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Abstract 

Simple procedures and charts are suggested to design PI controllers for time delayed 
processes so as to meet specified phase margin and cross-over frequency. The com­
patibility of the specifications with system stability and their influence on system 
performance are investigated. It is shown how the procedures can be extended to 
the case in which the specifications are given in terms of gain and phase margins. 
Robustness issues are also considered. 

Key words: PI controllers; First-order lag plus dead-time process models; 
Stability margins; Parameter-plane stability regions; Cross-over frequencies. 

1 Introduction 

1.1 Problem statement 

Following the work of Ziegler and Nichols (Ziegler & Nichols, 1942) a vari­
ety of PID design methods have been suggested (Astriim & Hagglund, 1995; 
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O'Dwyer, 2000a,b,c; Syder et al., 2000), which is not surprising in view of 
the very large number of industrial control systems including such kind of 
controllers (Yamamoto & Hashimoto, 1991; Astriim & Hagglund, 1995). 

Many processes can adequately be represented by a first-order lag plus de­
lay, i.e., by a model for which efficient identification techniques have been 
developed O'Dwyer (2000d). In the following reference will be made to such 
a model. However, since it is necessarily only an approximation of the actual 
plant behaviour, robustness issues play a major role. 

Traditionally, stability margins have been used as meaningful measures of 
robustness with respect to both system stability and performance, and PID 
design techniques have been developed to satisfy gain and phase margin spec­
ifications, possibly in conjunction with performance optimization criteria (Ho 
et al., 1995a,b, 1997, 1998, 1999, 2001 ). In particular, the equations express­
ing the magnitude and phase of the loop frequency response have been solved 
numerically for the cross-over frequencies and controller parameters, and the 
ISE for various combinations of stability margins have been computed to allow 
a tradeoff between these margins and performance (Ho et al., 1999). 

In this paper a partially different path is followed. First, some remarks on the 
choice of the design specification are made to justify the preference for those 
based on the phase margin m4, and gain cross-over frequency WA, even if the 
suggested procedure can be adapted to the case in which the specifications 
are given in terms of phase and gain margins. By limiting attention to PI con­
trollers, the specifications are immediately translated into linear interpolation 
conditions that allow us to easily determine the controller parameters from 
those of the process. The evaluation of the compatibility of mf and wA with 
the system stability, their influence on its performance, and the choice of the 
design parameters are facilitated by suitable charts showing the regions of the 
controller parameter plane corresponding to given ranges of stability margins 
and cross-over frequencies. The use of these charts is illustrated with the aid 
of examples. Charts of the same kind are suggested for the case in which the 
specifications are in terms of phase and gain margins. 

1. 2 Remarks on the specifications 

Specifications should concern the following aspects of the system behaviour: 

- (internal) stability and stability robustness, usually evaluated in terms of 
phase margin m4, and gain margin m9 ; 

- steady-state precision, characterized by means of loop tipe and of the steady­
state error ess in the response to the relevant canonical input ( unit step ant 
its integrals), which depends on the Bode gain of the loop function; 
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- dynamic precision, related to the overshoot mp of the step response, or to 
the resonance peak Mr of the frequency response, which are in turn strictly 
connected with the phase margin; 

- promptness of the response, characterized by both the settling time and 
the rise time, the latter being related to the pass-band B of the frequency 
response and, therefore, to the gain cross-over frequency WA-

The assumptions on the process dynamics, approximated by means of a first 
order model plus a dead time, and on the PI structure of the controller, en­
sure that the loop is of type one ( no steady-state error in the step response) . 
Since, usually, the steady-state error in the response to a ramp input is not so 
important, the Bode gain of the loop function and, consequently, the coeffi­
cient K1 of the controller integral action will be determined with reference to 
other aspects of the system behaviour. Also, the magnitude of the open-loop 
frequency response turns out to be monotonically decreasing, so that, in gen­
eral, a rather large phase margin implies an acceptable gain margin too. In 
conclusion, to characterize stability and dynamic precision, reference will be 
made to the phase margin and, to characterize promptness, to the gain cross­
over frequency. In this way, the number of specifications matches that of the 
controller parameters. Clearly, the choice of these specifications may require 
successive adjustments of the controller parameters so as to obtain acceptable 
values of the overshoot mp (not rigidly related to mq,), of the rise and settling 
times (not rigidly related to WA) and of the gain margin (accounting for the 
robustness with respect to gain variations) . 

1.3 Model normalization 

In the following, reference will be made to processes that can adequately be 
modelled by a transfer function of the form: 

,. e-LB 

P(s)=K-r-· K,T,L>O 
1+ s 

(1) 

where the independent variable has been denoted by s because the symbol s 
will be used to indicate a normalized variable. 

The transfer function of the adopted PI controller will be denoted by: 

- _ K1 K1 _ 1 
C(s) = Kp +-;:- = -;:-(1 + T1s) = Kp(l + -T _) 

S S 1S 
(2) 
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with 

(3) 

Therefore, the open-loop transfer function becomes: 

(4) 

For the reasons explained in Section 1.2, we initially consider specifications in 
terms of phase margin m</> and gain cross-over frequency WA. 

For normalization purposes, the independent variable will be changed to: 

s := Ts 

so that ( 4) becomes: 

G(s) := G(~) = (a+bs) e-n. 
T s l + s 

where: 

b:= KKp, 

L 
T := f · 

(5) 

(6) 

(7a) 

(7b) 

(7c) 

Accordingly, the specification on WA is translated into a constraint on the 
normalized cross-over frequency: 

(8) 

whereas the specification on m,i, is not affected by (5). 

2 Interpolation conditions 

It is easy to relate the values of parameters a and b to the values of WA and 
m,i,, given the value of T (which is the unique parameter characterizing the 
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process in the normalized transfer function function (6)). Once a and b have 
been determined, the controller parameters Kp and K1, or Kp and T1, can be 
obtained from (7a), (7b) and {7c). 

Necessary conditions for G(jw) to exhibit phase m<I> - 1r and unit magnitude 
at WA follow immediately from the interpolation condition: 

G(jwA) = cos(m<1> - 1r) + j sin{m<I> - 1r) = - cosm<I> - j sin m<I>. (9) 

Multiplying (9) by the denominator of G(jwA), for WA real and strictly positive 
we get: 

acos(TwA) + bwAsin(TwA) = w;i cosm<I> + wAsinm</>, 

-asin(TwA) + bwA cos(TwA) = -WA cosm<I> + w;i sin m</>, 

(10a) 

{10b) 

Clearly, conditions {10a), {10b) are not sufficients to achieve the desired stability 
margin m<I> because, even if the Nyquist diagram of G(jw) passes through point 
ej(m,;-1r), it could encircle point -1 + jO (see later) . 

A useful feature of eqs {10a), {10b) is their linearity with respect to a and b, 
which allows us to easily find their unique solution: 

a= WA[sin(TWA + m4>) + WA cos(TWA + m4>)], 

b = WA sin(TWA + m4>) - cos(TWA + m4>)-

{lla) 

{llb) 

In the following sections, these equtions will be exploited to check the com­
patibility between the considered specifications, to design the controller and, 
also, to evaluate the system robustness. However, a stability analysis must 
preliminarily be performed. 

3 Stability analysis 

The Nyquist diagram of the type-one loop function G(jw) for w--> O+ tends 
to a vertical asymptote whose abscissa turns out to be: 

r := Jim Re[G(jw)] = b - {1 + T)a. 
"HO 

{12) 

Moreover we have: 

sgn{ lim Im[G(jw)I} = -sgna. 
w-O+ 

{13) 
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Fig. 1. Typical Nyquist diagrams for (6). 

It follows that the initial arc (w small) of the (positive) Nyquist diagram 
belongs to: 

(i) the first quadrant for a < 0, b > (1 + r)a; 
(ii) the second quadrant for a< 0, b < (I+ r)a; 

(iii) the third quadrant for a> 0, b < (I+ r)a; 
(iv) the fourth quadrant for a> 0, b > (I+ r)a. 

The first two cases, exemplified in Fig. la and Fig. lb, correspond to unstable 
behaviour as immeditely shown by the Nyquist criterion. The last two cases 
(a > 0) may correspond to either unstable behaviour, as in Fig. le and Fig. 
ld, or stable behaviour, as in Fig. le and Fig. lf. Therefore the stability region 
in the (a, b)-plane may only belong to the right half-plane (a> 0). By taking 
into account that IG(jw)I decreases monotonically as w increases (which would 
not be true in the case of the PID controllers), the positive Nyquist diagram 
intersects the unit circle at one point only. For every value of r, the stability 
boundary is formed by a segment of the b-axis (a = 0) and by the curve of 
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Fig. 2. Stability regions of the (a, b)-plane: (a) r = 0.1 + 0.5; (b) r = 0.6 + 1.0 

the (a, b)-plane characterized by: 

arg[G(jwA)] = -1r (14) 

along which m4, = 0. (Note that, if arg[G(jwA)] = -(2k + l)1r, k E Z+, the 
system would not be stable because the Nyquist diagram would encircle the 
critical point). 

The curves of the ( a, b)-plane corresponding to m4, constant, m4, > 0, develop 
inside the above mentioned stability boundary and their extremes lay on the 
b-axis. It is not easy to find their analytic expression either in the explicit form 
b = f(a) or in the implicit form g(a, b) = 0. Nevertheless, it can be obtained 
from (lla), (llb), e.g., using MATLAB. 

The stability boundaries for various values of r are depicted in Fig. 2, whereas 
the curves corresponding to a set of values of m4, for the same value of r are 
given in Fig. 3. 
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Fig. 3. Curves ffi,J, = const in the (a,b)-plane r = 0.5 

4 Gain cross-over frequencies 

5 

m =60° 
cl> 

m =75° 
cl> 

The analytic expression of the curves on the (a , b)-plane corresponding to 
WA= const can immediately be determined from the condition jG(jwA)I = 1. 
In fact, taking account of (6) and considering square magnitudes, we get: 

(15) 

and then: 

(16) 

which represents an ellipse centered at ( a = 0, b = 0) whose axes belong to 
the straight lines a = 0 and b = 0. These ellipses intersect the vertical axis at 
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Fig. 4. Arcs of the curves WA= 0.25k, k = 1 + 8. 

a= 0 and 

b= ±Jl+w~, 

whereas they intersect the horizontal axis at b = 0 and 

a= ±wAJ1 +w~. 

3.5 4 

(17) 

(18) 

In particular, for WA = 1 the ellipse becomes a circle of radius \/'2; for WA < 1 
the horizontal axis is smaller than vertical one, and vice versa for w A > I. It 
is interesting to observe that the ellipse corresponding to WA, Vw A, intersects 
the line b = a at b =a= WA . 

Note, also, that ellipses (16) are independent of T (whereas the curves m,; = 
canst depend on it) and that only their right halves may belong to the stability 
region. Fig. 4 shows arcs of the ellipses corresponding to different values of w A 

in the region of interest. 
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5 Specification compatibility 

According to the considerations of Section 1, let us assume that the specifica­
tions are: 

(19) 

(20) 

Given the process to be controlled, i.e., given T, reference will be made to the 
ellipse WA = wA and to the curve m~ = m; corresponding to such T. The 
above specifications are compatible with _each other iff an arc of the ellipse 
w A = wA belong to the region between the curve m~ = m; and the vertical 
axis. For instance, for T = 0.5 the condition WA = 2 is not compatible with 
m~ ~ 75°, whereas it is compatible with m~ ~ 45° : in fact, as shown in Fig. 
5, the curve WA = 2 is external to the curve m~ ~ 75°, whereas it intersects 
the curve m~ = 45° at point P1 so that the points of arc AP2 exibit a phase 
margin greater than 45° (precisely, it ranges from 45° to almost 60°). 

On the other hand, it is easy to find the highest value w'.;i of WA compatible 
with a given m~ because it corresponds to the value bu of b characterizing 
the upper intersection of the curve for relevant phase margin with the vertical 
axis, where the cross-over frequency takes the value (cf. (17)) : 

u- ✓b2-1 WA - u · (21) 

In this regard, it may be useful to exploit the fact that for T E [0.1, 1] the 
dependence of bu on T is very well approximated by the hyperbola: 

1 
bu = µ- + V 

T 
(22) 

where µ and v are constants dependent on m~. Tab. 1 gives the mean square 
values µ and v for various values of m~. Once bu has been estimated, w'.;i can 
be computed using (21). 

Table 1. Coefficients of (22) 

m~ 30° 45° 60° 75° 900 120° 

µ 1.0562 0.8142 0.5799 0.3760 0.2173 0.0562 

V 0.8427 0.9017 1.0414 1.1322 1.1820 1.1338 
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.0 

a 

Fig. 5. Compatibility of the conditions w;._ = 2 and w;._ 
m</> ~ 60° and m</> ~ 45° for T = 0.5. 

6 Design charts and robustness analysis 

3.5 4 

1.5 with m</> ~ 75°, 

To facilitate the design of procedure, it is convenient to avail ourselves of 
charts depicting a number of loci m</> = canst and WA = canst in the region 
of interest of the (a, b)-plane for different values of T . Charts of this kind are 
shown in Fig. 6. 

With reference to specifications (19) and (20) and to the value of T charac­
terizing the normalized process, the design procedure consists of the following 
steps: 

(i) choose the chart corresponding to the value of T = ¥ closest to the actual 
normalized delay; 

(ii) if the specifications are not compatible, either modify the normalized gain 
cross-over frequency w;._ or resort to a more complicated controller (e.g., 
a PID controller); 

(iii) determine (if necessary, by interpolation) the coordinates (a, b) of a point 
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Fig. 6. Loci m,i, = 60° (solid lines), m,t, = 75° (dashed lines) and WA = canst (dotted 
lines) in the (a, b)-plane for r = 0.lk, k = 1-;- 10. 

P on the curve w A = wA included between its intersections with the curve 
m,i, = m; and the vertical axis, like points Pi and P2 in Fig. 5 (concerning 
the choice of P see later); 

(iv) using relations (7a), (7b) and (7c) compute Kp and Kr or Tr as: 

b 
Kp=K' 

a 
Kr= KT or 

bT 
Tr=-. 

a 
(23) 

The above charts can also be used to evaluate the effects on m,t, and WA of a 
change in the process parameters. 

To this purpose, let us denote by Kp and Kr the values of the controller 
parameters ensuring the satisfaction of the specifications m,t, = in,t, ~ m; and 
WA= wA when the process parameters are K, Land T, and denote K' , L' and 
T their modified values. By keeping the controller unchanged, the new process 
parameters lead to the following values for the parameters of the normalized 
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1 

; 

loop transfer function (cf. (7a), (7b) and (7c)): 

' T (24) 

Using the chart for 7 ' , the new phase margin m~ and normalized cross-over 
frequency w~ corresponding to (a', b') can be evaluated, from which the new 

actual cross-over frequency w~ = ~ is immediately obtained. 

A reasonable measure of the effects of the considered process modification 
is provided by the deviation t..m,i, and t..wA of the new values m~ and w~ 
from the old values m,i, and wA of the phase margin and cross-over requency 
corresponding to the old pair ( a, b), i.e. : 

t..m,i, := m~ - m' ,i,, (25) 

(26) 

In practice, it will be only possible to predict the ranges fKm, KM], [Lm, LM], 
[Tm, TM] over which the process parameters K, L, T, respectively, can vary. 
These intervals define a parallelepiped of the original process parameter space 
that is mapped via relations (7a), (7b), (7c), with Kp and K 1 constant, into a 
solid of the (a, b, T) space characterized by 23 = 8 vertices and 12 edges. The 
determination of the worst case, in terms of both t..m,i, and t..wA, is facilitated 
by the use of programs, e.g., in MATLAB, for representing the cross sections 
of this solid on the charts for a suitable number of T values in the interval of 
interest, i.e., T E [¥:, ¥.'.-]- As far as m,i, is concerned, the worst case usually 
corresponds to the vertex [KM, LM, Tm] -

7 Gain margin 

The Nyquist diagram of the loop function (6) crosses the negative real semi­
axis an infinite number of times. The value of w8 of the frequency w corre­
sponding to the first intersection is the so-called phase cross-over frequency. 
Denoting by g the absolute value of (6) at this point, we have: 

G(jwa) = -g. (27) 

As is known, the gain margin m9 can be defined in different ways, e.g., 
mg = 1 - g or mg = ; or, especially with reference to Bode diagrams, 
mg = log; = - log g. To simplify the analysis, in the following, we directly 
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Fig. 7. Curves g = 0.5 (solid Jines), g = 0.7 (dotted lines) and Jines w8 = 2 (dashed 
lines) for r = 0.lk, k = 1 + 10, inside the stability region of the (a, b)-plane. 

refer to g, from which it is immediate to obtain the gain margin, whatever 
definition is adopted. 

Multiplying both sides of (27) by the denominator of G(jw8 ) and equating 
real and imaginary parts, we get: 

a= g wB[sin(rwB) + WB cos(rwB)], 

b = g[wBsin(rwB) - cos(rwB)]. 

(28a) 

(28b) 

Given r, for any value of g eqns. (28a) and (28b) define a curve in the (a, b)­
plane with current copordinate WB . Of course, the curve for g = 1 coincides 
with the curve characterized by m,; = 0 of the family previously considered, 
and forms the boundary of the stability region together with the relevant 
segment of the fr.axis . Inside the stability region, the curves g = canst (0 < 
g < 1) have the shape shown in Fig. 7. Their form is roughly similar to that 
of the curves for m,; = canst (cf. Fig. 6). However, the two intersections of 
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every g = canst with the vertical axis include point (0, 0), whereas the two 
intersections of every curve m,t, = const include point (0, 1). 

Concerning the curves WB = const (which determine the parametrization of 
those for g = canst), their analytic expression, easily obtained from (28a) and 
(28b, is simply: 

b=pa (29) 

with coefficient p given by: 

WBsin(rwB) - cos(rwB) 
p = wB[sin(rwB) + WB cos(rwB)]' 

(30) 

which corresponds to a straight line through the origin whose slope does not 
depend on g but depends on r. These lines too, are represented in Fig. 7. 

The charts in Fig. 7 allow us to find the gain margin ( and the related phase 
cross-over frequency WB > WA) associated with a pair (a, b) determined ac­
cording to the design procedure of Section 5, i.e., satisfying the specifications 
on m,t, and w A, and can thus be used to discriminate the points of the "admis­
sible" arc of the parameter plane (like arc PiP2 of Fig. 5): note in this regard, 
that a not too small value of g is often preferable (see later). 

Clearly, if the design is based on m,t, and m9 , instead of m,t, and WA, it is useful 
to avail ourselves of charts depicting, for every r, the curves m,t, = const inside 
the stability region. In this case, by denoting with m; and g* the specified 
lower bound on m,t, and upper bound on g, the specifications are compatible 
iff curve m,t, = m; crosses curve g = g* on the chart for the relevant value 
of r, and the acceptable values of the normalized controller parameters will 
correspond to the points in the intersection of the regions where m,t, ~ m; 
and g ::; g*. The procedure is exemplified in Fig. 8 with reference tor = 0.5, 
m; = 60°, and g* = 0.3: curves m,t, = 60° and g = 0.3 intersect at (1, 0.916) for 
WA= 0.96 and at (0.221, -0.200) for WA= 0.21. The Nyquist diagrams of the 
loop functions corresponding to these two points practically coincide, except 
for their graduation in w, along the arc between the intersection with the real 
axis, and slightly differ outside this arc. Correspondingly, the overshoots of 
the step responses of the two feedback systems are about the same, whereas 
the ratio between their rise times is almost the reciprocal of the ratio between 
the related gain cross-over frequencies. 
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Fig. 8. Regions where m~ 2': 60° and g :5 0.3 for T = 0.5. 

8 Choice of point (a, b) in the admissible region 

1.2 

If the specifications are compatible, they can be satisfied in different ways. 
The following considerations help us identify the solutions that are most sat­
isfactory (for the specific problem at hand) . 

As already said, if the specifications are given in terms of gain cross-over 
frequency and phase margin, i.e., in the form w = wA and m~ 2'. m;, the 
admissible region of the (a, b)-plane reduces to the arc of the ellipse WA= wA 
between its intersections with the curve m~ = m; and the b-axis, like arc 
PiP2 of Fig. 5 which refers to the case of r = 0.5, wA = 2 and m; = 45°. 
It is instructive to examine the step response of the feedback control system 
corresponding to different points of arc PiP2 • To this purpose, Fig. 9 shows 
the responses for: 

(i) point P1 = (1.1023, 2.1671), where m~ = 45°; 
(ii) point p' = (0.8, 2.2), where m~ '°' 49°; 

(iii) point p" = (0.5, 2.2), where m~ '°' 53°; 
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Fig. 9. Step responses of the feedback control system for r = 0.5, w A = wA = 2 
and m,t, 2: m; = 45°: (a) a= 1.1023, b = 2.1671 (m,t, = 45°); (b) a= 0.8, b = 2.2 
(m,t, ::e 49°); (c) a= 0.5, b = 2.2 (m,t, ::e 53°); (d) a= 0.1, b = 2.2355 (m,t, ::e 58°). 

(iv) point p"' = (0.1, 2.2355), very close to A, where m,t, ~ 58°. 

For t > r, all responses are well approximated by the step response of a 
third-order system with two complex poles. On passing from P1 to A, the 
importance of the above slow aperiodic mode increases. As a result, the time 
to reach half the final value and the rise time remain (practically) unchanged, 
whereas the overshoot, strictly related to the phase margin, decreases and the 
settling time increases. 

Similar conclusions can be drawn with reference to the step responses repre­
sented in Fig. 10, which correspond to the intersections of the ellipse WA= 1.5 
with the curves m,t, = 45°, m,t, = 60° and m,t, = 75°, also shown in Fig. 5. 
The last two intersections, like the points on the arc Pi P2 considered in Fig. 
9, lie above the line b = a, along which, as already observed in Section 3, 
the gain cross-over frequency is w A = a = b, the first intersection, insted, is 
below this line, but quite close to it. Now, for a = b the the zero introduced by 
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1.4,------,----,----.---.---.---.----,--~---,----~ 

• -0.2 .__ _ __,c_ _ __,_ __ _._ __ _,_ __ ...,_ __ .,__ _ __,c_ _ __,_ __ _._ __ _, 

0 2 3 4 5 
Time(secs) 

6 7 8 9 

Fig. 10. Step responses for r = 0.5, WA = 1.5 and: (a) m,,, = 45° (a = 1.5786, 
b = 1.4637); (b) m</> ~ 60° (a = 0.9566, b = 1.686); (c) m</> ~ 75° (a = 0.2842, 
b = 1.7859). 

the controller cancels the pole of the process at -1 and the feedback system 
exhibits only two dominant poles, which can easily be explained with the aid 
of root locus considerations ( its part closest to the origin contains arcs of two 
branches only). For this reason, for t > T the step response corresponding to 
WA = 1.5 and m,p = 45° (curve (a) of Fig. 10) is very similar to that of a 
second-order system, whereas the other responses are characterized by three 
dominant poles {the poles closest to the origin) and, therefore, contain an 
additional (aperiodic) mode. 

Concerning the choice of a point in the admissible region when the speci­
fications are in terms of phase and gain margins, let us consider again the 
example illustrated in Fig. 8 The point (1, 0.916) at the intersection of the 
curves m,p = m; = 60° and g = g* = 0.3 is very near the straight line b = a. 
The step response of the related feedback control system is represented in Fig. 
11 together with the responses for a = b = 0.75 (where the settling time is 
almost minimal) and a= b = 0.5 corresponding to points inside the admisible 
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1.2r----.---,----.---~--~--~---.~--.---~--~ 

-0.2~-~--~--~--~--~--~-~--~--~--~ 
0 2 4 5 6 7 8 9 

Time(secs) 

Fig. 11. Step responses for r = 0.5 corresponding to points on, or close to, the line 
b = a: (a) a= 1.0, b = 0.916 (mef> = 60°, g = 0.3, WA= 0.96); (b) a= b =WA= 0.75 
(mef> = 68.5°, g = 0.24); (c) a= b =WA= 0.5 (mef, = 75.7°, g = 0.16). 

region. For the reasons previously explained, all these responses are very sim­
ilar to responses of a second-order system (fort> r) . As the considered point 
approaches the origin along the above-mentioned line, mef> increases (from 60° 
to 75.7°) and WA decreases (from 0.96 to 0.5). Correspondingly, the responses 
become monotonically increasing with longer rise times. 

If, instead, the (a, b)-point approaches the !>-axis along the horizontal line 
b = 0.916), the step responses change as shown in Fig. 12: the importance 
of the additional (aperiodic) dominant mode increases and the settling time 
becomes longer. 
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1.2,----,----,----,----,----,----,----,----,----,-----, 

-0.2~--~--~--~--~--~--~-~~-~~--~-~ 
0 2 3 4 5 6 7 8 9 

Time(secs) 

Fig. 12. Step responses for T = 0.5 corresponding to points on the horizontal line 
b = 0.916: (a) a= 1.0 (mq, = 60°, g = 0.3, WA = 0.96); (b) a= 0.75 (m.t, = 72.2°, 
g = 0.28, WA= 0.82); (c) a= 0.5 (m,i, = 88.3°, g = 0.26 WA= 0.65) . 

9 Conclusions 

Formulae and charts have been provided that allow us to check the compati­
bility of the specifications and facilitate the design of PI controllers for time 
delayed processes. Precisely, with a suitable normalization the plant is charac­
terized by the ratio T between the actual dead time L and the time constant 
T and the controller by the coefficients a= K1KT and b = KpK, the speci­
fications concern the phase margin m.t, and the cross-over frequency WA, and 
the charts show for any r the curves m.t, = cunst and w A = cunst in the ( a, b )­
plane. The compatibility between the considered specifications corresponds to 
the intersection of the related loci. Since a specification is expressed as an 
inequality, different solutions are admissible. The paper suggests criteria for 
their selection by taking into account robustness issues too. Finally, the loci of 
constant gain margin are considered, which can be employed: (i) to check the 
gain margin corresponding to the adopted design parameters, or (ii) to deter-
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mine such parameters so as to meet specifications concerning both stability 
margins (and then check the cross-over frequency). 
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