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On the dynamic stability of thermomechanical processes 
in viscoplastic bodies (*) 

A. BALTOV (SOFIA) 

AN energetic stability criterion for visco-plastic dynamically loaded bodies is proposed, taking 
into account the available temperature field. A thermodynamic method and the Liapunov's 
stability definition are applied. The criteria for the stability of motion, of shape, and the thermal 
and the internal structural instability are also obtained. 

Zaproponowano energetyczne kryterium statecznosci dla dynamicznie obci~zonych cial lepko­
plastycznych przy uwzgl~nieniu danego pola temperatury. Zastosowano metod~ termodyna­
miczn'l oraz definicj~ statecznosci Lapunowa. Otrzymano r6wniez kryteria statecznosci ruchu 
i ksztahu oraz niestatecznosci termicznej i struktury wewn~trznej. 

Ilpe~JIO>KeH :mepreTII~ecl<HH KpHTepHH yCTOH~BOCTH ,D;JI.R ,D;HHaM~eCKH Harpy>KeHHbiX 
B.R3KOllJiaCT~eCKHX TeJI, llpH yqeTe ~aHHOrO llOJI.R TeMnepaTypbi. flpHMeHeH TepMO,lJ;HHaMH­
~eCKHH MeTo.n; H onpe.n;eneHHe ycroii~HBOCTH no JlHnYHOBY. IloJiyqeHhi Tome KpHTepwi 

. ycroii~BOCTH ,n;sH>KeHH.R H cpopMbi, a TaK>Ke TepM~ecKoH Heycroii~OCTH H BHYTpeHHeH 
CTPYKTYPbi. 

1. Statement of the problem 

INVESTIGATION on the thermomechanical processes in viscoplastic bodies is very important 
in technology. A lot of materials under dynamic mechanical and thermal loading possess 
viscoplastic properties. For that reason the problems of describing such processes and 
establishing their stability condition, have an essential meaning in solid mechanics. In 
many cases, like metal forming with plastic deformation, thermal and mechanical loading 
resistance of machine elements etc. the instability of the process is undesired. In other 
cases it could be a desired state e.g. metal cutting forming a thin zone [1]. Stability 
problems are especially complicated in dynamical cases. Instability occurs in all dynamic 
experiments with viscoplastic materials- necking at dynamic tensile experiments, forming 
of stripes at dynamic torsion of thin-walled tubes [2] etc. 

An energetic stability criterion in dynamically loaded bodies under temperature field 
is proposed in this paper. A thermodynamic method of investigation as well as the Lia­
punov's stability definition is used. The thermodynamic method is often used in the cases 
of equilibrium stability problems of elastic bodies [3, 4, 5 etc.]. The consideration of the 
dynamic character of the process involves essential changes in the statement of the sta­
bility problem. 

(•) The paper has been presented at the EUROMECH 53 COLLOQUIUM on "THERMOPLASTIC­
ITY", Jablonna, September 16-19, 1974. 
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694 A. BALTOV 

Let us consider the body fJI occupying the region D0 of the three-dimensional Euclidean 
space E3 at a certain moment t0 • The volume of the body at that moment is V and it is 
bounded by a closed regular surface S. At the moment t the body occupies the region 
D, c E3 • We assume D0 to be the reference configuration with the coordinate system 
{X}; !J, is the actual configuration with the coordinate system {x}; the law of motion 
is x = x(X, t). The body is loaded on the part Sp of the boundary surface with dynamically 
applied traction TN, varying according to a given programme in the time interval {10 , t 1 ). 

On the remaining part Sv of the surface' (Sv u Sp = S) the velocities v are prescribed. 
The surrounding is under a constant temperature 0. 

The boundary conditions of the process are: 

TN = T(X, t)N, X e Sp, t e (t0 , t 1), 

(1.1) v = v(X, t), X e Sv, t e (10 , t 1), 

QN=-(0-0)hT, XeS, te(t0 ,t1). 

T is the first Piola-Kirchhoff stress tensor; N is the outward unit normal to the surface S 
in !J0 ; v = x(X, t) is the velocity in terms of the material variables (X, t); Q is the heat 
flux vector in !J0 ; () = O(X, t) is the absolute temperature; hT is the heat transfer coefficient. 

A thermomechanical process occurs in the body under these conditions. A model of 
a body with internal state variables is assumed in order to describe this process. 

The body is considered as a closed thermodynamic system, consisting of an infinite 
number of local thermodynamic systems- the infinitesimal neighbourhoods of the particles 
X, having mass dm. The full thermodynamic state of any local thermodynamic system 
(X, dm) is characterized by means of: 

a) x(X, t) and the mass density e(X, t), determining the position of the system; 

b) the strain tensor E = ~ (FTF-1) and the Piola-Kirchhoffsecond stress tensorT(X, t), 

describing the internal mechanical state of the system. F = 8xx is the deformation gradient; 
c) the specific entropy 'f}(X, t) and the absolute temperature O(X, t), describing the 

internal thermal state of the system; 
d) the internal state variables x<Q>(X, t), ((X= 1, 2, ... , n) and the conjugated dissi­

pative forces p<cx> (X, t), describing the internal structural state of the system. The para­
meters x<cx> could be tensors of different orders and may have different physical 
meanings. The tensors representing in macroscale the microdamage density (dis­
locations, microcracks, etc.) are often chosen to describe the viscoplastic material pro­
perties. The viscoplastic strain tensor E; itself could be chosen as an internal state 
variable [7]; 

e) the specific internal energy u = u(X, t) describing the internal energy state of the 
system; 

f) the temperature gradient® = 8x0 and the entropy displacement h(X, t), describing 
the hea~ transfer, li = QfO. 

Let us assume that the first group of constitutive equations is known [6], 

(1.2) 
u = u(E, 'fJ, x<cx>), 

T = (Jo8EU, () = a'lu, p<cx) = -eo8x(cx)U, ((X= 1, 2, ... , n), 
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Taking into account the law of mass conservation 

(1.3) e = det {F} ' 

and the law of heat transfer 

(1.4) 

the state of the local thermodynamic system could be described by means of the following 
system of functions Mx(t)= {v,F(orE),rJ,x<oc>}(X,t), Xe!J0 , te(t0 ,t1). The local 
thermodynamic process in the elementary system is described by the change of these func­
tions Mx(t) = {v, F (or E), i}, x<IX>}(X, t). This change is determined by the following 
differential equations system 

eo v = DivT (the equations of motion, where the body forces are neglected) 

. ( . 1 . . ) F = oxv, orE = 2 (FTF+FTF) (the geometrical relations) 

( 1.5) eo i] = Div ( ! Q) + ! eo d (the balance entropy equation where the heat 

supply is neglected), 

with 

X(IX) = .z,<oc>(E, 'fJ, X(IX)), ((X = 1, 2, ... , n) (the equatiOnS Of evolution for 
the internal state variables), 

n 

(1.6) eot5 =~ · h + .J: tr {P<IX>j:<«>} ;;::: 0 (the Clausius-Duhem dissipation energy 
oc=l 

inequality). 
The global thermodynamic process, taking place in the body f!l is determined by means 

of the multitude M = { Mx(t)}, at all X e !J0 , t e (t0 , t 1) and obeys the first and the second 
thermodynamic principles, applied to the global thermodynamic system of the body 

~J{eou+}eov·+V= Jv·TNdS+ JQ·NdS, 
V S S 

(1.7) 

The Eqs. (1.5) and (1.6), after taking into account (1.2), (1.3), (1.4) and (1.7), describe 
the considered thermomechanical process in the body PJ. The loading programme is given 
with boundary conditions (1.1); the initial state of the body is assumed to be known e.g. it 
is given M 0 = M(t0 ). 

The form of the constitutive equations must be determined in each particular case for 
the kind of material. As an example of the form of the second group of these equations 
(in the case of x<l) = Ea), we shall mention those proposed in [6]: 

(1.8) :Ea= B(T,O,Ea)f(Liz), :Ea# 0 for Llz = z-z0 > 0, 

:[a = 0 for Llz ~ 0, 
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or those proposed in [7] 

(1.9) E" = y(O) (f/J(F)) M(T, 0, E"), (f/J) = f/J, 

(f/J) = 0, 

F> 0, 

F~ 0. 

A. BALTOV 

B and M are tensors characterizing the direction of the an elastic strain rate in the stress 
space; f and f/J are functions characterizing the viscoplastic properties of the material; 
z(T, 0, E") is the free enthalpy per unit mass; z0 is the boundary value of z; F(T, 0, E ") = 0 
is the static yield condition; y is the viscosity coefficient. 

It is convenient to consider the thermomechanical process in the space D, consisting of 
the elements M= {Mx(t)}, at all X e !J0 and t e {t0 , t 1 ). The sequential positions of 
M(t) where t e {t0 , t1) describe the trajectory of the process in the space D. The trajectory 
begins at the initial point M 0 = M(t0). We introduce the following metrics in the space D. 
The distance R between any two elements M 1 , M 2 e D is defined by 

n 

(1.10) R 2(Mt, M 2) = R;(a 1 , a2)+Ri'lA1 , A2)+Ri'11(c1 , c2)+ _2; R~(Y\cx>, y~cx>), 

where 

(1.11) 

Ri' (a1 , a2 ) = J a 1 • a2 dm, 
V 

Ri'x(At, A2) = f tr {AtA2}dm, 
V 

CX=l 

Ri'n(ct, c2) = J c1 c2dm, 
V 

R~(Y\a>, y~cx>) = J tr {Y\cx> · y~a>} dm (a = 1, 2, ... , n); 
V 

a 1 and a2 are vector functions; A1 and A2 are tensor functions, c1 and c2 are scalar func­
tions, Yicx> and y~cx> are tensor functions of the order of x<cx>. They all depend on X and t. 

We shall investigate the stability of the thermomechanical process, using the norm 
llMII~ = R2 (M, M) in the space D. 

2. Stability criterion 

In order to obtain a stability criterion for the process M 0 (t), we consider another 
thermo-viscoplastic dynamic process, described also by means of the Eqs. (1.5) and (1.6). 
For each t e (t0 , t1), the second process obeys boundary conditions (1.1) with initial 
condition M~ which is not very .different from Mg for the basic process M 0 (t). The process 
M'(t) leads to a trajectory in the spaceD, differing little from M 0 (t) at t ~ t0 • The assump­
tion that M'(t) is a process with viscoplastic deformations is similar to Shanly and Hill's 
assumptions in the theory of plasticity [11]. The disturbed process M'(t) as well as the basic 
process M 0 (t) are really possible, obeying the thermodynamic principles (1.7). 

Let us introduce a fictitious process M*(t) = {Mi(t)} where Mi(t) = M~(t)-M~(t) 

at t e (t0 , t 1). M'(t) = M 0 (t) if M*(t) =M = 0. According to the second Liapunov's 
method we reduce the stability problem for the process M 0 (t) to a stability problem for 
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the fictitious equilibrium state M with initial disturbances M~ = M~-M~. The fictitious 
proces$ M*(t) is locally described by means of the following differential equations system: 

e0 v* = DivT*, T* = T'-T0
, F* = F'-F0

, 

F* = oxv* 

(2.1) • * - n· (Q' Qo ) A (!o'YJ - IV ff- (jO + LJ(f, 

The corresponding boundary conditions are: 

T*N = 0, X E Sp, t E (t0 , t 1), 

(2.2) 

where 

(2.3) Q* = Q' -Qo, ()* = ()' -()o. 

The initial conditions are M~. The fictitious process obeys total relations, obtained 
after substracting the expressions in (1.7) for the disturbed and the basic processes. 

! f (Liu+ ~ v* · v*+vo · v*))eodV ~ f v* · iNdS+ f V.T*NdS- .r O*hrdS, 
(2.4) V Sp s., S 

where: 

()' ()0 
(2.5) T = -r > 0, Llu = u(E', r;', x(a)')-u(Eo, r;o, x(a)o). 

From (2.4) 1 and (2.4h we obtain 

(2.6) ! I ( eoLiu+ ~ eo v•. v• +eo V0
• v*- eo0'1• )dv ~ - I OL!adV 

V V 

+ I v* · iNdS+ J V ·T*NdS+ J ( ~ -1) O*hTdS. 
Sp s., S 

The energy dissipation is the only heat supply in the case under consideration and there-

A A ( 0 ) fore()'> 0, () o > () and r -1 ~ 0. 

We expand the internal energy per unit mass for the disturbed process u(Eo + E*, 
'Y}

0 + r;*' x(a)o + x<a>*) in Taylor's series in the neighbourhood of M~. Taking . into account 
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that M~ were assumed to be of small values, the terms in the series, consisting of M~ 
of the order higher than two, could be neglected and in the case of small second order 
interactions we obtain: 

n 

(2. 7) eo LJu = tr {ToE*}+ eo (JO 17*- 2 tr {P(CX)O x(CX)*} 
Ot=l 

where 

(2.8) 

Substituting (2. 7) into (2.6) 

(2.9) 

where 

I = ; J { tr {r~E· E*} + D~(11*)2 + ,i' tr {B~·>· x'"'* x'"'*} 
V CX=l 

(2.10) 
+eo v• · v* + 2tr {i"E*} + 2e0 A0•11*-2 i' tr {P<•>• x'"'*} + 2eo v• · y• )dV, 

CX=l 

JirN = J v*. TNdS + J V. T*NdS, L10° = 0°-0. 
Sp Sv 

An expression is obtained, consisting of the measure of alternation of the total energy 
of the fictitious process /, the power of the non-conservative forces during the fictitious 
process JirN and the difference L1D between the dissipative and thermal terms of the basic 
and disturbed processes. This result is similar to the result corresponding to the case of 
equilibrium state stability of bodies, loaded with non-conservative forces [9]. As the load 
in the considered case is time-dependent, the term WN appears in the Eq. (2.9). All {M~{t)} 
obeying conditions (2.2) form the manifold K c D. We assume that -the basic process 
{M~(t)} is known; I is then a functional of M~(t), having the range of definition K. We 
consider the r-neighbourhood of the fictitious equilibrium state M, determined by 
11 {M~(t)}ll~ < r. According to Liapunov's stability definition, the fictitious equilibrium 
state will. be locally stable if for each 0 < e < r there exists a 0 < ~(e) < r such, that 
11 {M}(t)}/1~ < r if llM~(t)/1~ < ~(e) at each t e (t0 , t 1). In that case the basic process 
M 0 (t) will be stable too. 

The value of r is to be chosen according to the specific character of the process. If the 
condition of the definition is violated with respect to the norm IIM*(t)/1~ > r, at the 
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moment t = tk the process is thermomechanically and structurally unstable at that moment. 
If Rf(v, v) >rat t = tk, the body loses its stability of motion at the moment tk; if R:1(E*, E*) 
> r, it loses stability of the form; if R:11(1J*, 17*) > r, thermal instability occurs; if 

n 

.J: R~ (x<cx>•, x<cx>*) > r, internal structural instability occurs. (The internal structural equi-
cx=t 
librium state instability with constant E and 1J and v = 0 is investigated in [10, 7]). 

In order to establish sufficient conditions for stability of the considered process, Theorem 
12 [8] will be applied. In order to fulfil the condition of the theorem, the following require­
ments have to be proved: 

a) The functional I(M~(t)) must be continuous and upper bounded; 
b) The functional I(Mi.(t)) must be positive definite with respect to the norm 

11 {Mi.(t)}IID at each t E {t0 , t 1), e.g. 

(2.11) I~ A 11 {Mi}IID, A > 0; 

c) The functional I( Mi (t)) must be decreasing with respect to t in the interval 
(to, t 1), e.g. 

(2.12) 

If anyone of the above-mentioned conditions is violated at a certain moment tk E {t0 , t 1), 

the process is unstable at that moment. 
Thus, an energetic criterion is obtained for the local stability of viscoplastic bodies 

under dynamic thermomechanical processes. 
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