the inputs. This feature may be important in applications.

Acknowledgment . I would like to thank Olgierd Hryniewicz, Roger Koenker, Ronald
L. Rivest and John D. Valois for useful discussions.

References
[AHU74] A. V. Aho, J.E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer Algorithms,

Addison-Wesley, Reading, MA, 1974.

[BeM93] J. L. Bentley and M. D. Mcllroy, Engineering a sor·t function, SoftwarL~Practice and Experi-
ence 23 (1993) 1249- 1265.

[13eS97] J . L. Ilentley and ll. Sedgewick, Fast algorithms for sorting and sca1-c/1ing strings, in Proceed-
ings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'97), SIAM,
Philadelphia, 1997, pp. 360- 369.

[BFP+72] M. R. Illmu, R. W. Floyd, V. Il. Prntt, Il. L. Rivest aud ll. E. Tarjan, Time bounds for
sdectitm, J. Cmnput. Systcru Sci. 7 (1972) 448- 461.

[Ilro7G] T. Brown, Remark on algorithm 489, ACM TI·aus. Math. Software 3 (l!l76) 301- :l04.

[Chv79] V. Chv,\tal, The tail of thr, hype1yeouwt1·ic distribution, Discrete Math. 25 (1979) 285- 287.

[CuM89J W. Cnnto and .J. I. .Munro, A-uernge case selection, .I. of the AC!IJ 36 (l!J89) 270- 279.

22

Table 7.4: Performance of PMSELECT on deterministic inputs.

Sequence Size Time [sec] Coniparisons 1'nvg Lnvg Pn"1. Nnvg l'nvg Snv~

n avg max min [n] [n] [Inn] [Inn] [%n]
sorted 50K 0.01 0.06 0.01 1.79 4.!Jl 1.23 0.46 1.02 8.36 4.12

lOOK 0.03 0.06 O.Dl 1.73 4.69 1.16 0.43 O.!J6 8.55 3.21
500K 0.06 0.06 0.06 1.60 3.33 1.07 0.61 1.30 7.71 1.86

lM 0.07 0.11 0.05 1.57 3.07 1.06 0.65 1.38 6.58 1.47
2M 0.12 0.17 0.11 1.56 2.99 1.04 0.76 1.5!) 7.57 1.15
4M 0.25 0.28 0.22 1.55 3.02 1.03 O.!J!J 2.04 8.06 0.92
BM 0.46 0.4!) 0.44 1.54 3.12 1.03 1.01 2.01 7.13 0.72

lGM 0.90 O.!J3 D.88 1.53 3.20 1.02 1.02 2.11 7.46 0.57
rotated 50K 0.01 0.06 O.Dl 1.80 4.92 1.23 0.46 1.02 8.55 4.12

lOOK O.Dl 0.06 O.Dl 1.73 4.6!J 1.16 0.43 O.!J6 8.55 3.21
500K 0.03 0.06 O.Dl I.GO 3.33 1.07 0.61 1.30 7.82 1.86

lM 0.06 0.11 0.05 1.57 3.08 1.06 0.65 1.38 6.74 1.47
2M 0.12 0.17 0.11 1.56 2.99 1.04 0.76 1.59 7.13 1.15
4M 0.24 0.28 0.22 1.55 3.02 1.03 0.99 2.04 7.71 0.92
BM 0.46 0.50 0.44 1.54 3.12 1.03 1.01 2.01 7.19 0.72

16M 0.91 O.!J3 0.88 1.53 3.20 1.02 1.02 2.11 7.46 0.57
organ pipe 50K 0.02 0.06 0.01 1.82 5.26 1.21 0.46 1.02 8.73 4.11

lOOK 0.01 0.01 0.01 1.76 5.29 1.17 0.43 0.96 8.64 3.20
SOOK 0.06 0.06 0.06 1.62 3.95 1.07 0.61 1.30 7.06 1.87

lM O.O!J 0.11 0.05 1.59 3.76 1.06 0.72 1.52 7.43 1.48
2M 0.16 0.17 0.16 1.57 3.37 1.04 0.76 1.59 7.00 1.16
4M 0.32 0.33 0.27 1.55 3.35 1.03 0.92 l.!Jl 6.90 0.92
BM 0.56 0.60 0.55 1.54 2.91 1.03 1.01 2.08 7.97 0.72

16M 1.11 1.15 1.10 1.53 3.05 1.02 1.02 2.11 7.34 0.57
rn3killer 50K 0.01 O.Dl 0.01 1.80 5.05 1.22 0.46 1.02 7.91 4.14

lOOK 0.01 0.05 0.01 1.74 4.95 1.16 0.4:J 0.96 6.82 3.19
500K 0.05 0.06 0.05 1.63 4.22 1.08 0.61 1.30 7.76 1.86

lM 0.09 0.11 0.05 1.60 4.06 1.06 0.58 1.23 7.94 1.46
2M 0.17 0.17 0.16 1.57 3.76 1.04 0.69 1.45 8.19 1.15
4M 0.33 0.33 0.33 1.56 3.80 1.03 0.99 2.04 7.42 0.92
BM 0.61 0.66 0.60 1.55 3.60 1.03 0.94 1.89 8.60 0.72

16M 1.22 1.26 1.21 1.54 :1.67 1.02 1.02 2.05 7.03 0.57

[DHUZOl] D. Dor, .J. H,1stacl, S. Ulfberg and U. Zwick, On lower bounds for selecting the median, SIAM
J. Discrete Math. 14 (2001) 299- 311.

[DoZ99] D. Dor and U. Zwick, Selecting the median, SIAM J. Comput. 28 (1999) 1722- 1758.

[DoZOl] --, Median selection 1-cq,,ir-e., (2 + ,)N c:ompm-ison.,, SIAM .J. Discrete Math. 14 (2001)
312- 325.

[FIR73] R. W. Floyd and R. L. Riv~-,;t, Bounds on the expected time for median compul.atio,c,, in
Courant Computer Science Symposium, R. Rustin, ed., vol. 9, Algorithmic Press, New York,
NJ, 1973, pp. 69- 76.

[FIR75a] --, The algorithm SELECT- for finding the it!, smallest ofn elements {Algorithm 489),
Comm. ACM 18 (1975) 173.

[FIR75b] --, Ex11ccted time bomul.s for sekction, Comm. ACM 18 (l!J75) 165- 172.

23

!GeS96]

!Grii99]

!Hoa6!]

!Hoe63]

I.JoK69]

!Kiw02]

IKMP97]

[Knu97]

[Knu98]

!Kor78]

Table 7.5: Performance of RISELECT on randomly generated inputs.

Sequence Size Time !sec! Comparisons In] Lavg Nrnd
n avg max min nvg 1nax min !nJ

random 501(0.01 0.06 o.oi 3.10 4.32 1.88 3.10 0.40
1001(0.03 0.06 ().DJ 2.61 4.20 1.77 2.61 0.25
5001(0.10 0.11 0.05 2.90 4.23 1.69 2.90 0.20

IM 0.18 0.22 0.11 2.81 3.64 1.84 2.81 0.35
2M 0.34 0.44 0.22 2.60 3.57 1.83 2.60 0.30
4M 0.77 1.38 0.44 2.88 4.81 1.83 2.88 0.55
8M 1.38 1.70 1.05 2.GO 3.48 1.80 2.GO 0.45

!GM 3.00 4.01 1.75 2.99 4.49 1.73 2.99 0.45
OUCZCl'O 50K 0.02 0.06 0.01 2.73 3.22 2.68 2.73 0.00

lOOK 0.03 0.06 O.DI 2.72 2.88 2.68 2.72 0.00
500K 0.11 0.17 0.06 2.74 2.88 2.68 2.74 0.40

IM 0.20 0.22 0.16 2.72 2.85 2.68 2.72 0.55
2M 0.39 0.44 0.38 2.71 2.99 2.68 2.71 0.75
4M 0.79 0.83 0.76 2.73 2.85 2.68 2.73 1.00
BM 1.62 1.98 1.54 2.72 2.88 2.68 2.72 1.00

16M 3.13 3.19 3.07 2.72 2.85 2.68 2.72 0.95
twofaccd 50K 0.03 0.11 0.01 7.74 8.45 7.00 7.74 1.20

1001(0.05 0.11 0.01 7.57 8.35 6.79 7.57 1.20
5001(0.17 0.22 0.11 7.60 9.25 6.60 7.60 1.25

lM 0.35 0.39 0.27 7.64 8.61 7.02 7.64 1.35
2M 0.70 0.77 0.55 7.69 8.55 6.72 7.69 1.30
4M 1.39 1.65 1.21 7.70 8.98 6.89 7.70 1.30
BM 2.80 3.30 2.47 7.73 9.12 6.97 7.73 1.30

16M 5.39 G.15 4.83 7.49 8.34 6.79 7.49 1.40

A. V. Gerbcssiotis and C. J. Siniolakis, Concmrent heaps 011 the BSP model, Tech. Report
PRG-TR-14-96, Oxford University Computing Lab., Oxford, UK, 1996.

ll. Griibcl, On the median-of-k ve,·sion of Hoa,-e's selection algorithm, Theor. Inform. Appl.
33 (1999) 177-192.

C. A. R. Hoare, FIND (Algmithm 65), Comm. ACM 4 (1961) 321- 322.

W. Hoclfding, Probability i11equalities for· sums of bounded random va,'iables, J. Amer. Statist.
Assoc. 58 (1963) 13- 30.

N. L. Johnson and S. Kotz, D·isti-ibutions in Stati.,tics: Disc,-ete Distributions, Houghton Mif­
flin, Boston, 1969.

K. C. Kiwiel, Randomized selection with tripartitiong, Tech. report, Systems Research Institute,
Warsaw, 2002.

P. Kirschcnhofcr, C. Martinez and 1-1. Prodingcr, Analysis of Hom-e's Fi11d algmithm with
mcdian-of-th,-ee partition, ll,mdom Stnctnrcs and Algorithms 10 (1997) 143 -156.

D. E. Knuth, ?'lie Art of Computer Pmymmmi11g. Volume I: Fu11danwntal Algorithms, third
ed ., Addison-Wesley, llcacling, MA, 1997.

---, The Art of Computer Pmgramming. Volume Ill: Sorting ,md Sca1'Chi119, second ed. ,
Addison-Wesley, Reading, MA, 1998.

V. S. Koroliuk, ed., llmulbook 011 Probability Them;y a11d !vlathematical Statistics, Naukova
Dumk,,, Kiev, 1978 (llussiau).

24

Table 7.6: Performance of RJSELECT on deterministic inputs.

Sequence Size Time [sec] Comparisons Lnvg Nrml
n uvg tnax min [n] [n]

sorted 501(0.01 0.01 0.Dl 1.00 1.00 0.00
lO0K 0.01 0.06 0.Dl 1.00 1.00 0.00
5001(0.01 0.01 0.01 1.00 1.00 0.00

IM 0.05 0.11 0.Dl 1.00 1.00 0.00
2M 0.08 0.11 0.05 1.00 1.00 0.00
4M 0.15 0.17 0.11 1.00 1.00 0.00
BM 0.2!J 0.33 0.27 1.00 1.00 0.00

16M 0.56 0.60 0.55 1.00 1.00 0.00
rotated SOI(0.01 0.06 0.Dl 3.99 3.!l8 2.00

1001(0.02 0.06 0.01 3.97 3.97 2.00
500K 0.11 0.16 0.06 4.01 4.01 3.00

lM 0.13 0.17 0.11 3.96 3.96 2.00
2M 0.28 0.33 0.27 3.99 3.99 1.00
4M 0.56 0.60 0.55 4.00 4.00 3.00
BM 1.10 1.10 1.10 3.97 3.97 2.00

16M 2.19 2.20 2.15 3.96 3.96 2.00
organpipe 501< 0.01 0.06 0.01 9.43 9.43 4.00

1001(0.06 0.11 0.Dl 9.73 9.73 4.00
5001(0.16 0.17 0.16 8.31 8.31 4.00

lM 0.35 0.38 0.33 8.53 8.53 5.00
2M 0.77 0.77 0.77 9.73 9.73 5.00
4M 1.87 l.87 1.87 12.10 12.10 5.00
BM 2.25 2.26 2.25 7.34 7.34 3.00

16M 5.07 5.11 5.05 7.88 7.88 3.00
m3killer 501(0.02 0.06 0.01 7.57 7.57 2.00

lO0I< 0.03 0.06 0.01 11.52 11.52 2.00
5001(0.16 0.17 0.16 7.64 7.64 1.00

lM 0.33 0.33 0.33 8.00 8.00 1.00
2M 0.68 0.71 0.66 8.26 8.26 1.00
4M 1.13 1.16 1.09 7.15 7.15 1.00
BM 2.86 2.86 2.85 9.19 9.19 2.00

16M 4.72 4.73 4.72 7.43 7.43 2.00

[MaROl] C. Martinez and S. llourn, Optimal sampling stmte_qics in quicksm·t awl quickselect, SIAM .J.
Comput. 31 (2001) 683- 705.

[MehOO] K. Mehlhorn, Foundation., of Data Stmctun,., and Algorithms: Sdcdion, Lecture notes,
Max-Planck-Institut fiir lnformatik, Saarbriicken, Germany, 2000. Available at the URL
http:/ /www.mpi-sb.mpg.de/- mehlhorn/lnfonnatik5.html.

[MoR95] R. Motwani and P. llaghavan, Randomized Algo,-ithms, Cambridge University Press, Cam-
bridge, England, 1995.

[Mus97J D.R. Musser, Introspective sorting and sefodion nlgorithm.s, Software- Practice and Experience
27 (1997) 983- !!93.

[PllKT83J .J. T. Postnms, /\. H. G. Ri1n1ooy Kan and G. T. Timmer, An efficient dynamic .,dcr:tion
method, Comm. ACM 26 (l!l83) 878- 881.

25

IRajOlJ

illei85J

[Rob55J

[Sed77]

[Sib!l!l]

[SPP7G]

[VnlOO]

S. Rajasekarnn, Selection algorithms for 1,aral/el disk systems, J. Parallel Distributed Comp.
61 (2001) 536- 544.

Jl. llcisclmk, Pml,abilistic par-al/el alg01ithms for· sorting and selection, SIAM J. Comput. 14
(1985) 396- 409.

H. Robbins, A rnmark on Stir-ting's formula , Amer. Math. Monthly 62 (1955) 26- 29.

R. Scdgewick, Quicks01·t with equal keys, SIAM J . Comput. 6 (1977) 240- 287.

.!. F . Sibeyn, External selection, in STACS !l9, Proc. of 16th Annual Symposium on Thcorcticul
Aspects of Computer Science, C. Meinel and S. Tison, eds., Lecture Notes in Computer Science
15G3, Springer, Berlin, 1999, pp. 291- 301.

A. Schonhagc, M. Paterson and N. Pippenger, Finding the median, J . Comput. System Sci.
13 (1976) 184- 199.

.J. D. Valois, bttms1w.ctiv" s01·ti11g and selection 1-evisited, Software-Practice and Experience
30 (2000) 617- 638.

26

