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A note on some crack. problems in a variable modulus strip 

C. ATKINSON (LONDON) 

Two distinct problems are considered which have certain mathematical featmes in common. 
The first problem is that of a semi-infinite crack in a strip which has elastic moduli which vary 
in a direction perpendicular to the crack direction. The strip is subjected to a certain time de
pendent loading and a smalJ time solution is obtained for a general variation in moduli. The 
second problem considered is a crack in a stlip of a micropolar elastic solid with moduli which 
vary with position. In this case time-independent loading is considered and results for the varia· 
tion of the energy release rate at the crack tip are obtained in terms of quite general variations 
in the moduli. 

W pracy rozwai:ane Sl:J: dwa odr~bne zagadnienia, lecz majl:J,ce pewne wsp6lne cechy matematyczne. 
Problem pierwszy dotyczy p6lnieskonczonej szczeliny w warstwie, kt6rej moduly spr~iyste zmie· 
niaj~ si~ w kieiUnku prostopadlym do kierunku szczeliny. Warstwa poddana jest pewnemu 
obci~zeniu zale:inemu od czasu. Rozwi~zanie dla kr6tkiego czasu zostalo otrzymane d1a og6lnej 
zmiany modul6w. Drugim z rozwa:ianych zagadnien jest szczelina umieszczona w spr~iystym 
mikropolarnym ciele stalym z modulami zmieniaj~cymi si~ wraz z polo:ieniem. W tym przypadku 
przyjl(to obciEt:ienie niezale:ine od czasu, a WYniki dla pr~dkosci zmiany energii uwolnionej 
na koncu szczeliny otrzymano dla calkiem og6lnych zmian modul6w. 

B pa6oTe paCCMOTpCHbl ~Be OT~eJII>Hbie 3a~aliH, HO HMeiOIIUie Hei<OTOpbie o6~He MaTeMaTH

l.JCCI<He csoiicrsa . TiepBaH sa~aqa I<acaeTc.R: nony6eci<oHetiHoii ~eJIH B CJioe, MO~JIH ynpyro

CTH I<OToporo H3MCHHIOTCH B HanpasneHHH nepneH~HI<YJIHpHOM 1< HanpasneHHIO ~eJIH. Cnoii 

no~seprHyT Hei<oTopoii Harpysi<e saBHCH~eii OT speMtHH. PeweHHe ~JIH I<OpOTI<oro OTpe3I<a 

BpeMeHH nonytieHo ~JIH o6~ero H3MeHeHH.R: Mo~yneii. BTOpoii H3 paccMaTpHBaeMbiX sa~aq 
.R:BJI.R:eTC.R: ~em, nOMe~eHa B ynpyrOM MHI<pOnOJI.R:pHOM TBep~OM TeJie C MO~JIHMH H3MeH.R:

IO~HMHCH COBMeCTHO C nOJIO>KeHHeM. B 3TOM CJiyqae npHHHTbl Harpy3I<H He3aBHCHIIUIC OT 

BpeMeHH, a pe3yJILTaTbl ~JIH CI<OpOCTH H3MeHeHHH 3HeprHH OCB060>K~eHHOH Ha I<O~e ~eJIH 
nonytieHbl ~JIH COBCeM o6~HX H3MeHeHHH MO~yJieH. 

1. Introduction 

IN THIS paper two problems are considered, both problems concerning cracks in strips. 
In the first problem there is a semi-infinite crack in an infinite strip of width 2h (Fig. 1). 
Conditions of plane-strain are assumed to exist so that the displacements do not vary 
in the X3 direction. The strip consists of isotropic elastic material and the elastic moduli 
are functions of X2 the crack lying on the X2 = 0 plane. The problem when such a crack 
moves uniformly, the sides of the strip being loaded by a time-independent fixed displace-
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640 C. ATKINSON 

ment, has been considered in [1] where general formulae for the energy flow into the 
crack tip have been obtained. Here we consider the effect on a stationary crack of a time
dependent loading on the sides of the strip. Such a problem for a constant moduli elastic 
strip has been considered by NILSSON [2] by the use of a certain path independent integral 
It has been shown in [1] that a similar path independent integral can be derived for the 
variable moduli case and this is used in Sec. 2 to obtain the crack tip stress field for small 
times. 

The second problem is considered for a strip of micro polar elastic material with a crack 
situated as in Fig. 1. This problem has been considered in [3] for time-independent loading 
of a constant moduli strip. In Sec. 3 we consider the situation when the moduli are functions 
of X 2 • 

2. A transient crack problem in a variable moduli elastic strip 

Our approach to this problem is similar to that given in [2], so we consider only briefly 
the initial equations. We consider the integral 

(2.1) I= [ ([v + ~ ep2 u,u,}"-i1u :;. )as}> 
where C is to be a contour embracing the crack tip. The bars denote Laplace functions 
transformed over time, p being the transform variable. V is defined as 

(2.2) V(e11) = ~ 7iu "iu 

with the property that "Gu = ~! . l111 and E11 are the usual tensor components of stress 
uEu 

and strain, u1 are the displacement components and X1 Cartesian coordinates. The density e 
and the elastic moduli are considered to be functions of X 2 and the crack lies on the axis 
X 2 = 0, X1 < 0. The integral/ can be shown to be path independent (see [1]) when 
density and moduli vary only in the X2 direction. 

The Laplace transformed stress-strain relations can be written 

(2.3) 

and 

- 1 - -
Eu = 2(ut.J+uJ,t). 

We have written equations (2.3) as they would apply to a linear isotropic viscoelastic 
material with moduli which are functions of X2 the analysis of this section would apply 
to such media, although detailed attention will only be given to the elastic case. The Laplace 
transformed viscoelastic moduli are related to the usual elastic moduli by 

(2.4) pG1 
J-l=-2-, 

G2-G1 
V = ---:=--=-

2G2+Gt 
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A NOTE ON SOME CRACK PROBLEMS IN A VARIABLE MODULUS STRIP 641 

where fl is the shear modulus and v Poisson's ratio. Near the crack tip with polar coordi
nates (r, 0) centered on the crack tip the variations of moduli and density will be functions 
of X2 = rsinO, so for small r these functions can be expanded by Taylor's theorem and the 
local results given in [2] should be valid for this case also with the moduli replaced by their 
values at x2 = 0; hence 

as r ~ 0, 
(2.5) 

as r ~ 0, 

where the subscript zero denotes that p, and v are evaluated at X2 = 0. By a similar argu
ment the integral l evaluated around a small contour enclosing the crack tip gives 

I = Kf (p) ( G 20 + 2G 1 o) plane strain, 
pGto(2G2o + Gto) 

(2.6) 
-1 Kfu(P) . l · = ant1-p ane stram, 

pGto 

where the subscripts zero mean the same as above; in Eq. (2.5)/ii and g1 are known functions 
and K1 (p) is to be determined. 

Having obtained i when taken around a small contour enclosing the crack tip in terms 
of an unknown function K1 , the approach is to deform the contour into a large contour 
in such a way that the path independence can be used to relate the near field integral 
(2.6) to a far field integral, which can be evaluated more easily. The chosen contour is shown 
in Fig. 1 as a dotted line. 

For the strip problem we take the same boundary conditions as in [2], i.e. 

Ut = 0, U2 = ±uoq(t) On X2 = ±h, 

(]22 = (]12 = 0 on x2 = 0, xl ~ 0, 
(2.7) 

where u0 is a constant and q(t) a dimensionless function of time which is zero for t < 0. 
The boundary conditions of (2.7h are of course just those of a stress-free crack. Using 
these boundary conditions and taking the integral I around the contour shown in Fig. 1 
we see that the only non-zero contributions are from the small contour around the tip [Eq. 
(2.6)] and from the vertical strips at X1 = ± oo which remain to be calculated. Along 
these vertical strips we assume the stress field to be so far removed from the crack tip 
that all derivatives with respect to X1 are zero. The transformed equations of motion 
then simplify to 

(2.8) 

with the stress-strain relations becoming 

(2.9) 

and when taken together these two sets of equations become 

(2.10) d (- aul) -
dX

2 
G1 dx-; = 2epul, 

http://rcin.org.pl



642 C. AnaNSON 

(2.11) 

The boundary conditions on the vertical strips on which these equations are valid are: 

(2.12) At X1 = + oo, il1 = 0, u2 = ±u0 q(p) on X2 = ±h, 

At X1 = -oo 

(2.13) 

The two sets of boundary conditions (2.13) are for the strip at X 1 = - oo separated by the 
crack, the derivative boundary conditions coming from the stress free crack conditions and 
the Eqs. (2.9). The boundary conditions and the Eq. (2.10) for u1 are satisfied identically 
for u1 = 0. The solution of (2.11), however, subject to the boundary conditions (2.12) 
or (2.13), is not so straightforward and so we consider solutions for small times, i.e. 
for large p. 

2.1. Small time solutions 

If in (2.11) we write 

(2.14) 

and make the substitution 

(2.15) 

then (2.11) becomes 

(2.16) 

where the dash denotes differentiation with respect to X 2 and both (! and fare functions 
of X2 • For the elastic problems f is independent of p and is from (2.4), 

(2.17) f(X) = 2(1-v)p, 
2 (1-2v) · 

The solution of (2.16) for large p can be found by writing 

00 

(2.18) cp = exp ~ ~ p-NgN(X2)], 
N=O 

then substituting in (2.16) and equating like powers of p. This procedure is standard 
and is outlined for example in NAYFEH [4]. Using a shorthand notation for the right-hand 
side of (2.16) as: 

(2.19) 

where 
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A NOTE ON SOME CRACK PROBLEMS IN A VARIABLE MODULUS STRIP 643 

one gets from the above procedure differential equations for the functions gN(X2 ) which 
have the following solutions (apart from arbitrary constants) 

(2.20) 

Xz 

go=± J q~12 dXz, gl =- ~ log(g~), 
0 

It remains to use these expressions to find solutions of (2.16) subject to the boundary 
conditions (2.12) and (2.13) and then to evaluate the integral I along the vertical strips 
at X 2 = ± oo. After some algebra we obtain for the case when p and f are symmetric 
functions of X 2 the expression 

(221) y _ z-z[ (h)'"'(h)]If2l h)•"h)]l/2{ 2p 1 [(e' !') 1 J 1 
. - Uoq (! 1 ' p( ~( sh(2pgo(h)) + -f e + f go o Sh2 2pgo(h) 

1 [( e' f') 1 J ch2pgo(h) 
~ 2 e + T g~ h sh2 2pgo(h) 

[ rh 1 ( e' !' )
2 J ch2pgo(h) } 

- ~ Sgb(xz) e + T X2 dxz sh2 2pgo(h) + .... 
0 

Higher order terms in the curly brackets will include terms like_!_ exp (- 2pg0 (h)) 
p 

for large p. Note that ( ~· + j ) • means that the expression inside the bracket is to be 

evaluated at X2 = h with a similar interpretation when the subscript h is replaced by zero. 
Finally, substituting the above result into (2.6) gives a corresponding result for K1 (p) 

and once q(t) is specified K1 (t) can be obtained using the Laplace inversion theorem. 
If following [2] we take as an example a linearly increasing time function 

t - 1 
(2.22) q(t) =to, hence q(p) = foP 2 , 

where t0 is a constant, the following result is obtained for K 1 (t); 

(2.23) K (t) = ( 2p(O) )1/2 u [e(h)f(h)]t'4 4 {(t-g (h))lf2 
1 1-v(O) o to Jtlf2 o 

1 [( e' .f') 1 rh 1 ( e' !' )
2 J 3 2 -3 e + T h4g~(h) + 0 16gb e + T dx2 (t-go(h)) I 

(t- 3go(h))
312 

( e' f') } 
+ 6g~(O) ·-e + T 0 + ... . 

In expression (2.23) it is understood that only real values of the square roots are permissible 

so that K, (t) is zero fort < g0 (h) and from (2.20) g0 (h) = i (J r2 

dX2 • When e, v, p are 

constants the non-zero first term in (2.33) agrees with corresponding result in [2]. 
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644 C. ATKINSON 

3. A crack in a variable moduli micropolar elastic strip 

The micropolar theory of elasticity has been reviewed by ERINGEN [5] where the field 
equations are given (see [5] for earlier references to this theory). Perhaps this theory is the 
least complicated of the generalised theories of elasticity which include the effect of couple 
stresses; a comparison is made in [5] with the theory of couple stress elasticity and certain 
deficiencies in this latter theory pointed out. In a recent note [3] we have considered the 
problem of a crack in a micro polar elastic strip with constant moduli by using a path inde
pendent integral which serves to calculate the energy flow into the crack tip. For plane 
strain the following formula for the energy release rate is given in [3]: 

(3.1) 

where i and} take the values 1 and 2, t11 is the stress tensor in the notation of [5], m13 are 
components of the couple stress tensor and c/J 3 the component in the X3 direction of the 
micropolar rotation vector. W the strain energy function can be written (see [5]) 

(3.2) 

k, I take the values 1 and 2, A., p,, " and y are material constants which we assume are 
functions of X2 • The strain measures ekr are defined as 

(3.3) 

where Erk 3 is the permutation tensor. The equations of equilibrium can be written 

(3.4) 

and 

(3.5) 
omj3 ax

1 
-e,k3tkr = o, 

i and j going from 1 to 2. To complete the field equations we need the constitutive equa
tions which are for the linear theory (cf. [5]) 

(3.6) tkr = .l.e,,. ~kt + (u + ") ekt + P,Ezb mk3 = YcP3,k. 

In the Appendix we derive these equations via a minimum principle based on the strain 
energy and show that the integral G can be derived in terms of a generalisation of the energy 
momentum tensor used by EsHELBY [6] for classical elasticity. In particular we show that G 

is a path independent integral even if the material constants vary in the X2 direction the 
crack lying on X 2 = 0 as in Fig. 1. 

We now consider the problem of a semi-infinite crack in a strip as shown in Fig. 1; the 
sides of the strip are now subjected to the following boundary conditions: 

(3.7) U2 = ±U2o, U1 = ±Uto' cP3 = 0 on X2 = ±h for all X1. 

The calculation of the energy release at the crack tip is done most easily by relating the 
integral of G around a small contour at the crack tip to that evaluated by taking ·G around 
a large contour such as ABCDEF of Fig. 1. The two integrals have the same value since 
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the contributions to G from the path along the surface of the crack AH and FG are both 
zero from the stress free conditions of the crack. Because of the boundary conditions on the 
sides of the strip the contributions from BC and ED are also zero, so the only non-zero 
contributions come from the vertical strips CD and AB and EF. We now assume that these 
are removed to X1 = ± oo and that so far from the crack tip there are no variations in the 
displacement and microrotation fields in the X1 direction. With this assumption the equa
tions of equilibrium (3.4) and (3.5) along CD and BE simplify to 

!21,2 = 0, t22,2 = 0, 

and 

(3.8) m23 ,2+t12 -t21 = 0. 

Further the strain measures (3.3) simplify to 

(3.9) c11 =0, c22 =u2,2, c21 = ut,2+l/>3, c12 = -4>3· 

From (3.8) t21 and t22 must be constant on the vertical strips so we write 

(3.10) 

where B ± and C ± are constants. 
Equations (3.6) together with (3.8), (3.9) and (3.10) give the equations 

d { 2ft + x l xB ± 
(3.11) dX2 (yl/>3'2)-x ft +x 4>3 = (ft+x) ' 

(ft + x)u1.2 = - xl/>3 + B±, (.A+ 2ft+ x)u2,2 = C±. 

The equations where the constants have+ subscripts hold along CD and those with minus 
subscripts hold along BA and FE. The boundary conditions on the crack surface, which 
is stress free, are 

(3.12) 

which gives immediately B_ = 0 = C _ from (3.10). A suitable solution to (3.11)1 satis
fying the boundary condition (3.7) is then l/>3 = 0 and solutions of (3.11h and (3.11)3 
subject to (3.7) are Ut = ±ulO for X2 ~ 0 and U2 = ±u20 for X2 ~ 0 When X1 = -00. 

The solution of (3.11)1 on the strip CD when only the boundary conditions (3.7) hold 
is not so simple when ft and x both depend on X2 • We thus consider y as a constant small 
parameter and look for solutions of (3.11) with small y. This can be done in a similar way 
to that outlined for Eq. (2.11). As can be seen from Eq. (3.11) the equation for u2 ,2 and 
hence t22 is independent of l/>3 and the contribution of u20 to the energy release rate will 
have a similar form to that derived in (1] for the inhomogeneous elastic strip, so in the fol
lowing we put u20 = 0 and consider only the effect of applying a displacement u1 = ± u 10 

on X2 = ±h. After some algebra one obtains the result to order y 112 

2 l lj2 [ 1 ( )1'
2
] } u~~z 1+ 2 j ~-- (21'+") (.u+")~2.u+") • • 

(2ft+ x) 0 (2ft+ x) 

(3.13) G= h 

2J 
0 

This agrees with the result for an inhomogeneous elastic strip which could be obtained 
by the method of [1] when y = 0. Also when ft and x are constants, (3.13) agrees to order 

8* 
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646 C. ATKINSON 

y 112 with Eq. (4.2) of (3] which gives the corresponding result for an homogeneous micro
polar strip. Note that the term in square-brackets in (3.13) is evaluated at X 2 = h and 
we have assumed in the derivation of (3.13) that fl and x are both even functions of X2 • 

The same approach should, of course, work for situations where this last assumption does 
not hold. 

4. Concluding remarks 

In this paper we have shown how certain problems involving media with variable 
elastic moduli can be reduced to the solution of ordinary differential equations such 
as (2.11) or (3.11) and thus that explicit solutions can be obtained for general variations 
in moduli for either small times (Sec. 2) or small variations from classical elasticity (Sec. 3). 
It should be noted in Sec. 3 that the parameter y would usually be considered to be small in 
situations where the micropolar theory is considered a possible model (cf. [5]). It should 
also be noted that solutions for large times (p small) in Sec. 2 can also be obtained by 
perturbation methods and solutions for intermediate times could presumably be obtained 
efficiently by numerical solution of (2.11), whereas a direct attack on the problem, other 
than by using the approach of Sec. 2, would be much more complex. 

Appendix 

The energy-momentum tensor in micropolar elasticity 
The results derived in this appendix will not be restricted to plane strain the relevant 

two-dimensional equations are given in Sec. 3. The argument below parallels that given 
by EsHELBY [6] for the homogeneous elastic case. Suppose there exists a strain-energy 
function 

(A.l) 

where ljJ 1 is the microrotation vector and a comma denotes partial differentiation with 
respect to X (a similar argument to that given below could be given for large strains; here 
we consider only infinitesimal strains). We assume that W has the property that 

aw aw aw 
(A.2) trk = - -, m,k = -- and ~...hN = trkN tkz · 

auk,l ol/Jk,l u-y 

The Euler equations for minimising the functional J Wdv are then 

(A.3) a ( aw) aw _ 0 axj au,,j - au, - and a ( aw) aw _ 0 ax1 alf1,.1 - aljJ, - ' 
where i,j, k, l take values from 1 to 3. Equations (A.2) together with (A.3) give the equa
tions of equilibrium 

(A.4) 

The two-dimensional counterparts of Eq. (A.4) are given in (3.4) and (3.5). 
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If we now define an energy-momentum tensor 

aw aw 
(A.5) P11 = Wb11 - --u1,1 - --cf>~,, au,,j ' 8cf>i,j 

where i, j, I go from 1 to 3. It is not difficult to show by using (A.3) and some manipula
tion that 

(A.6) aPJ, ( aw) 
axj = --ax, exp' 

where we define 

(A.7) 8W(ui,k• cf>b cf>J .S• Xm) 1· 

8X1 ui,k' tl>j' tl>j,S' X m constant, 
m=!-1 

where we are now allowing W to depend explicitly on Xm. 
In terms of the energy-momentum tensor the crack extension force or energy release 

rate can be written 

(A.8) 

where S is a surface enclosing the crack tip; in the plane strain cas~ this surface is that of 
a cylinder with generators parallel to the x3 axis so that the integral in (3.1) is effective
ly a line integral in the (X1 , X2 ) plane. In (A.8) Pl1 is used since the crack extension 
is assumed to take place in the X1 direction. Applying the divergence theorem to (A.8) 
and using (A.6) we note that th~ integral in (A.8) will be path independent provided W 
does not depend explicitly on xl . 
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