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Elastic strip with a crack under periodic loading 

G. KUHN (MDNCHEN) and M. MATCZYNSKI(*) (WARSZAWA) 

AN ELASTIC strip containing a semi-infinite crack is subject to periodic displacement along the 
edges. Using the complex Fourier transforms and the approximate Wiener-Hopf technique, 
the dynamic stress intensity factor, the crack opening and the stress field in front of the crack 
tip are determined. The state of stress is evaluated by means of the numerical inversion of trans
forms along the real axis and is expressed in terms of the excitation frequency eo. 

Pasmo spr~zyste, zawieraj'lce p6lnieskonczon'l szczelin~. poddane jest okresowym w czasie 
wymuszeniem kinem1tycznym na swych brzegach. Za pomQC'l zespolonej transformacji Fouriera 
oraz przyblizonej procedury faktoryzacyjnej Wienera-Hopfa wyznaczono wsp61czynnik dyna
micznej koncentracji napr~zenia, rozwarcie szczeliny oraz stan napr~:ienia przed wierzcholkiem 
szczeliny. Stan napr~zenia w pasmie wyznaczono odwracaj'lc otrzymane transformacje w spos6b 
numeryczny wzdluz osi rzeczywistej; jest on funkcj'l c~stosci eo wymuszonych przemieszczen 
brzeg6w pasma. 

Y npyraa noJioca, co~ep>Kaamaa no.ny6eCJ<oHe'1Jiy10 Tpenumy, no~epnzyTa nepHO.Inf'leCJ<HM 
BO BpeMeHH, l<HHeMaTWieCJ<HM Bbrny~eHHeM Ha CBOHX rpaHHQax. C UOMOI.UbiO l<OMUJlei<C• 
uoro npeo6pa3oBaHHH <l>yphe H npu6JIH>Kemmii npou;e~pbi <t>ai<TOpH3ai.UfH BHHepa-Xon!f>a 
onpe~eJieHbi I<o3!f>4>HUHeHT ~aMHt-JeCJ<OH I<OHUeHTpau;HH uanpH>KeHHii, paci<pbiTHe Tpeli.UfHbi 
H uanpH>«emme COCTOHHHe nepe~ aeplliHHOH TpellUllibi. HanpH>KeHHoe coCTOHHHe B noJioce 
onpeAeJieHO o6pall.l;a11 nonyqeHHbie H306pa>KeHHH liHCJieHHbiM o6pa30M B~OJlb ~eHCTBHTeJlbHOH 
OCH; OHO HBJIHeTCH lf>yHJ<UHeH tiaCTOTbl CO Bbrny>KAeHHbiX nepeMell.l;eHHH rpaHHU UOJIOCbl. 

1. Introduction 

KNOWLEDGE of the exact distribution of stresses and strains in the vicinity of a crack 
proves to be of primary importance for the general solution of the crack problem. In 
linear elastic bodies and brittle fracture problems it is sometimes sufficient to know the 
value of the stress intensity factor (SIF), i.e. the singular behaviour of stresses at the 
crack tip, in order to be able to estimate the behaviour of the crack. In dynamic crack 
problems, however, in which the influence of inertia forces is difficult to determine, it 
may prove necessary to know the state of stress and strain within the entire region of the 
strip. Therefore the present paper deals not only with the determination of the stress 
intensity factor but also presents the results concerning the crack opening, stress distribu
tion in front of the crack and also the stresses at other points of the strip. 

2. Formulation of the problem 

Let us consider an infinite elastic strip of width 2h containing a semi-infinite crack; 
the edges of the strip are fixed in the longitudinal direction, u(x, ±h) = 0 and are periodi· 

(*) Contribution of the second author was supported by a grant from the Alexander von Humboldt 
Foundation. 
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460 G. KUHN AND M. MATCzyNSKI 

cally excited in the transversal direction by the displacements v(x, ±h)= ± (v0 +v1 coswt). 
The plane state of strain is considered, and the body is assumed to be linearly elastic. 
The statical component of displacement ± v0 is so assumed that the crack edges do not 
touch each other in the process of vibration. 

The solution is obtained by superposition of the following two partial problems shown 
in Fig. 1: 

lj y 

)( 

l \ 
u{x,-h)""O, v(x,-h)-=-(Vo+V1COS(J)t) u(x,-h)=O, v(x,-h)=-(Va+V1CO.Swt) 

Probfem(a} 

FIG. 1. 

y 

J(x,h)=O ~(x,h)=O 

J(x,-h)=O J(x,-h)=O 

Problem{b) 

{a) A strip without the crack, with the boundary conditions ~(x, ±h) = 0, ~(x, ±h) = 
= ± (v0 +v1 coswt), and 

(b) A strip with the crack, with the boundary conditions ~(x, ±h) = 0, ~(x, ±h) = 0, 
. 1 0 

the crack bemg loaded by a11(x,O) = -a,,(x,O). 
The static problem of v<st•t>(x, ±h) = ±v0 will not be considered in this paper since 

the corresponding solutions may be found, e.g. in the paper [1] by W. G. KNAUSS, or 
may be derived from the dynamic solution by the limiting procedure of w--. 0, v1 being 
replaced with v0 • 

Let us start with the Lame equations written in Cartesian coordinates 

(2.1) 
,uV2u+(A.+,u)O,x = eii, 

Here A., ,u are the Lame material constants, e- mass density, 0- dilatation, V2 = 

= a2fax2+a2fay2, and a;ax() = ( ),x a;at() = ("). Using the Helmholtzrepresentation 

{2.2) u(x, y, t) = lp,x+VJ,1 , v(x, y, t) = VJ,,-VJ,x 

it will be assumed that the state of harmonic vibrations allows for writing the correspond
ing solutions in the form of products, 

(2.3) VJ(X,y, t) = VJ*(x,y)coswt, VJ(x,y, t) = VJ*(x,y)coswt. 

On substituting the Eqs. (2.2) and (2.3) into (2.1) we obtain two partial differential equa
tions for the amplitudes gJ*(x, y) and VJ*(x, y), 

(2.4) V2gJ* +xfVJ* = 0, V'2 VJ* +x~VJ* = 0 

with "1 = wfclt "2 = w/c2, and d = (A.+2,u)/e, d = ,u/e. 
Let us, moreover, introduce the two-sided complex Fourier transform 

(2.5) F(a,y) = p-(a,y)+F+(a,y) 
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ELASTIC STRIP WITH A CRACK UNDER PERIODIC LOADING 461 

with 
0 

F-(a, y) = vk I f(x,y)e'"dx reg. for Im{a} < T+. 

-<X> 

CX) 

F+(a, y) = Jl'~ J f(x, y)e~=dx reg. for lm{a} > L. 

0 

The corresponding inverse formula has the form 

(2.6) 

1 
CX>+iTO 

f(x, y) = y
2
n J F(a., y)e-1uda., 

-cx:>+ITo 

The Fourier transforms applied to the Eqs. (2.4) yield the ordinary differential equations 

(2.7) [ ~: -(a2 -,.f>]4i*(a,y) = 0, [ ~: -(a2 -,.:>}'*(a,y) = 0 

with the general solutions 

(2.8) 
(J)*(a., y) = C1(a.)sh{yy a.2-"f)+C2(a.)ch{yV a.2 -"f), 

P*(a., y) = C3(a.)sh{y y a.2 - "~) + C4 (a.)ch(y y a.2 - "~). 

In this manner we obtain the transformed displacement field and also, by means of Hooke's 
law, the transformed field of stresses, 

(2.9) 

U*(a.,y) = -i{a.[Cl(a.)sh{yy a.2 -"D+C2 (a.)ch{yy a.2 -"D 
+iy a.2 -"~[C3(a.)ch(y y a.2 - "n +C4(a.)sh{yy a.2 - "~)]}, 

V*(a., y) = y a.2
- "f [C1 (a.)ch(y~/ a.2 - "~ ) +C2 (a.)sh(yy a.2 - "f)] 

+ia.[C3(a.)sh(yy a.2 - "n +C4(a.)ch(yy a.2 - "~)], 

E:ia., y) = - ,u{ (2a.2 +"~- 2"f)[Cl (a.)sh{yy a.2 -"f) +C2(a.)ch{yy a.2 -"f)] 

+2ia. V a.2 - "HC3(a.)ch{y y a.2 -"~) +C4(a.)sh(yJf a.2 - "~)]}, 

E;,(a., y) = ,u {(2a.2 -"~) [C1 (a.)sh(y Jl a.2 -"f) +C2(a.)ch(yJf a.2 -"Dl 
+2ia.y a.2 -"HC3(a.)ch(yy a.2 - "~) +C4(a.)sh(yy a.2 -"~)]}, 

..r:,(a.,y) = -i,u{2a.ya.2 -"~ [C1(a.)cb(yy a.2 -"f)+C2 (a.)sb(yy a.2 -"f)] 

+i(2a.2 -"~) [C3(a.)sh{y y a.2 -"~) +C4(a.)ch(yy a.2 - "~)]}. 

The unknown integration functions C,(a.) are found from the corresponding boundary 
conditions. 
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462 G. KUHN AND M. MATCzyNSKI 

3. Boundary conditions 

Problem (a). (The strip without the crack). Transformed boundary conditions have 
0 0 

the form U*(a., ±h) = 0 and V*( a., ±h) = ±v1 y2n d(a.). The Dirac delta-function oc-
curring in that expression allows for a closed-form inverse transform 

o o v 1 sin("1 Y) o 
u*(x, y) = 0, v*(x, y) = a* (x y) 0 

sin("l h) ' xy ' = ' 

(3.1) 
o* ( ) _ 2p:v V1 "1 cos("1Y) 
(]XX X,y - -1 -2 --.-(--h--)-' 

- V Sin " 1 

The static solution to be superposed over the dynamic one may be obtained from the 
Eq. (3.1) by assuming w--+ 0 (or " 1 --+ 0) and replacing v1 with v0 • 

Problem (b). (The strip with a loaded crack). Owing to the symmetry, only the upper 
half-strip is considered. The transformed boundary conditions are 

1 1 1 
U*(a., h) = 0, V*( a., h) = 0, I!,( a., 0) = 0, 

(3.2) 
I I 

V*(a., 0) = v-(a.) und .E~1(a., 0) = I;,(a.)+Iyt(a.) 

with 
0 I 

v-(a.) = '~ J V*(x, O)eirvcdx' 
Jl -oo 

I;,(a.) = 
1 Jo ~~y(x, O)eiacxdx = - ~1 [- _!_+nd(a.)] reg. for lm{a.} ~ 0. 

y2n V2n a. 
-oo 

Here p1 = ~~1(x, 0). In order to be able to evaluate the inverse transform along the real 
axis, the axis itself will be included to the strip of regularity - except the point a. = 0 
(similar to the assumption of [3]). 

By satisfying the boundary conditions (3.2)1_4 we obtain the integration functions 
Ci = C1{V-(a.)}, and inserting them into the Eq. (3.2)5 yields the Wiener-Hopf integral 
equation 

(3.3) 
h v- (z) = - - H(z)[I;,(z)- P 1 (z)] re g. for - e < Im { z} ~ 0. 
ft 

The functions to be determined are v-(z) and r;.,(z), and the kernel H(z) is equal to 

H(z) = / 1 (z)/f2 (z), H(z) = H( -z), 

ft(z) = O'~V Z2 -a~ [z2sh y' z2 -o'~ch y'~ 
- y (z2 - an (z2 - 0'~) sh y z2 - 0'~ eh y z2

- o'~ 
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ELASTIC STRIP WITH A CRACK UNDER PERIODIC LOADING 463 

-z2[(2z2-0"n2 +4(z2-0"t) (z2-ui)] shy'~ shy~ 

-4z2(2z2- D"i)y (z2- O'D(z2- 0'~) . 

Here the following notations are introduced: 

P 1(z) =-==- --+nu z) , hpl [ i ~( J 
y'2n z 

z = ah, and 

An exact, analytical factorization of the Eq. (3.3) is not possible, and so we shall apply 
the approximate procedure proposed by W. T. KOITER [4] according to which the kernel 
is written in the form 

(3.4) H(z) = ii(z)H1(z). 

The functions H(z) and H 1 (z) must satisfy the following conditions: 
ii(z) is the approximate kernel function with ii(O) = H(O) and fi( oo) = H( oo ), it 

contains all the zeros and poles of H(z) in the region llm{z}l < e for 0 < z < oo; 
H 1 (z) is the residual function with the properties H 1 (0) = H 1 ( oo) = I and has no 

zeros and poles in the region llm{z}l < e for 0 < z < oo. 
According to B. NoBLE [5], we have then 

(3.5) H 1 (z) = Ht(z)/H!(z) 

with the following notations 
oo+iyl 

I f ~H1 (~) d't:, lnHt(z) = -. ~ 
2nz ~-z 

-oo+iyz 

and - e < y2 < y 1 < e. From the symmetry properties it follows that also the functions 
Ht and n- satisfy the conditions Hr (0) = H[ ( oo) = I. 

Discussion of the kernel function H(z) at real values of z in the interval 0 < z < oo 
concerning the zeros and poles yields in the most interesting region of o'1 < n/2 and 
0 ~ v < 0.4 (v- Poisson's ratio) the restdts: 

Case i: 0'2 < n/2, / 1 (z), f 2 (z) have no zeros; 
Case ii: 0'2 < n/2, / 1 (z) has a single zero at z = z1 , 

/ 2(z) has a single zero at z = z2 • 

Using the above results let us assume for the approximate kernel function the follow
ing, relatively inaccurate representation: 

- - I-v z2 -zt 
H(z) = H(z) = z2 -z22 y z2+A2 

(3.6) 
. . J in Case i : z 1 = z 2 , 

wtth the conventiOn that l' .. 
m Case n: z1 :1: z2 • 
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464 G. KUHN AND M. MATCZYNSKI 

Here A = (l-P)zfaif(zja 1 tana1). In spite of its simplicity, the function satisfies 
I = = 

both conditions required, H(O) = H(O) and H( oo) = H( oo ), and also contains all the zeros 
and poles in the extended region of regularity. From [6] it follows that this simple assump
tion is sufficient in calculating the accurate value of the dynamic SIF. The representation 
(3.6) may be generalized and written in the form 

(3.7) 
- = M(z) 
H(z) = H(z) L(z) with 

M(z) z4 +2Dz2z~+z~ 
L(z) = z4 +z~ 

with t? = H(z0 )/H(z0)-l. Then H(z0 ) = H(z0 ) makes the original function and its ap
proximation coincide at an additional arbitrary point z0 thus increasing the accuracy of 
the new representation. In this paper z0 will be selected as the point at which IH(z0)-

- H(z0 )1 reaches its maximum value. This makes it possible to reduce the relative error 

[H(z)-H(z)]/H(z) within the region of wand" considered to be less than 5%. The values 
of z0 and t? are determined for prescribed w and " by numerical methods. 

The approximate function ii(z) obtained in this manner may easily be factorized 
to yield 

(3.8) 

Here 

± M±(z) 
K (z) =- R*(z)L±(z) 

Decomposition of M(z) 

M- (z) = (z- zf)(z- zr) 

M+(z) = (z-zf)(z-zr) 
with the roots 

z¥ = z~ yl-D+iyl+D], 
Jt'2 

zr = z~- [-yi-D +iyl +D], 
J!2 

enables us to factorize L(z) by the limiting procedure 

L±(z) = lim M±(z) and {zf, z~} = lim{zf, z~}. 
~0 ~0 

Dashed symbols denote complex conjugate roots (e.g. zf or ~)which may be obtained 
by replacing the imaginary i with - i. 

Substituting the Eqs. (3.8) and (3.5) into (3.3) according to the Eq. (3.4) we obtain 
after certain transformations 

(39) p, z2 -z~ H](z) _()- +() +()r+() E() 
. -h(l-P)z2 -zf x-(z)V z -K zH1 z~nz- z. 

Functions E(z) = K+(z)Ht(z)P1(z) may be factorited by elementary methods to give 

(3.10) E(z) = £+ (z)-E- (z) 
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ELASTIC STRIP WITH A CRACK UNDER PERIODIC LOADING 

with the notations 

E+(z) = [K+(z)Ht(z)-K+(O)]P1(z), 

E-(z) = -K+(O)P1(z). 

465 

The Eqs. (3.9) and (3.10) and the Liouville theorem make it possible to determine the 
sought-for functions, 

(3.11) 

v-(z) = _ h(l-v) z2 -zt K-(z)E-(z) 
p, z2 -z~ H!(z) 

+ _ E+(z) 
E,(z) - K+(z)Ht(z) · 

The inverse transform performed according to the Eq. (2.6) yields the crack opening 

function ~*(x, 0) for x < 0 and the stress ~;, (x, 0) for x > 0. 

4. Dynamic stress intensity factor 

If our interest is confined to the asymptotic behaviour of the original functions in the 
vicinity of the crack tip then we may utilize the well-known theorems by ABEL (cf. e.g. 
[5]) which make it possible to determine the behaviour of transformed functions at z-+ ± oo 
once the asymptotic behaviour of their originals at x-+ ±0 is known. The Eq. (3.11) de
terminesexact/ytheasymptotic behaviour of v-(z) and Ij,(z) at z-+ oo (since H[( oo) = 1) 

0 

m· h . N (Dyn.) 

lf·/)V1 

1.0 

FIG. 2. 
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466 G. KUHN AND M. MATCZYNSKI 

what enables us to write down the asymptotic behaviour of amplitudes ~*(e, 0) 
1 

and C1yy(e' 0) for e = xfh -+ 0 in the original region 

(4.I) 

1 2(I-'J1)h .~-v*(e' 0) = N(DYn) V - e 
p, 

1 N(Dyn) 
a;y(e, 0) =--=

ve 

for e-+ -o, 

for e-+ +O 

with the dynamic SIF 

(4.2) 
{
Case i: z1 = z2 

Case ii : z 1 ::/= z 2 • 

Fig. 2 represents the reduced value of the dynamic SIF N<Dyn) = JlnhN(Dyn>f(t /2p,v1) as 
a function of a 1 = whfc1 for several values of Poisson's ratio "· Transition to the static 
case is determined by the limiting procedure 

(4.3) 

The general solution may be found by superposing the static case due to the state of de
formation v<stat) (x, ±h) = ±v0 • 

5. Analytical determination of inverse transforms 

Substituting in the Eq. (3.11) H[(z) = I along the entire path of integration makes it 
possible to perform the required integration and determine the inverse transforms accord
ing to the Eq. (2.6), 

(5.1) 
oo-1'1 

1 * (l: O) - I J £+ (z) -i~zdz z: > 0, 0 < £1 < e. a,, s-, - , .2n K+(z) e ' s-
~ -oo - /111 

The corresponding integrals are now evaluated by substituting the respective functions 
and by certain elementary transformations to yield the following results: 

(5.2) 1* _ i(1-'J1)hp 1 I zf . [ z~-(zt)2 
L 

V ce, 0)- - y'. \ --yl(O, e)+lkt -2 ( L)2 J(zl, e) 
2np, 1A Z2 Z2- Z1 
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ELASTIC STRIP WITH A CRACK UNDER PERIODIC LOADING 467 

with notations k 1 = J!.l + {)- 1 and 
oo-/al 

"' e-iel 

J(/3, E)= J (z-fJ) ylz-iA dz 
-oo-/a1 

and, moreover, the stress 

(5.3) 

with notations k 2 = k 1 /Yl-{} and 
oo-/a1 __ 

Q({J. f)= J vz:~r{· dz. 
-oo-la1 

The partial integral J(fJ, E) are determined by means of the Cauchy integral formula, 
the path of integration being selected according to Fig. 3a: 

(5.4) f f 2.n' -ll:fJ 
J(fJ, E)= -lniRes{/3)- .. . - ... =-V . ze . erfv -E(A+ifJ). 

cl c2 -zJIA+zP 

Jm[z) 

FIG. 3. 

The other integral Q(fJ, E) is found in a similar way for P = zt' or z~ and using the integra
tion path shown in Fig. 3b, 

(5.5) Q(f3, E) = -2ni Res (fJ)- J ... -J ... = 2 [~ / ~ e-A{ 

c1 c2 V 
- i y'i"' Y A- ipe -lf'lerf y' E(A- iP) ]. 

In the case of fJ = 0 the pole lies outside the region of integration and so the corresponding 
result is 

(5.6) 
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468 G. KUHN AND M. MATCZYNSKl 

Evaluation of the contour integrals J ... and J ... in the Eqs. (5.4) and (5.5) is described 
c1 c2 

in [7]. Substituting the Eqs. (5.4)-(5.6) into (5.2) or (5.3) yields 

(5.7) 

and 

(5.8) ~:,(E, 0) = -hp~;A __ a_~_{,/~ e-A~-nyA ErfcJ/ AE 
'"' J' a1 sina1 V s 

-ik2n[V A-ii}i e-tztt~ erfy E(A-izt') 

- v' A - iif e -iif ( erf v' ~(A- iz f) ] } • ~ > 0. 

In Casei: z1 = z2 (coinciding zero points) the Eq. (5.7) is simplified to 

[ 

-lzL~ 

(5.9) ~*(E, 0) = _v_l- {erfy -AE +ik1 yA ./ 
1 

erfy -E(A +izf) 
cosa1 Jl A +izf 

-1~~ ]} - J/A :iz~ erf V -E(A +izf) ' E < 0. 

1 
Figure 4 presents the form of the crack opening amplitude v* jv1 at various values of 

the excitation frequency eo. The amplitude of dynamic stresses (hfpv1)~:1(E, 0) at eo= 
= 0.60 c1 /h is shown in Fig. 6a. 

!f=y/h=O 

z.o 

1.0 
w=O 

-3.0 -2.0 -1.0 

-S.=-x/h 
F10. 4. 
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ELASTIC STRIP WITH A CRACK UNDER PERIODIC LOADING 469 

6. Numerical evaluation of inverse transforms 

The inverse transforms at an arbitrary point of the strip must be computed numerically. 
Owing to the extension of the strip of regularity, the corresponding integrations may be 
performed along the real axis. In dealing with the residual functions H 1 (z), the identity 
Ht(z) = 1 must be assumed. The amplitudes of dynamic stresses and displacements at 
a point ( ~, 'YJ ), with ~ = xI h, 'YJ = y I h, .A. = Re { z}, are determined by numerical evaluation 
of the integrals 

(6.1) 
00 

··( 1 f u; ~' 'YJ) =---=- u·(A 'n)e- 1~d.A.. 
Jl2n • I ''I 

-oo 

The integration functions C1 = C1 {v- (a)} resulting from the boundary conditions (3.2)1-4 
are substituted in the Eq. (2.9) which makes it possible to represent the expressions along 
the real axis 

E 
1
/A, n) = z,j(A, 'YJ)v- (A), 

u,(A, n) = z;(A, 'YJ)v- {).), 
(6.2) 

the functions Z;1(A, 'YJ) and Z 1(A, 'YJ) being either purely imaginary or real. On substituting 
the Eq. (6.2) into (6.1) and taking into account the decomposition of v-().)e1A~ in the 

form 

(6.3) 

with the notations 

and 

n 
qJo(O) = , 

COSO't 

q)(A) = h{).)cos A~ +g{).)sin A~, 

P{).) = h{).)sinA~-g(A)cosA~, 

~!A 1-(AIAt)2 .. ;- V-
h().) =- 2ecosut(A4+A~) 1-{).I.A.2)2 [T(A)(v e+A- e-A) 

+SO)<ve+A +re- A)], 

yA 1-(AIAt)2 - ,_ 
g().) =- 2ecosut(A4 +.A.~) -1-{)./.A.2)2 [T().)(Jie+.A.+Jie-.A.) 

T(.A.) = (A2 -.A.~)/A+2 J!/ 1 +'!? A~A, 

S(A) = y2A0 ().
2

- A~)(~l1 +D -1), 

- S(.A.)(Ye +).- ve- .A.)], 

e = yA2 +.A.2 and A;= Re{z1} with i = 0, 1, 2 

7 Arch. Mech. Stos. nr Jns 
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a 

{J)=06c1/h _lt_J~ \ 
\ 

a f1V1 

5.0 

An lo -
r;=y/h-1.0 

-2.0 
I 

2.~ ~=x/h 
I 

1.0 

-2.0 
-3.0 

-4.0 

.. ,g 

b 
...!.!._(Jijy k 

{J)-10c1/h J.lVt .t~n 

rz-y/h=o2s 
b h '~ 

.J.U, 
{J)-06ctlh 

2.0 §. -x/h 

FIG. 5. FIG. 6. 
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ELASTIC STRIP WITH A CRACK UNDER PERIODIC LOADING 471 

we can represent the integral containing the Dirac delta-function in a closed form; using 
the properties of symmetry and antisymmetry of functions with respect to A. we finally 

obtain 
00 

1 * p,v 1 [ 1 1. ( 1 ) 1 J J Gxx(;, 'YJ) = -h- -
2
-- liD Zxx A, 'YJ +- Zxx(A., 'Y})</J(A.)dA. , 
cosa1 A~o n 

0 

00 

1* P,V1 [ 1 1. ( 1 ) 1 j' 1] Gyy(;, 'YJ) = -h- -
2
-- lffi Zyy A, 'YJ +- Zyy(A, 'YJ)</J(A.)dA , 
COSC/1 .t~o n 

0 

00 

~*(;, 'Y}) = v1 [
2
-

1
-- lim Zv(A., 'YJ) +_!__I zv(A., 'Y})<P (A.)dA.J .. 

cosa1 .a-o n 
0 

Convergence of the improper integrals in the region 0 < 'YJ ~ 1 is very good, and certain 
1 

difficulties arise only in evaluating the stress a!x(;, 0) at 'YJ = 0. The difficulties inay easily 

a 

-2.0 

b 
rz=y/h-a25 

-2.0 2!J !,=x/h 

FIG. 7. 

7* 

http://rcin.org.pl



472 G. KUHN AND M. MATCXYNSKI 

be removed by separating the numerically non-convergent term which occurs also in 

calculating the other stress ~;,<~, 0) and using the formula (5.8). 
The statical part of stresses which is needed for constructing the general solution and 

which results from the forced displacements ±v0 may be obtained by the limiting pro
cedure 

(6.5) 
1 • 1 
aiJ•••> = hm a~coswt 

w-o 
Vl-VO 

and 
1 1 uf8'•'> = lim u~coswt. 

w-o 
VI-VO 

Superposition of all the partial problems yields the final form of the state of stress and 
displacement, 

(6.6) 

0 1 0 1 
aij(~, 'YJ) = aw••> + a,~stat) +(a~+amcoswt, 

0 1 0 1 
Ut(~, 'YJ) = u~stat) + u~stat) +(u~+u~)coswt. 

1 
In Figs. 5, 6 and 7 the dynamic components of stress amplitudes in the form of (hfp:tJt)a~ 

only along the axis ~ = xfh are shown; Figs. Sa, 6a and 7a demonstrate the dependence 
on 1J = yfh for w = 0.6cdh, while Figs. 5b, 6b and 7b -the dependence of stresses on 
the excitation frequency w at 'YJ = 0.25. Poisson's ratio 11 = 0.25. 
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