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Some problems of optimum design problems of vibrating systems 

B. OLSZOWSKI (KRAK6W) 

ON THE EXAMPLE of a · cantilever. system with two degrees of freedom the formulation and dis
cussion of some optimization problems concerning rational forming of the whole eigen frequency 
spectrum of vibrations are given. As the decision variables the values of both concentrated 
masses with fixed mass and bending rigidity of the rods of the system are assumed. A particular 
attention is called to the new design possibilities of avoiding resonance phenomena which 
are essential from practical point of view. The paper constitutes an introductory study of the 
problem considered and therefore the discussion of the general methods proper for the solution 
of the more complicated problems for the systems with a large number of degrees of freedom 
is not included here. 

Na przykladzie uktadu wspornikowego o dw6ch stopniach swobody podano sformulowanie 
i om6wienie kilku problem6w optymalizacyjnych, dotyc14cych racjonalnego ksztaltowania 
calego widma cz~stosci drgan wlasnych. Jako zmienne decyzyjne przyj~to wartosci obydwu mas 
skupionych przy ustalonej masie i sztywnosci zginania pr~t6w ukladu. Szczeg6ln~ uwag~ zwr6-
cono na pojawiaj<tce si~ przy projektowaniu moi:liwosci omijania danych stref rezonansowych, 
istotne z praktycznego ini:ynierskiego punktu widzenia. Praca stanowi wst~pne studium zagad
nienia i nie zawiera om6wienia metod og6lnych, nadaj'l:cych si~ do rozwi14zywania problem6w 
bardziej zloi:onych dla uklad6w o wi~kszej liczbie stopni swobody. 

Ha npHMepe KOHCOJILHOH clfCTeMbi c ABYMH cTeneHHMH cao60):{bl AaiOTCH ~PopMyJIHpOBKa 
H 06Cy>K):{eHHe HeCKOJlbKHX OOTHMH3aiJ;HOHHbiX 3a,n;aq, I<aCaiO~HXCH paQHOHaJlbHOrO lPOPMH
posaHHH u;enoro cnei<Tpa qaCTOT co6crseHHbiX Kone6aHHH. Kai< ACQH3HOHHbie nepeMeHHbie 
IIpHHHTbl 3HaqeHHH o60HX COCpe,n;oToqeHHbiX Mace npH ycTaHOBJieHHOH Macce H >KCCTI<OCTH 
H3rH6a CTep>KHeH CHCTeMbl. 0co6eHHOe BHHMaHHe o6pa~eHO Ha OOHBJIHIO~HeCH npH npoei<
THpOBaHHH B03MO>KHOCTH o6xo,n;a ,I:{aHHbiX pe30HaHCHbiX 30H, KOTOpbie cy~eCTBeHHbl H3 npai<
THqeci<OH HH>KCHepCI<OH TOqKH 3pCHHH. Pa6oTa COCTaBJIHCT BCT)'OHTCJlbHOe HCCJIC,!l;OBaHHe 
BOIIpOCa H He co,n;ep>KHT o6cy>K):{eHHH o6~HX MCTO,!l;OB npHrO,I:{HbiX ):{JIH pellieHHH 6onee CJIO>K
HbiX 3a,I:{aq ,!l;JIH CHCTeM C 60Jib1IIHM l<OJIHqeCTBOM CTeneHeH CB060):{bl. 

1. Introduction 

THE NECESSITY of designing systems having prescribed dynamic properties is a consequence 
of the high quality requirements imposed on modern structures. 

Dynamic problems of the same type may occur in the designing process of structures 
with different appropriations. As an example let us mention the determining of the propert
ies of vibration isolation [13, 14, 15] with the aim of protecting sensitive objects against 
shock, and the selection of the dimensions of structural elements of space-crafts in order 
to avoid undesirable couplings in their control systems [2, 5]. Because of that it is possible 
to use across the results obtained by specialists in various branches of technics. 

Optimum design of vibrating structures has become possible owing to the achieve
ments in the fields of me~hanics (the finite elements method, for instance), modern com
puter technics and the theory of control and optimization. The interest of many specialists 
has been focused for some ten years on this desing. 
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Without attempting to give a detailed survey of publications in the domain of optimum 
design of vibrating structures it can be stated that the works in that domain can be divided 
into the following general groups of problems. 

Group A [1-12]. The design of systems of maximum dynamic rigidity as determined' 
by the value of the fundamental frequency of natural vibrations. In this group we can 
distinguish two approaches. The first of these consists in minimizing the weight of the 
system with a limitation from below of the fundamental frequency. In the second approach 
the value of that frequency is maximized under a prescribed weight of the structure. 

Group B [13-19]. Minimization of the response of the system to definite excitations. 
Two cases are considered: single short-duration loads of the impulse type and long-duration 
harmonic excitations. 

Group C [20-25]. Analysis of the dependence of the natural frequencies and modes on 
definite parameters of the system. In this group we can include works devoted to the 
analysis of extremum values of the fundamental frequency. 

The above classification is limited to those works, which appear to the present author 
to be the most representative of the works now available. The classification itself is based, 
however, on a much more detailed survey of the literature, therefore it gives a rather good 
image of the new development trends in the domain of optimization of vibrating systems. 
As is seen, there is not much variety in these trends. 

Each particular work classified in the same group differs considerably in the concepts 
and the computation methods used and also in the types of systems subject to optimization. 
The discussion of these aspects of the problem exceeds the scope of this paper, however. 

The principal object of the present paper is to state and discuss some new optimization 
problems arising in the design process of vibrating systems, even the simplest ones. These 
problems have to the author's knowledge not yet been formulated, and they are interesting 
and important in both theory and practice. They concern the design of structures having 
definite properties of the entire natural frequency spectrum and have also been discussed 
and solved for the simplest system with two degrees of freedom. A problem which is still 
open is that of generalizing and solving the above problems for more complicated cases. 

2. Derivation of fundamental relations 

Let us consider a system with two degrees of freedom as shown in Fig. 1, the matrices 
of rigidity and inertia being as follows: 

_ 6EI ( 16 - 5) (m 1 0 ) 
(2·1) K - 7P -5 2 ' M = 0 m2 . 

Such a system may be used as the model of a structure in which the influence of the mass 
of the bars on the natural frequencies is small and may be taken into account in an 
approximate manner by correcting the values of the two concentrated masses m1 

and m2 • 

The characteristic equation of the problem 

IK -w'MI = j ~~: ( ~~ - ~) -w2 (md ~J/ = 0, 

http://rcin.org.pl



OPTIMUM DESIGN PROBLEMS OF VIBRATING SYSTEMS 607 

FIG. 1. 

where w is the natural angular frequency, can be rewritten in the simpler form 

(2.2) 
1

16-Am1 -5 I 

2 
, = A2m 1m2 -2A(m 1 +8m2)+7 = 0, 

-5 -Am2 

where A = 7Pw2 /6EI. 
If the quantity A is treated as a parameter it is found that the Eq. 

a functional relationship between two variables m1 and m2 

(2.3) 

(2.2) establishes 

representing a family of hyperbolas with A as a parameter. The variables m1 and m2 cannot 
become negative, therefore we are interested only in those parts of the branches of the 
hyperbola that lie in the positive quadrant of the plane of coordinates Om 1m2 (Fig. 2). 

X=2.0 ?.=10 

FIG. 2. 

Each of the hyperbolas represents a set of solutions to the Eq. (2.2) corresponding 
to a fixed value of the parameter A. In agreement with the definition of this parameter 
each hyperbola describes, therefore, a set of systems of Fig. 1, characterized by constant 
natural angular frequency w and differing by the values of the masses m1 and m2 • 
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It is worth while observing an essential fact that through every point of the first quadrant 
of the plane Om 1 m2 pass exactly two branches of hyperbolas with various values of the 
parameter A.. Thus, there exists a one-valued correspondence between each one pair of 
numbers (m1 , m2 ) and exactly one pair of numbers (A. 1 , A. 2 ). This correspondence is not 
one-to-one, however, because there exist pairs (A. 1 , A2 ) corresponding to two, one or 
none pair (m1 , m2). 

3. Formulation of design problems 

For the sake of accuracy it should be stressed right from the beginning that our con
siderations will be based on the assumption of constant rigidity and mass of the bars of the 
system as shown in Fig. 1, and the variables are exclusively the values of the concentrated 
masses. Such assumptions differ from the usual assumption in literature that the variables of 
the problem are the masses and the rigidities of the bars (or their finite elements) with fixed 
values of the non-constructive masses usually concentrated at certain points of the system. 

The treatment used in this paper suits the situation which occurs in practice in the 
design of frame buildings, for instance, for which the concentrated masses of Fig. 1 
are modelling the masses of the floors and their variable loads which can vary within cer
tain limits. This treatment has been chosen chiefly for the simplicity of statement of the 
problem, the generality of the phenomena involved remaining unaffected. 

Within the frames of our assumptions each design of system as in Fig. 1 is defined in 
an unambiguous manner by four numbers (m1 , m2 ; I, El), the task of optimum design 
reducing therefore to the best selection (from the point of view of the criterion assumed) 
of the variables m1 and m2 for the fixed values of I and El. This choice cannot be arbitrary 
because, for practical reasons, each admissible variant of the solution (admissible design) 
must satisfy certain conditions which will be referred to in what follows, as constraints. 
The form of the constraints and the criterion for the optimum (the object function) depend 
on the design problem under consideration. In design problems of vibrating systems and, 
in particular, in the case of optimum design we can distinguish two essentially different 
types of constraints. 

Constraints of the first type directly concern the values of the concentrated masses m1 

and m2 and are usually the results of structural and technological requirements, therefore 
they may be termed in a conventional manner as structural constraints. They determine 
admissible variability intervals of m1 and m2 and have usually the form 

(3.1) m1d ~ m1 ~ m1u, m2d ~ m2 ~ m29, 

where m1d, m19 , m2d, m29 are prescribed numerical values. The set of solutions which are 
admissible from the point of view of (3.1) therefore a set of structurally admissible solutions, 
is a rectangle D = Bu Cu Eu Fin the Om1 m2 plane (Fig. 4). Theoretically possible cases 
of other structural constraints such as those ofm1d ~ m1 or m2 ~ m29 do not appear to be 
of practical importance, and therefore they will not be considered here. 

Constraints of the second kind concern the eigenvalues ). 1 and ).2 and are usually termed 
frequency constraints [10, 11]. They have an implicit form on account of the variables 
mh m2, because the eigenvalues A1 (m 1m2 ) and A2(m1, m2) are their functions as the 
roots of the Eq. (2.2). 
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The introduction of frequency constraints is essential from both the practical and the 
theoretical point of view, because it enables the formulation and solution of problems 
of rational design of the natural frequency spectrum of the system, which cannot be solved 
by classical design methods. 

Among thes eproblems the possibility of avoiding prescribed resonance zones should 
be mentioned above all. 

As an example let us consider the case of a single zone, determined by a segment 
[Ad, A9 ] of the frequency axis A. To prevent resonance phenomena we must introduce 
frequency. constraints in the form A1 , A2 ~ [Ad, A9]. Such a form is not convenient for 
computation and must be written in the form of three sets of inequalities mutually excluding 
each other 

1 A2 ~ Ad, (Al ~ Ad), 

(3.2) 2 A1 ~ Ad, A2 ;;:::: A9 , 

3 A1 ;;:::: A9 , (A2 ;;:::: A9), 

and corresponding to three different ways of avoiding the resonance. The region ad
missible in the sense of the constraints (3.2) is shown in Fig. 3. It is seen to be composed 

FIG. 3. 

of separate regions A, C and G. It is interesting to observe that, depending on the values 
of the parameters Ad and A9 , the region C may be composed either of two separate parts 
(Fig. 3) or constitute a connected region (if the region E is an empty set). 

Separate consideration of structural and frequency constraints (3.1) and (3.2), respec
tively has, of course, an auxiliary character. For design purposes, a set of solutions admis
sible as regards all the constraints is the only set that may be of importance. Figure 4 
shows one of the possible cases in which the admissible set C is a concave set C. 
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The above considerations of the possibility of avoiding a single zone of resonance can 
easily be generalized in the case of any number n of zones. This requires only the introduc
tion of a frequency constraints in the form A.1, A.2 ~ {[A.ld' A.1 9], [A.2d, A.29], ••• , [A.nd, An9]}. 

Effective solution of the problem thus stated is, however, now much more complicated. 

o~--~------------~=-----~-
m~ m~ 

FIG. 4. 

The necessity of avoiding certain frequency zones may also be the result of causes having 
no direct connection with resonance type phenomena. The simplest of such situations 
is the case (most frequently met in the literature), in which we are interested in ensuring 
a required dynamic rigidity of the system. If, as a measure of that rigidity, we take the 
value of the fundamental frequency of natural vibration, the problem is reduced to the 
introduction of the constraint A.1 ~ A.0, the value of A.0 being selected in a suitable manner. 
The set of admissible solutions is, in this case D = E u F of Fig. 4 (if we assume that A.0 = A.d). 
We can also imagine more general situations in which the designer is interested in-limiting 
from below not only the fundamenta1 frequency. In the case of structure shown in Fig. 1 he 
will be obliged to require that A.i ~ A.oi (i = 1, 2), as a result of which a concave admissible 
region D = F will be determined Fig. 4 (assuming that A.01 = Ad and A.02 = A9). 

Owing to the frequency constraints we can also formulate design problems of systems 
with given values of natural frequencies. If, for instance, we require for the system of Fig. 1 
that A1 = Ad, A2 = A9 , the solution of the problem [taking into consideration (3.1)] will 
be represented in this particular case, by point 1 in Fig. 4. 

In the above considerations we were concerned with the problems of the constraints 
only. If, however, the set of solutions admissible on account of these constraints is compo
sed of two elements at least, there arises in a natural way the problem of selecting a solution 
which is the best from a certain point of view. 

Thus we arrive at the general formulation of the problem of optimum design of the 
vibratin~ system as represented in Fig. 1 

(3.3) min(or max)Df(m1 , m2), 
D 
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Among the constraints, the general form of which is 'Pi(mt, m2 ) ~ 0 i = 1, 2, ... , n we 
shall distinguish structural constraints 

(3.4) 

and frequency constraints 

(3.5) 

Let us reconsider, on the basis of (3.3), the problem of avoiding a single resonance zone. 
Since the condition of avoiding this zone is satisfied by any admissible solution, therefore by 
assuming/= mt +m2 , for instance, we can seek for solution for which the value of the total 
mass of the system is extremum. It is worth while observing that, for practical reasons 
the lightest and the heaviest system may both be of interest (see numerical example). 
These two cases are represented by points 2 and 3, respectively, Fig. 4. 

It may also be of interest to assume that/= mt or f = m2 • This means that the extrem
um value is sought for the mass of only one structural level. Such problems occur often 
in the activity of experts in structural dynamics, for instance. If we seek for maximum m1 

in the case shown in Fig. 4, we obtain exactly one solution (point 1). If m1 is minimized 
the solution is not unique because, as is seen, it may be represented by any point of the 
segment 2-4. The situation off= m 2 is similar. 

An additional possibility of avoiding a single resonance zone is created by formulating 
the problem of maximizing the function f = A2 (mt, m2)- At (m1 , m2 ). By solving it, 
the "forbidden" zone is not only avoided but also enlarged as much as possible. 

In the domain of design of systems with required dynamic rigidity let us mention two 
problems- those of max(mt +m2 ) with At ~ A0 and maxAt with m1 +m2 = m0 , which 
are directly related to problems of stability loss of a system (for A1 = 0). Assuming that 
Ao = Ad, the solutions of these problems are represented by the points 5 and 6 in Fig. 4, 
respectively. 

Finally let us mention other possibilities of formulating problems of optimum design, 
of less practical importance, however. Thus, for instance, we can seek for max A2 with 
mt + m2 = m0 (point 7, Fig. 4), min At with A2 = Ag(point 8), etc. 

Solution of all the above optimization problems of the system in Fig. 1 is possible 
owing to the space of decision variables being two-dimensional. This enables the relevant 
diagrams to be plotted in the Omt m2 plane and the optimum solutions to be found in 
a very simple manner. With more decision variables we shall be obliged to seek for solutions 
by methods and algorithms such that the concavity and separateness of the admissible 
regions are taken account. 

4. Numerical example 

Let us consider a single-naved two-floor reinforced concrete frame constituting the 
transverse load-carrying system of a store building constructed with a modulus of 6.0 m. 
The columns are of a rectangular cross-section, the dimensions of which are 30 x 40 cm 
and are constant over the entire height of builiding, which is 2 x 3.50 m. The extensions 
of both transoms of the frame constitute cantilevers of 3.0 m in length so that the dimen-
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sions of the horizontal projection of the building are 12.0 x 18.00 m. Thus, each column 
carries a load stored on an area of 36.0 m2

• The mean weight of floor is assumed to be 
about 400 kG /m 2 and their useful load 500 kG /m 2 • The weight of the roof structure and the 
protecting walls which are light, are neglected for simplicity. 

Fans are to be installed in the building, there being a possibility of choosing between 
two types differing from the nominal speed: N 1 = 150 r.p.m and N 2 = 200 r.p.m. 
Assuming the minimum width of the resonance zone to be N ± 20 per cent, our task is to 
make a proper choice of the fan type and the admissible loads on the floors. 

As a dynamic model of the structure considered let us assume the system of Fig. 1. 
I= 3.50 m, 

E = 1.6 x 105 kG/cm2
, 

I = 30 x 403 /12 = 1.6 x 105 cm4
, 

El = 2.56 x 1010 kGcm2 = 2.56 x 103 Tm2
• 

The limit values of the concentrated masses are 
m14 = m2 d = 6.0 x 6.0 x 400/9.81 = 1468 kGsec2 jm = 1.468 Tsec2 /m, 
m19 = m29 = 6.0 x 6.0 x 900/9.81 = 3.305 Tsec2 jm. 

Since A. = 7Pw2 /6El = 77f3 j6Elx (2iCN/60)2 = 21.45 x 10-5 x N 2 ; we obtan the following 
limitis of the resonance zone 

for the excitation with frequency N 1 = 150 r.p.m. 
Ald = 0.8 X 21.45 X 10-5 X 1502 = 0.8 X 4.83 = 3.86, 
Atg = 1.2 X 4.83 = 5.80; 

for the excitation with frequency N 2 = 200 r.p.m. 
A2d = 0.8 X 21.45 X 10-5 X 2002 = 0.8 X 8.58 = 6.87; 
A2g = 1.2 X 8.58 = 10.3. 

30 

2.0 

1.0 

0 

m2 ==3.30 

10 2.0 

FIG. 5. 

30 
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As is seen from Fig. 5 a set of admissible solutions in the case of N = 150 r.p.m. is 
D = D1 u D2 u D3 , therefore, in this case we cannot make full use of the storing capa
city of the building, because (it being necessary to avoid the zone D4 ) the admissible maxi
mum mass of the system is attained at point A, the coordinates of which are (3.00, 3.30). 
This maximum is about 83.6 per cent of the full storing capacity under static conditions. 
It is essential that it is the first floor that must be partially relieved, while the load on the 
second floor remains complete. It is seen also that with an insignificant decrease in the 
excitation frequency, we could move the resonance zone outside the region of structurally 
admissible solutions. 

For practical reasons the case of excitation at a frequency of N = 200 r.p.m. is the more 
disadvantageous, because it is the set D = D 1 u D 3 u D4 which is admissible this time. 
The resonance zone D 2 divides the region of structurally admissible solutions into two 
parts. Although full use of the storing capacity of the system is possible, there are many 
combinations of intermediate loads for which resonance phenomena may occur. 

Thus, we should use the fan of lower r.p.m. and reduce to an appropriate degree the 
storing capacity of the first floor. This reduction does not exceed 16.4 per cent of the full 
storing capacity of the building. 

5. Conclusions 

The above is only a brief survey of optimization problems, which can be formulated 
for the simplest vibrating system (Fig. 1) with the object of forming its natural frequency 
spectrum. The variety and complexity of these problems increase rapidly with the increasing 
number of degrees of freedom, thus presenting a wide field for various analytic and numer
ical investigations. The latter appears to be particularly promising by the finite element 
method [26] and if use is made of advanced methods of computation eigenvalues and 
eigenvectors. 

It is still difficult to foresee the results of the efforts tending towards rationally forming of 
the natural frequency spectrum in general cases. There are known cases in which, for 
instance, the maximum increase in the fundamental frequency is no more than a few per cent 
(6.6 per cent for instance [1]). This requires therefore some caution in the assesment of 
the possibilities offered by the optimum design of vibrating systems. Further study of 
these possibilities will be interesting especially in view of the fact that the information 
available on this subject is scarce. 
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