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On the foundations 
of the endochronic theory of viscoplasticity (*) 

K. C. V ALANIS (IOWA) 

PREVIOUSLY we proposed the ENDOCHRONIC theory of viscoplasticity by introducing the concept 
of intrinsic time. In this paper we broaden the foundations of the theory. This we do by dis
cussing the geometric motivation for the intrinsic time measure; by giving this measure a stress
time base as an alternative to the original strain-time base; by devising dual forms of the _consti
tutive equations in terms of the Gibbs free energy function 4J. We use a simple model of such 
a 4>-form to show that linear unloading can be a constitutive consequence and not an additional 
assumption. 

Poprzednio zaproponowano endochroniczn~ teorie( lepkoplastycznosci wprowadzaj~c kon
cepcje( czasu wewne(trznego. W niniejszej pracy rozszerzono podstawy teorii. Dokonano tego 
przez dyskusje( geometrycznej motywacji dla miary czasu wewne(trznego, nadanie tej mierze 
bazy odksztalcenie-czas oraz ustanowienie dualnych postaci r6wnan konstytutywnych, wyra
zonych przez funkcj~ energii swobodnej Gibbsa 4J. Wykorzystano prosty model takiej formy 
4> celem wykazania, ze /iniowe odciqienie moi:e bye konstytutywn~ konsekwencj~ a nie dodatko
wym zalozeniem. 

PaHhiiie Mbi npe;:piO>KHJIH 3H,n;oxpoHJNecHyro Teopmo BH3HonnaCTHtiHOCTH, aao,n;H HOHu;en~ 
BHYTPe~ero apeMeHH. B HaCToHiu;eii pa6oTe pacliiHpHeM ocHOBbi TeopHH. llpoH3BO,n;HM 3TO 
nyTeM o6cym,n;elUUI reoMeTpHqecHoro HCTOJil<OBaHHH ,n;JIH Mepbi BHYTPeHHero apeMeHH, nyTeM 
npH,n;aHHH 3TOH Mepe 6a3Hca ,n;ecl>opMau;HH-BpeMH H nyTeM YCTaHOBJieHHH ,n;yaJibHbiX BH,n;OB 
onpe,n;emnoiu;HX ypaBHeHHii, BbipameHHbiX qepea cPY~ CB060,n;HOH 3HeprHH rH66ca 4J. 
HcnonhayeM npocryro Mo,n;em. TaHoii Q>opMbi 4> c u;eJibro noHa3aHHH, ~o AUHeimaR paJzpyJKa 
MomeT 6biTh cne,n;crBHeM onpe,n;eJIHJOiu;HX ypaaHelUiii, a He ,n;onoJIHHTeJibHbiM npe,n;nonome
HHeM. 

lntroducti on 

IN A PREVIOUS paper [1] we proposed the ENDOCHRONIC theory of viscoplasticity by intro
ducing the notion of intrinsic time. The use of the internal variable formalism of irreversible 
thermodynamics then enabled us to derive constitutive equations which predict the stress 
and entropy response of materials to general thermomechanical histories. The derivation 
was in terms of the Helmholtz free energy 'I'. 

Since that time, we have applied with considerable success the t~eory to the response 
of metals to various types of deformation. For details, we refer the reader to the appropriate 
references which are discussed at greater length in a later section of this paper. 

In this paper, we broaden the foundations of the theory by (i) introducing a geometric 
motivation for the intrinsic time measure, (ii) giving this measure a stress-time base as 

(*)The paper has been submitted to the EUROMECH 53 COLLOQUIUM on "THERMO
PLASTICITY", Jablonna, September 16-19, 1974. 
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an alternative to original strain-time base and (iii) deriving dual forms of the constitutive 
. equations in terms of the Gibbs free energy function</>. 

Our recent work has shown that the Gibbs free energy formulation gives rise to consti
tutive equations which are better suited for the representation of the unloading behavior 
of metals and their response to compression fol~owing extension "in the plastic range". 

1. Helmholtz free energy formulation 

In the above formulation, which we shall call the !~'-formulation, the independent 
varia_bles are the Cartesian components cii of the Right Cauchy Green tensor C, the abso
lute temperature() and the Cartesian components q[i of n tensor-valued internal variables qr. 

Concisely stated, the constitutive equations then are, in standard notation: 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

-r = 2 __g_ aP 
(!o ac ' 

ap 
n=-arr, 

~; = fr(C,O,qs), 

h = h(C, qr, GradO), 

where his the heat flux per unit undeformed area, Grad is a material operator and h = 0 
whenever Grad () = 0. 

The Clausius-Duhem inequality dictates that rr cannot be chosen at will but must 
satisfy the constraints 

a !I' 
(1.5) -;:)- . er ~ 0 (r not summed). uqr 

A particularly suitable form of the Eq. (1.3), which we have used extensively in the 
past, is: 

(1.6) 
o'P dlr 
~ + br · dq = 0 (r not summed), 
uqr Z 

where br is a positive definite viscosity tensor. The Eq. (1.6) satisfies the constraint im
posed by the Clausius-Duhem inequality and is in accord with the Onsager notions of 
linearity between "forces" and "fiuxes". This equation is likely to be valid in situations 
in which the internal variables have a smaJI norm (in a Euclidean sense) even though the 
overall deformation of the material is large. 

The intrinsic time scale merits discussion. It is well known that in dissipative media 
the stress response is a function of the "strain path" or "strain history". The latter is the 
strain state expressed as a function of the Newtonian time t. A formal mathematical 
statement of the above ideas is: 

t 

(1.7) 't' == ~[E(s)], 
S=-00 
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ON mE FOUNDATIONS OF THE ENDOCHRONIC THEORY OF VISCOPLASTICITY 859 

where (1 is a function of the function E(s), - oo < s ~ t. This representation is found 
to be adequate in the case of materials having fading memory with respect tot. It certainly 
does not apply to non-ageing materials which possess permanent memory (with respect 
to t) of their thermomechanical history [21 ]. 

The endochronic theory, which is based on the notion of intrinsic time, is aimed at 
the analytical representation of the thermomechanical behavior of materials with perma
nent memory. 

The statement that the stress is a function of the strain "path" gives rise to the question: 
"which path"? In particular, what is the appropriate path for materials that are "history 
dependent" but "strain-rate independent"? 

We define a path relative to a Riemannian space. Consider a six-dimensional Riemannian 
space R with metric Gii· Of the six independent components Ei of E let each be measured 
along one of the coordinates of R, in a sense of "one-to-one and on-to". Evidently, a state 
of strain is a point and a strain history is a path in this space. The distance d~ between 
two adjacent deformation states is given by the relation 

(1.8) de = GiidEidEi, 

or 

(1.9) 

The intrinsic time ~ is arrived at by the following considerations. If Gii is a material 
property, then d~ is a material "time-like interval" between two adjacent strain states: 
As such, d~ is a measure of an intrinsic time scale. In tensor form the Eq. (1.8) becomes 

(1.10) de = dE . P . dE, 

where P is a material tensor, which may conceivably depend on E. 
We showed in a previous paper [2] that the ~-scale is not adequate for predicting 

crosshardening when constitutive equations of the convolution type such as the Eqs. 
(4.2, 3) of Ref. [1]) are used to represent material response. For this purpose the 
scale (1) C(~) was introduced, which is such that 

(1.11) 

where/(~) > 0. 

d~ 
dC = /(~) , 

If the elapsed time between two adjacent strain states is dt, then: 

(1.12) d~ = .. I G·. dEi dEi dt. V IJ dt dt 

Note that d~ remains invariant with the transformation 

(1.13) dt' = adt (a> 0) 

which implies that d~ is independent of the strain rate. If now we set: 
c 

(1.14) -r = (1[E(C')], 
C'=Co 

(1) This is a new notation which we introduce for reasons that are discussed in this section. 
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we have achieved a representation whereby the stress response is history dependent but 
strain rate independent. The Eq. (1.14) applies, therefore, to plastic materials. We obtain 
specific forms of the Eq. (1.14) by using the Eqs. (1.1), (1.2) and (1.3) or (1.6). 

Materials which are history as well as strain rate dependent must, a fortiori, possess an 
intrinsic time scale z which must be related, in some sense, to the Newtonian time scale t. 
Such a scale is constructed from the relation given below: 

(1.15) 

where g is a material constant and x depends on t, as was found from constant strain 
rate tests on superpure aluminum. The above equation reduces further to the simple form: 

(1.16) 

In view of the nature of the dependence of ~ on eii• under monotonically increasing 
proportional loading, x is a special sort of function of iii as well as eii though its dependence 
on the latter may be rather weak. 

Note the differences between the present form of dz and the one given in our previous 
paper. There, 

(1.17) 

and 

(1.18) 

This definition gives rise to conceptual difficulties. Under conditions of zero strain (i.e., 
d~ = 0), d~ = gdt. This last result will" lead to material ageing as a consequence of the 
Eq. (1.18). This can be averted if g is a function of i and furthermore if g(O) = 0. 
However, this constraint eliminates also stress relaxation under constant strain, an 
essential characteristic of viscoplastic materials. Another possibility is to set g(O) =f. 0, but 
f( ~) = 1. This set of constraints eliminates ageing, but unfortunately strain hardening 
as well. Thus, in the old definition, there is no way of circumventing these difficulties. 

The advantage of the new definition for dz, as given by the Eq. (1.16), is that it 
accommodates the above effects in a self-consistent fashion. 

Explicit forms of constitutive equations which are potentially applicable to large de
formation histories and isothermal conditions may be constructed by introducing a scalar 
function W0 (C) and a generalized strain tensor '1'1 (C) with respect to which the free energy 
W retains its quadratic form in the internal variables. Thus, under these conditions: 

(1.19) 

where B'" and C'" are constant fourth the order material tensors. In conjunction with 
the Eq. (1.6), Eq. (1.19) then leads, without essential difficulty, to the constitutive 
equation (1.20) 

z z 

(1 20) = 2 _g_{ aDo awl J .,< _ ') awl d, 2 o'l'1 . J ( _ ') o'l'1 d '} 
• 't' (!o ac + ac 11. z z j)z' z + ac f-l z z az' z ' 

0 0 
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where 'P 1 = trace 'I' 1 , 

(1.21) 

A quasi-linear form of the Eq. (1.9) which applies to isothermal conditions and 
small strains may be obtained by setting 

(1.22) 'l't = E- E, 

where E is the small strain tensor. In this event, within terms of order llell 2 

z z 

(1.23) (}Q f ~( I) o(trE) d I 2 f ( I) OE d I 
't' = OE + Jl. z- z aT z + "' z- z oz' z . 

0 0 

The Eq. (1.23) may be fully linearized by setting 

(1.24) Q = 1/2Aoo(tr E)2 + Poo(tr E2). 

The one-dimensional counterpart of the Eq. (1.20) is 
z 

(1.25) dQ dw J E( ') dw d ' 
T = dA + dA z- z dz' z ' 

0 

where w is a function of A and E(z) is a uniaxial "heredity modulus". A quasi-linear form 
of the above equation may be obtained by setting w = A -1 = e. In this case 

z 

(1.26) f oe 
T = f(e)+ E(z-z') oz' dz', 

0 

wheref(e) = dQ/dA. A fully linear form is obtained by setting/( e) = f 0 e. In this event 
z 

(1.27) T = J EL(z-z') ::, dz', 
0 

where 

(1.28) EL= foH(z)+E(z), 

i.e. EL is the heredity modulus of the fully linear theory. 

2. Gibbs free energy formulation 

In this formulation, which we shall call the $-formulation, the stress components in 
the material system (2) (calculated per unit undeformed area), the absolute temperature 0 
as well as the n internal variables q,. are regarded as the independent variables. One then 
seeks to derive the strain and entropy response of a material system to a thermomechanical 
excitation. 

With this in mind, we write the first law in the form: 

(2.1) • -[]«P£. hoc e- a.p- ,oc, 

(2) These are the components of the Piola stress tensor Il. 
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where E is the Green deformation tensor defined by the relation: 

(2.2) 

and 

(2.,3) 

I 
E=-(C-&) 

2 

K. c. V ALANJS 

where iJy;/ iJx are the deformation gradient components and Tii the components of the 
Cauchy stress tensor defined in the spatial frame of reference. The Eqs~ (1.1) and (1.2) 
may be written in the compact form: 

(2.4) Plq-Jia.f3£p+rl) =0, 

where the first term on the left-hand side of the Eq. (2.4) is the time rate change of 'P 
keeping qr constant for all r. 

At this point we introduce the Gibbs free energy f./> by the relation 

(2.5) f/> = 'P -Jia.f3 Ea.p· 

The Eq. (1.1) implies that Eisa function of n, 0, and qr, assuming the requisite condition 
of invertibility. In that event f/> is also a function of n, 0, and qr. Furthermore, as a result 
ofthe Eq. (2.5). 

(7.6) Plq = rPiq+IIa.fJ Ea.{Jiq+fia./J Ea.p· 

Substitution of the Eq. (2.6) in Eq. (2.4) and recall of the independence of the appropriate 
new variable, yields the equation: 

(2.7) i)f.]> I Ea.p = - iJII fJ ' 
8,q 

1'} = - i)i)~ I . 
n,q 

(2.8) 

Furthermore the Eqs, (2.5), (2. 7) and (2.8) lead immediately to the relation 

(2.9) i)'Jf . • r _ i)f/> • • r ( d) 
iJqr q - iJqr q r not summe 

in which event the Clausius-Duhem inequality now is: 

(2.10) 

or 

(2.11) 

assuming~ of course, that dzfdt > 0. 

i)f/> r 
-·q ~o iJqr .....:: ' 

Since we are dealing with an endochronic theory, the concomitant evolution equations 
for the q's will be of the type 

(2.12) dqr - r 
dz - g'(D,O, q ), 

where gr must satisfy the constraint (2.10). 
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ON ·THE FOUNDATIONS OF THE ENDOCHRONIC THEORY OF VISCOPLASTICITY 863: 

Needless to say that g' is related to f' by the equation 

(2.13) g' = f'(E(ll, q', 0), q,.). 

In deriving explicit forms of constitutive equations we take the view that in the vicinity 
of small strains, at least the Eq. (2.11) does in fact have the form e) 
(2 14) of/> b' r 0 ( d) . - + • q = r not summe , oq' 

where q' = dq' jdz. The constraint (2.12) is satisfied if b' are positive definite fourth-order 
tensors for all r. 

Other, more general, forms of the Eq. (2.14) are of course possible. We pointed 
out in earlier papers that the inequality (2.11) implies, in fact, a functional relationship 
between dg'jdz and o<l>foq'. Thus, the Eq. (2.12) willa fortiori have the more specific 
form, 

(2.15) dq' '( o'P} di = g oqs ' 

i.e. g' will in general be a function of the Gibbs free energy gradients o<P I oqs. 
The heat conduction equation will also be of the form: 

(2.16) h = b(ll, 0, q', GradO). 

The $-formulation is now complete. 
Explicit constitutive equations may again be obtained by expanding <P in terms of 

cp 0 (ll), cp 1 (ll) and q', in a form analogous to the Eq. (1.19), i.e. 

(2.17) 

Use of this equation in conjunction with the Eqs. (2.7) and (2.14) yields a constitutive 
equation very much like Eq. (1.20), in form, of the type: 

(2.18) 

where 

(2.19) 

and 

(2.20) 

A quasi-linear form of the Eq. (2.20) which applies to small strains is obtained by 
setting E ,..., E, t/J 1 = n = a in which event 

z z 

(2.21) ox C: f J ( ') O(Jkk d I f ( ') 0fJ d 1 
E = 7fii + o 1 Z- Z 7fi' Z + J2 Z- Z oz' Z • 

0 0 

(3) The Eq. (2.14) is, in fact, the counterpart of the Eq. (1.6). 
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The Eq. (2.21) may be fully linearized by setting 

(2.22) X = 1/2J10(tra)2 + 1/2l20(tra2
). 

The uniaxial counterpart of the Eq. (2.21) is 

z 

(2.23) e = g(a) + J J(z-z') ;; dz', 
0 

where 

(aii = 0, i "I= j) 

and a= a 1 • 

In its fully linear form the Eq. (2.23) becomes 

(2.24) 

where 

(2.25) 

H(z) being the Heaviside step function of z. 

3. Prediction of unloading with the linear theory 

The Eqs. (1.21) and (2.24) are completely equivalent; in fact, JL and EL are related 
by the integral equation 

z 

(3.1) J EL(z-z') ~~ dz' = H(z). 
0 

To examine how the linear theory predicts unloading behavior we need only study the 
Eq. (1.27). For the sake of clarity we drop the suffix L and write (1.27) as: 

z 

(3.2) r = { E(z-z') dd~dz'. 
~ z 
0 

Consider a deformation history, in whi:h t.he strain increases monotonically from zero 
to some value e 1 and is then decreased. The process is assumed to take place at a substan
tially constant absolute value of the strain rate. Let the slope of the unloading stress strain 
curve be denoted by E _ . Then it can be shown that 

(3.3) 

where E 0 is the initial modulus dafdsle=o and E+ is the tangent modulus at the point of 
unloading. Since in the plastic range E+ is substantially less than E0 , the Eq. (1. 7) 
fails to predict the experimentally observed unloading slope which is essentially equal 
to E0 , for metals at room temperature. 
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ON THE FOUNDATIONS OF THE ENDOCHRONIC THEORY OF VISCOPLASTICITY 865 

It is worth emphasizing that Eq. (1.2) is true, irrespective of the form of E(:z) and z(C), 
provided that the inequalities in Eq. (3.4) hold, i.e., 

(3.4a, b) 
dC 
dz- > 0, k > 0 

where 

(3.5) dC =kids!. 

4. Prediction of unloading with quasi-linear theories 

The quasi-linear P-form of the theory [Eq. (1.26)] can predict the observed unloading 
slope by suitably choosing the form of the function f( s ). The pertinent relation is: 

(4.1) dr I dr I de + + ds _ = 2E(0)+2f'(s). 

In particular, the condition 

(4.2) dr I 
--

1 

=Eo 
ds ,-

leads readily to the relation 

(4.3) /'(e) = 1/2 ;; I+. 
The quasi-linear fP-form of the theory [Eq. (2.23)] will also predict the observed un

loading slope by a suitable choice of the function g(a). Evidently, from Eq. (2.23) g(O) = 0. 
Also it can be shown that without loss of generality one can set g' (0) = 0. It then trans
pires that J(O) = 1/E0 , where E 0 is initial tangent modulus dajdsle=o. Equation (2.23) 
may then be re-written in the form: 

(4.4) 

z 

E0 s = J J(z-z') ~7 dz' +F(a), 
0 

where F(a) = E 0 g(a), and J(O) = 1. The following relation is then found to hold 

(4.5) 2Eo = (1 + dF) ( da I + da -I ) . 
da ds + de __ 

In the event that the unloading slope is equal to E0 it follows that 

(4.6) dF E 0 -Et 

da E 0 +Et' 

where Et = dajdsl+. 

Thus, the quasi-linear fP-theory can also predict unloading behavior correctly. How
ever, we would like to point out that there is evidence that the fP-form possesses other 
attractive features and may prove more suitable for the representation of the mechanical 
behavior of metals. 

12 Arch. Mech. Stos. nr 5-6/75 

http://rcin.org.pl



866 

S. A simple model of the quasi-linear (!>..form 

The Eq. (4.4) may be expressed in the alternative form 

(5.1) 

z 

de da J · , da , dF 
Eo dz = dz + J(z- z ) dz' dz + dz · 

0 

K. C. VALANIS 

In the event that j = ex, where ex is a constant (a "Maxwell model"), then the Eq. (5.1) 
simplifies to the expression 

(5.2) E 
de _ 2E0 da 

--_____,-,-----,-,- - +ex a 0 dz - E0 + E1(lal) dz · 

Consider the very simple case where z = C, and dC = ldel (no strain hardening such as 
in mild steel at moderate strains). Then the Eq. (5.2) inay be integrated to yield, under 
monotonic loading condition: 

(5.3) £ 0 e = - <r0 { 2log ( 1-1 ~ I) + ~ } ' 
where a0 is the ultimate stress of the material. In this event 

(5.4) 

and the Eq. (5.2) now simplifies to the form: 

(5.5) Eo .~~ ... = {1 +I-?_ I'} da + E0 (_!!___)\ . 
dz a0 1 

dz a0 

It may readily be shown that the Eq. (5.5) will predict, under loading conditions, as it must, 
stress strain curve given by the Eq. (5.3), whereas under unloading it gives the exact result, 

(5.6) 

i.e., the constitutive equation (5.5) predicts that the unloading part of the stress-strain 
curve is, in fact, an exact straight line with slope E0 • 

A truly remarkable result. 

6. A stress-based intrinsic time scale 

Let me begin with the view that the state of strain is a function of the stress path, in 
the Riemannian space T 11 (a = 1, 2, ... , 6) with metric R.p such that the square of an 
element of path length d~ in this space is: 

(6.1) 

or in tensor form: 

(6.2) de = dii . R . dii , 

where R is a fourth-order }'ositive definite symmetric material tensor. 
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ON THE FOUNDATIONS OF THE ENDOCHRONIC THEORY OF VISCOPLASTICITY 867 

The Eqs. (1.15) and (1.16) which define the z-scale then apply without change. The 
constitutive equations (1.20), (1.25), (1.26), (1.27), as well as (2.18), (2.21), (2.23) and 
(2.24) also remain unchan'ged in form. 

The theory is thus formulated in terms of an "intrinsic time measure" which is stress 
based. 

7. Substantiation of the theory 

A primary characteristic of the mechanical behavior of metals is their permanent 
memory of their deformation history. Furthermore, they exhibit cross-effects in small 
strain regions where one would have expected uncoupled linear constitutive equations to 
apply. Effects such as these are cross-hardening, i.e., hardening in tension due to torsional 
prestrain (or vice versa); cumulative axial extension due to, cyclic torsion (cyclic creep) 
in the presence or absence of axial stress; cumulative axial stress relaxation in tension due 
to cyclic creep; cyclic hardening or softening due to cyclic deformation, depending on the 
prehistory of the specimen; effect of shear stress on response in tension (or vice versa); 
other effects too numerous to mention. 

The effects mentioned specifically above form a sufficiently rigorous set of criteria to 
be regarded as an essential challenge to any constitutive representation that pertains to 
the plastic behavior of materials. In the recent past we have been able to predict the above 
effects with the endochronic theory, sometimes with astonishing accuracy, using very 
simple forms of the constitutive equations and with minimum analysis. 

Effects in the above class have been investigated by MAIR et Als. [3], LUBAHN [4], 
WADSWORTH [5], lVEY [6], BENHAM [7], FREUDENTHAL and RONAY [8, 10], BENDLER and 
WOOD [9], RONAY [11], UDOGUCHI and ASADA [12], MORROW [13], COFFIN [14], and other 
people too numerous to mention here. 

The representation and prediction of their results by the endochronic theory is 
given in Refs. [2, 15, 16and 17]. 

The application of the theory to situations where the strain rate effects are significant 
is the object of investigation in Refs. [18, 19, and 20]. 
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