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Dual extremum principles and error bounds in the theory of plates
with large deflections

H. STUMPF (BOCHUM)

For the theory of plates with large deflections, the dual extremum principles are considered.
Starting from the extremum principle of displacements, a strictly static complementary energy
principle is given. With these two theorems, global error bounds can be calculated for plate
problems with large deflections. This is shown on some numerical examples.

W pracy rozwazane sa dualne zasady ekstremalne w teorii plyt z duzymi odksztalceniami.
Wychodzac z zasady ekstremum przemieszczen podano $cisle statyczna zasade energii dopetnia-
jacej. Na podstawie tych dwoch zasad mozna obliczy¢ globalne oszacowania blgdu dla zagadnied
plyty z duzymi ugieciami. Zilustrowano to na kilku przyktadach liczbowych.

B pafore paccMoTpeHbI AyanbHbIE 3KCTPEMAIBHBIE NPHHIMIEI B TEOPHH IUIHT ¢ GONBIIMMA
nedopmarmamn. Haunnan us NpHHIMNA SKCTPEMYM IIepeMelleHHi JaeTCA TOYHO CTATHYeCKHit
TIPHHIMI JOMONHHUTENsHOH 3Heprun. Ha ocHoBe 3THX [ABYX NMPUHIMIOB MOXHO BBEIYHCIHTH
TN0GANbHYIO OLEHKY OWMOKH [JIA 3afa4 IUIMTHI ¢ GoJbImMME nporubamu. 3T0 HIUBOCTPH-
PYETCA Ha HECKOJIBKHX UMC/IOBBIX NIpHMEpaXx.

Notations

THE INDICES o, B, p, d have the values 1, 2; the indices i, j, k, / have the values 1, 2, 3.

la=§
dup = k 1
ap {Oa#ﬁ Kronecker symbol,

+11i,j,k cyclic,
—1i,j,k noncyclic,
0i,j,k otherwise,
xi(f = 1,2, 3) rectangular coordinates of the undeformed plate,
u® = (u,v,w) components of the displacement of the plate,
u; partial differentiation of the function u with respect to the coordinate direc-
tion x;,
eé?)(m =0, 1) Green strain tensor of the order m,
S&8(m = 0,1) Kirchhoff stress tensor of the order m,
Té';’”(m = 0,1) Piola stress tensor of the order m,
Nai membrane forces,
Myg moments,
W strain energy density per undeformed plate area,
W, complementary energy density per undeformed plate area.

Eijk =

1. Introduction

In linear elasticity the very effective methods for the calculation of global and pointwise
bounds are based on the two dual extremum principles: the theorem of potential energy
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and the theorem of complementary energy. In non-linear elasticity the principle of po-
tential energy is well known, whereas the principle of complementary energy has only
been considered for some special cases as one-dimensional problems or discrete problems
[1-3] and the so-called semi-linear materials [4-5]. Recently the complementary energy
principle was given for the von KARMAN plate theory [6].

The linear KIRCHHOFF plate theory is only valued for those plate problems, in which
the plate deflection is much smaller than the plate thickness. In all other cases, in which
the deflection is of the same order as the plate thickness, the membrane forces can no
longer be neglected. This leads to a geometric non-linear problem, described by non-linear
equilibrium equations and a non-linear compatibility condition.

In this paper the dual extremum principles for the theory of plates with large deflections
are considered. Starting with the extremum principle of displacements, a strict complemen-
tary energy principle can be deduced by a Legendre transformation, using the displace-
ment gradient tensor and the PIOLA stress tensor as dual quantities. The variables of the
complementary energy functional are the stress resultants and the stress moments. The
necessary conditions are three linear equilibrium equations and linear static boundary
conditions.

With the dual extremum principles, global error bounds can be calculated for plate
problems including large deflections. Numerical results are given for two examples.

2. The non-linear plate theory according to von Kérmén

Using the Lagrange description, the plate is referred to rectangular coordinates x;
(i = 1,2, 3) with x; and x, in the middle plane and the faces at x; = +//2. Presuming
the validity of Kirchhoffs’s hypothesis, the components of displacement », (i = 1,2, 3)
are given to [7]:

2.1) Uy = U—X3W, Uy =V—X3W3 U3 =W,

in which u, v, w are functions of x, and x, only. Here w, means partial differentiation
of the function w with respect to the coordinate x,. With the usual assumptions the non-
linear GREEN strain tensor is defined as

1
(2-2} 8“ F— E(uu'ﬂ+u’,g+“3’¢u3J), o, ﬂ = l, 2.

Indices notation with summation convention is used.
If Ny are the stress resultants and M., are the stress moments of the plate with respect
to the original unloaded configuration, the stress-strain relations are:

Eh

=57 [(1 —v)eds +784ped,],

Naﬂ =
My = = =y =W a 700l
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If g is the transverse load per unit area of the undeformed plate, the equilibrium equations

are defined as:
Nap.cr. — Os
24) M
ap,ap +N¢’ w,aﬂ +q = 0.

With the skew-symmetric e-tensor, the compatibility condition is

Eh
(2.5) €3ay€3ps| Nag,ys + 3 WapWs | = 0.

The equilibrium condition (2.4), and the compatibility condition (2.5) are non-linea:
partial differential equations.

3. The extremum principle of displacements for the non-linear plate theory

To calculate the total potential energy of the plate, we use the components of displace-
ments (2.1) in the following notation:

3.1 Uy = uP+xul?, a=1,2,
uy = u”,
where 4{® (i = 1,2, 3) and u{? (a = 1, 2) are functions of x, and x, only. Kirchhoff’s
hypothesis is given as:
(3.2 u’ = —ufh = —w,.

With (3.1) the Green strain tensor (2.2) can be written in the following form:
(3.3) exp = €5 +xze8y

with the components

o = 5 (Y +u +u2ug)),
(34
P = 5 st

Let ¥, be the plate volume, F, the area of the plate middle surface, S,, the boundary
surface with prescribed load distribution and C,, the related boundary line of the middle
surface, So, the boundary surface with prescribed displacements and Co, the related
boundary line of the middle surface. The index O refers to the undeformed plate con-
figuration. The total potential energy is defined by the function:

(3.5) I= | Wyuw)dVo— [ quPdFo— [ PtudSey;

14 Fp Sop
P¥ are the surface forces given on the boundary S,,. Wy,(u,,) is the energy density,
measured per unit volume of the undeformed plate:

(36) Wrlus) = 555 [0 =) eapeug +¥(ec’).

g*
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Integrated over the plate thickness, we have the energy density per undeformed plate
area:
A2

3.7 W(“J,t) = f WV,,(UJ,i)dxs

S 1—9)eQe )+v (0))2
4 ( ) sy [(1—7)ey (e&)?]

-24(‘?-—’13;53-[(1 —v)elp elp +v(eS)?].

If we introduce the following given stress resultants and stress moments on the bound-
ary Sop:

hi2 hi2 hi2
(38  Ni= | Prdx,, Qh= [ Ptdx,, M&= [ Pixdx,
—h2 -hf2 -h/2

the functional (3.5) is given as:
(3.9) 1= [ [Wu,)—qu)dFo— f [N&u® + M2 us® + 0% usV1dC, .
Fo

We introduce the symmetric non-linear Kirchhoff stress tensor of order zero and
order one:

. o aw
(310) Ség’ o W’ m = 0, 1.
The differentiation of the strain energy (3.7) leads to the membrane forces and moments
of the plate:
(3.11) S = Nag,  S§ = M.

Correspondingly we introduce the unsymmetric non-linear Piola stress tensor of order
zero and onme:

oW
Ty = uy Sig = Nag,
ow
(3]2) Ta‘:g) = augot): = Ség)ué?s = N3,
aw
TP = W = S = My,.

We consider now a geometric-admissible variation of the functional (3.9) and calculate
the stationary value of the functional I:

(3.13) o= f[aW(u, )= q0uPVdFo— [ (N3, 8u® + M2 0ud +0% 0u)dCo,.

Cop

With (3.12) the variation of the strain energy density W(u,,) leads to:
3.19) SW(us ;) = NapOus+Nas Ouss+ Mg bufld.
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With the components #, of the unit normal vector to the curve C, and with the geometric
conditions

LI
ox;, ‘om "*eos’
d d d
o M M s
in which d/dn and d/ds respectively mean partial differentiation with respect to normal
and tangential directions of the boundary curve C,, we introduce the following notations:
an = HC:NG'J: Mﬁn = naMIIB!
(316) My = 1y Myy, M, = E3ap My Mﬂm
Qua - Man.n-

With (3.2), (3.14), (3.15), (3.16) and using the Gauss divergence theorem, the varia-
tional equation (3.13) leads to the stationary value:

(3.15)

G17) o7 = — [ [Nap.aduf®+(Mapap+Nas,a+q) W dFo
Fy

+ f[(NNE_N:G)(';’“{':DLF(QNS+Mns,s+Nu3_Q:3_M;.s)éw
Cop

= (Mnn = Mu'u) éw,n]dco;w_ (Mus T MII.I) 6W|C0P
+ [ [Nua 0¥+ (Qns +Mas.s+Nuz) 09— Myn 0w 11dCoy — My W|Cop = 0,

CoV
where the notation ( )|C,, indicates the difference in values at the ends of the boundary
curve Cop,p.
For a geometric-admissible variation of the displacements u{®, satisfying the geometric
boundary conditions on C,y, the stationary value of the functional I leads to the Euler
equations in ¥

(3.18) Noga =0, Mygop+Nazatq=0,
and to the static boundary conditions on Cp,:

Npa— =10, Qns +Mu3.s+Nn3-Q:3_M:s.: =0,

(3.19) M, —M* =0, M,—M?2 continuous.

The Eqs. (3.18) are the equilibrium conditions in a linear and strictly static formula-
tion. The Eqgs. (3.19) are the static boundary conditions in a strictly static and linear
formulation as well.

If (3.12), and (3.12), are introduced into the equilibrium equation (3.18), and if (3.18),
is taken into consideration, the equation (3.18), leads to the non-linear equilibrium equa-
tion (2.4), according to von Kérmén. Correspondingly the equations (3.19) with (3.12),
define the non-linear static boundary conditions of the non-linear plate theory.

In this section, it has been shown that the boundary value problem of the non-linear
plate theory corresponds to the stationary value of the variational functional 1. It can
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be shown now that, for a special class of functions u{® the variational functional I not
only has a stationary value for the exact solution, but this value is a minimum as
well. To prove this, we have to show that the energy density W(u,,) is a convex function
of the components of the asymmetric displacement gradient tensor u,,. This will be con-
sidered in detail in a forthcoming paper.

If u{® is the displacement field of the exact solution, and if uf®~ is a geometric-ad-
missible displacement field belonging to that class of functions, for which the functional
I has a minimum, then:

(3.20) 1(uf®) < 1)
holds.

4. The extremum principle of complementary energy

Starting from the extremum principle of displacements from Sec. 3, we construct
a complementary energy principle in such a way, that the Euler equation (3.18) and the
natural boundary conditions (3.19) of the extremum principle of displacements are the
necessary conditions of the complementary energy principle.

We use the Legendre transformation

1
4.1) W, = Z up T +uy T — Wiuy,) = “éoﬁ Ngatu l} Mpu"‘“;o’ Nez—W(uy,)

with the complementary energy density W..

In the transformation (4.1) we have to express the components of the unsymmetric
displacement gradient tensor (u§7, u$%) by the components of the unsymmetric Piola stress
tensor (T3, T¢9). This leads to the equations:

(U2 u) = 5 [(1+9) Neg =9y Ny,
@42)
5 ) = S [(149) Map =g M),
&3ay £3as(Nas Nys— Nys Nus)

(4'3) ug?; = det (Ng') = ?G »

in which the index a is not summed and det(N,;) means the determinant of the tensor
Nyy. With (4.2) and (4.3), the complementary energy density W, of (4.1) can be calculated
as a function of the stress resultants Ny; (¢ =1,2; i =1,2,3) and of the moment
stresses Mo,:

44 W= —[(1 +9) NagNag—v(Ne)?] + s [(1 +v)M¢,M,,—v(Ma.)’I+—~%N3¢

2Eh

with the functions ¢, according to (4.3). In general, these functions are incompatible.
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Introducing (4.1) into (3.9), the functional I can be written in the form:

@45 1=- f W.dF, + f (U Npa+1s) Mpa+u$ % Nos — qus™] dFo
Fy Fo

— [ INEU® + MAu + 02 u)dCop.
Cop

Integration by part and using the Gauss divergence theorem leads to

@46 I=- f W.dF,
Fo
[ [Vaali®%+ Qs+ Moy +Nos)W* — Myg W31 dCog— My W¥|Con
Cov

= f [Npa,pts” + (Mg, pu+Na3,« +q) wldF, + f [(Npa— N%)us”
Fy Cov

+ (Qn:! +Mil.l.s +Nn3 _Q:S - Mn‘s.s)w - (MM = M:n) w,u]dCOp_ (Mlu_ Mzt]wICOp

with given displacements uff on the boundary Cy,.

If the functional (4.6) is varied in such a way, that the equilibrium conditions (3.18).
and the static boundary conditions (3.19) are always satisfied, then the last two integral
expressions of (4.6) vanish and this leads to the complementary energy functional I:

@n L=- [w.dr
Fo

+ r [N,,uf,o"+ (Qu‘.! +M|u.a +Nl3) W- _MM W_‘,,] dCDo"' MI!JW*lCO!
Cov
with the complementary energy density W, according to (4.4).

In the complementary energy functional I, of (4.7) we have to vary the stress resultants
Ny and the moments M,,, satisfying the equilibrium equations (3.18) and the static
boundary conditions (3.19).

Now, we have to show that for all static-admissible stress states, satisfying (3.18) and
(3.19), the functional I, assumes its stationary value for the solution of the boundary
value problem of the non-linear plate theory. To prove this, we use the method of Lagrange
multipliers. In the complementary energy functional I, the Egs. (3.18) and (3.19) are
taken into account by the Lagrange multipliers A{%:

@8) L=~ [WdFo— [ [Nuppd®+(MappatNas.at+q) A1dF,
Fo Fy
+ f [Nmu&o" o+ (Qna o Mas,s+Na3} W*-Mnnw:]dcﬂv = Mn.lw‘lCOn
Cov

+ [ [(Nia=NE) KD +(Qus + Mug,s+Nus = Qs — M%) A9

Cop

b (Muu = M,:.) “'Sc:}t] dcﬂp Fa (Mlu = M:s) ‘1(30) ICOF %
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To vary the complementary energy functional I., we have to consider the variation
of the complementary energy density W.:

an.‘ BWC 3Wc

(4.9) W, = N ONgg+ 7 Nee e C Ny T 6Mp.
With the differentiation of (4.4),

oW,

e S L Neg=r8es N~ 3 a9,

oW,
(4.10) N = P

oW, 12

W«; = ER [(1+9) Map—23up M,y)]

is obtained.
With (4.9) and (4.10) the variation of I, leads to

“411) &I, = - f{[ﬁ ((I +$’)N¢3—v5¢3Nw)— -;—gvﬁtpﬂ]ﬁN,ﬂ
12
+ ¥l ((l +) M,p—ﬂéagﬂw) 6M¢§ +QJ¢5N¢3} dF,

- f (8N 5 AL + (8Mpo g+ 0N ) 1) dF

Fo

+ f [‘SNH”EIO)‘ *+ 6(Qn3 +Mnx,! +Nn3) w*— 6Munw.‘»]dcov = ‘5M|u W*|C0n

+ f [aNnﬂ 150’ + é (Qn:! +Mn:.s +Nll3) 150) - aMnu ‘R'S?n)l] dCOP_ JMM A'Su) [COP'

Cop

After some partial integrations and after using the Gauss divergence theorem, the
stationary value of the complementary energy functional I, is obtained:

4.12) 8= — f ![El” ((1 +%)Nop—v84gN,,) — %%%-%(&?ﬁ%‘%] ONa
[ h3 ((l +3’) Mup vﬁde)+ Ato) ]aMw + [?3"‘ lg:?“] &N¢3} dFo

f (A9 = %) 8N, (A9 = %) 8(Qr + Mo s+ No)

% (‘19::?! = w.n) aMM] dCOv + (2(30) - W*) aMnsICOv =0.
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The stationary condition (4.12) leads to the Euler equations in Vy:

1 1 1
Eh [(1 +%) Nag—v0ugN,, ] — 2 PePs= 7 (A3 +250),

4.13) g
T [(1 +9) Mg —v8as M,,] = 2525,

(4.14) Pa = AN,
and to the natural boundary conditions on Cg,:
(4.15) MP—uo* =0, APV—w*=0, iI0-w%t=0.

If we identify the Lagrange multipliers A{® with the displacements of the plate u{®,
then (4.13) are the stress-strain relations, (4.14) are the compatibility conditions of the
functions @, and (4.15) are the geometric boundary conditions of the non-linear plate
problem. Eliminating the Lagrange multipliers in (4.13);, and introducing (4.14), the
compatibility condition (2.5) according to von KARMAN is obtained.

With (4.13), (4.14) and (4.15) we have proved that the solution of the boundary-
value problem of the non-linear plate theory corresponds to the stationary value of the
complementary energy functional /.. It can be shown now that, for some class of elastic
stress states (Nu, M,z), the complementary energy functional / has a maximum. In a forth-
coming paper it will be proved that these elastic stress states belong to stable equilibrium.

If (Nai, Mgp) is a stress state belonging to a stable equilibrium, and if (Ny, Myg) is
the exact solution, then

(4.16) I(Nai', Mzp) < I.(Nai, Map)

holds.
With the upper bound of the inequality (3.20) and the lower bound of the inequality

(4.16), the values of the functionals I and I. for the exact solution can be bounded from
above and below:

(417) If-'( ::"’ M:.E) ‘~<~. Ic(leb Mmﬁ) s I(Hfm) '-“-."’-.. ](H§O’~).

Using geometric and static-admissible approximations with unknown coefficients, we
are able to determine these coefficients by converging variational processes.

5. Numerical results

As a first example we consider a square plate with constant transverse load g, all
sides simply supported with vanishing displacements (u, v, w) (Fig. 1):

Introducing dimensionless coordinates x; = X, /a; x, = X,/a, we have the geometric
boundary conditions:

Il
]
I

u=v=w
(5.1)
u=ov=w
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Fig. 1.

and the static boundary conditions:
M;=0, x==1, -—-1<x;<+1,
M,, =0, -1<x;,<+1, x;,==I.
For different values of ¢ and » = 0.3, we have to approximate the unknown elastic
states by variational processes.
As a geometric-admissible displacement field, we choose
ul® = u = ¢,(x;—x3) (1-x3),
(5:3) uf? = v = ¢,(1-x1) (x,—x3),
u? = w = c,(1-xj) (1-x3),
with unknown coefficients ¢, and ¢,. These coefficients will be determined by minimizing
the functional I according to (3.9).

(5.2)

+
1 2 4 8 rg 2:0 3? 4? 5|0 -
--yo:‘a§ L ‘ a‘
8\5\\ Eh
=204
-30}
-w—
-50} .
-100}1
x I(U?".}
o I.(Ngi:Map)
0,
-150 -
I
Ehsfaz x\

Fia. 2.
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As a static-admissible stress state, we choose

M, = 'g“l—(l_xf) (l+w‘§), Niyy =Nz =8, N =0,

(5.4)

q

_ 4 2 2 _ Xy 2 xi
M, = '4—(1+°‘x1) (I-x2), Niz=(q—q) A S i

x x3
M, = -Ea(x‘:‘x,+x§x1), Ny, = (q—ql)[—“z—z*'?(xfxz— Tz)]

The unknown coefficients will be determined by maximizing the complementary functional
I. according to (4.7). With the inequality (4.17), upper and lower bounds for the exact
values of the functional can be calculated. The results are shown in Fig. 2.

As a second example we consider a square plate with constant load g, with two sides
simply supported and with vanishing displacements, and with two sides free. The geo-

metric boundary conditions are given as

(5.5)
and the static boundary conditions are

u:ﬂ:w:[],

X, = :tls '“lﬁ‘-:.ng +I!

Mli':O) xl=il"—l£x1£ +l;
Ngg — 0
(5.6) N,; =0
My, =0 —1<x, < +1,x;, = 1.
Qaa+ My 1 +Ny3 =0
+ 4
2 4 6 8 10 20 30 40 SIG'.;
N,
20}t x\‘ d‘
-0t 5 e
-60f
80
-100}
]
=200
x I(u)
° ICfN;.',M;ﬁ)
-300F
—i ¥,
En’/a? \\\

FiG. 3.
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We choose a geometric admissible displacement field
(5.7 u=c(x=xi), v=cx(1=x), w=c(1-x9),

and a static-admissible stress field

M, = '%1'(1_-"?), Ny =a, Nz = Ni2 =0,

(5.8)
M, = M, =0, Nizs = —(g—q1)x1, Nz =0.

The unknown coefficients in (5.7) and (5.8) are determined by minimizing (3.9) and max-
imizing (4.7). With the approximations (5.7) and (5.8) the upper and lower bounds for
the functional are calculated. The results are shown in Fig. 3.
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