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Effective material constants for orthotropically damaged elastic solid· 

A. LITEWKA (POZNAN) 

THE AIM of the paper is the formulation of the constitutive equation of elasticity for damaged · 
solid with regular array of rectilinear narrow cracks. The current state of the damaged material· 
was described by means of a symmetric second order damage tensor entering the constitutive 
equation as an independent variable. The validity of the constitutive equation derived in this 
paper and the definition of the damage tensor proposed were verified experimentally. To this . 
end the elastic constants calculated theoretically were compared with those measured experi- · 
mentally employing the models simulating the damage solid. 

Celem pracy jest sformulowanie r6wnania konstytutywnego spr~zystosci dla materialu uszko
dzonego z regularnym ukladem prostoliniowych p~kni~c. Do opisu biez(lcego stanu materialu 
uszkodzonego wykorzystano symetryczny ·tensor drugiego rz~du, wchodZ(lcy do r6wnania . 
konstytutywnego jako zmienna niezalei:na. Poprawnosc sformulowanego r6wnania kon5ty
tutywnego oraz zaproponowanej definicji tensora uszkodzenia zostala zweryfikowana do
swiadczalnie. W tym celu stale spr~zystosci obliczone na drodze teoretycznej zostaly por6wnane 
z wartosciami zmierzonymi doswiadczalnie przy zastosowaniu modeli symuluj(lcych material:
uszkodzony. 

B pa6oTe npeJJ;CTaBJieHhi onpeJJ;eJIHIOII{He ypaBHeHHH ynpyroCTH JJ;JIH MaTepHana c peryn.apHo · 

paCllOJIOllieHHbiMH npHMOJIHHeHHbiMH Tpell{HHaMH. ,llJIH OllHCaHHH Tei<yll{ero COCTOHHHH llO

BpemJJ;eHHoro MaTepHana HCllOJib30BaH CHMMeTpHtllibiH TeH30p BTOporo llOpH,ll;l<a, BXOJJ;Hll{H:U 

B COCTaB onpeJJ;eJIHIOII{ero ypaBHeHHH I<al< He3aBHCHMaH nepeMeHHaH. IlpaBHJibHOCTb c¢op

MYJIHpOBaHHOrO onpeJJ;eJIHIOII{ero ypaBHeHHH H npeJJ;nomeHHoro onpeJJ;eneHHH TeHsopa no

Bpe>I<JJ;eHHH npoBepeHa :mcnepHMeHTaJibHO. C :non QeJiblO llOCTOHHHbie ynpyrOCTH, BblliHC

JieHHhie TeopeTIPieCI<H, cpaBHeHhi CO 3HatieHHHMH H3MepeHHblMH 3I<CnepHMeHTaJibHO npH 

npHMeHemm MoJJ;ene:U, HMHTHpyroll{HX noBpemJJ;eHHhiH MaTepHan. 

1. Introduction 

THE NUCLEATION a_nd growth of regularly distributed microcracks and voids at 
grain boundaries of the initially homogeneous and isotropic solids - results in overall 
mechanical behaviour of the material far from being isotropic. Development of such an 
internal oriented damage affects the mechanical response of the material in elastic and 
plastic ranges as well as at rupture. When dealing with the problem of the constitutive 
equation of continuum damage mechanics, two groups of equations should be formulated. 
The first one specifies in the elastic range the overall strain in terms of the stress and damage
tensor. The second group of relations concerns the variation of the damage with the applied 
stress. The main subject of numerous scientific papers on damage mechanics is the first 
group of equations accounting for the stiffness and strength reduction as well as the spe
cific symmetry of the damaged solids due to cracks development. 

Various attempts to formulate such equations for damaged solids employing the concept 
of the damage tensor were presented by V AKULENKO and KACHANOV [1, 2, 3], DRAGON 
[4], KACHANOV [5], MURAKAMI and 0HNO [6], KRAJCINOVJC [7, 8], and BETTEN [9]. 
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The considerations presented in this note follow that general line but the attention is 
focused on the elastic behaviour of the cracked solid. The specific case: of thej damage 
induced elastic anisotropy and formulation of the respective constitutive equation was 
presented by KACHANOV [2, 3). CHABOCHE [10) and CORDEBOIS and SIDOROFF [11). The 
constitutive equation of elasticity formulated by VAKULENKO and KACHANOV [1] and 
discussed in details by KAcHANOV [2, 3] includes several unknown functions and con
stants. It means that, when utilizing this theory some additional data are necessary which 
can be obtained, for example, from suitable experiments. Thus the continuum damage 
theory proposed in [1, 2, 3] is not self-contained in spite of possibility to determine those 
unknown functions on the basis of the results presented in more recent papers by HoENIG 

[12], BUDIANSKY [13, 14] and SALGANIK [15] concerning the theoretical homogenization 
of cracked solids. 

An alternative method of formulation of the constitutive equation for damaged solids 
is presented in this note. The constitutive equation of elasticity derived, employing the 
theory of tensor function representations, contains as an independent variable the damage 
tensor describing the current state of the solid and being fully responsible for the symmetry 
of the material structure as well as for the modification of the material constants. The 
analysis of the damage evolution was restricted to some well-defined stages of the cracks 
development, and the damage tensor components were calculated according to the defi
nition proposed in the paper. The equation of the damage tensor evolution being the separ
ate problem has not been formulated here. However, if such an equation is derived, it 
could easily be incorporated into the constitutive equation proposed. 

The effective elastic constants for damaged solid entering the constitutive equation 
were expressed in terms of the material constants for the undamaged, original material 
and the damage tensor components. The numerical values calculated for a specific case 
of two different regular arrays of rectilinear cracks were compared with the effective 
elastic constants measured experimentally, employing the models simulating the damaged 
material. 

2. Constitutive equation 

Due to the introduced oriented damage, the overall material behavior is anisotropic 
and, thus the constitutive equation of elasticity should account for the specific material 
symmetry. It can be done by formulating this equation in the form of a tensor function 

(2.1) E = F(T, D), 

where E and T are strain and stress tensors, respectively, and D is the second order sym
metric tensor describing the internal damage of the material. It seems reasonable to assume 
an independent variable D in the form of such a tensor, although it is obvious that the 
symmetric second rank tensor possessing three mutually perpendicular principal directions 
can describe the symmetry of orthotropic material only. 

Employing the tensor function representations theory, the most general polynomial 
form of the relation (2.1) can be written as follows 

(2.2) E = cx 11 + cx2 T + cx3 (TD + DT) + cx4 D + cx 5 T2 

+ cx6D2 + cx 7 (TD2 + D2T) + cx 8 (T2D + DT2
) + cx9 T 2D2

, 
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where ex; (i = 1, 2, ... 9) are the poiynomial functions of the scalar invariants of the 
stress and damage tensor. 

To derive an explicit form of the function (2.2), the stress-strain law of elasticity 

(2.3) 

was considered. The fourth order anisotropy tensor Autr is a function of only one inde
pendent variable Dil. According to the theory of tensor function representation [16] this 
function, used also by MuRAKAMI and IMAIZUMI [17], has the form 

(2.4) A iJkl = A t5u t5k, + B( t5tk t5i, + t5u t5ik) + cxt5u Dkt 

+ f:JDu t5kl + y( btkDJ, + t5uDJk + t5Jk Du + t5Jt D,k) +y. DuDk, 

+y2 buDk,D,1 +y3 D1,D,1 t5k1 +y4 (t51kD1,D,1 

+ t5uD1,D,k+ t51kD,,D,1 + t511 D1,D,k) 

+ Ys D11 Dk,D,1 + y6 D1,D,1 Dkt +y1 D,,D,1DkqDq1 , 

where ex, {:J, y, and l'i (i = l, 2, ... 7) are functions of invariants of Dib and A, Bare con
stants. 

It seems justified to reduce the function (2.4) to the form linear in damage 

(2.5) Aukt = A t5u t5k, + B( t5ik t51, + t5u t51k) + f:J(Dii t5k, + t5u Dkl) 

+ y( t5tk DJt + t5Jt D,k + t5u DJk + t5Jt Du), 

where it was assumed that ex = {:J due to the symmetry Ailkl = AkliJ· To simplify the further 
considerations, the functions {:J and y entering the equation (2.5) are assumed to be con
stants. The other constants in (2.5) are expressed by the Young modulus E and the Poisson 
ratio v of the matrix material 

l+v 
B = 2£ . 

In the case of undamaged material when D0 = 0, the expression (2.5) becomes the 
isotropic fourth order tensor and the function (2.3) represents the well known equation 
of linear elasticity for isotropic material. 

Inserting (2.5) into (2.3), the following form of the function (2.1) was obtained 

(2.6) E = (AtrT+f:JtrDT)I+2BT+2y(TD+DT)+f:JDtrT. 

Comparing this equation with that represented by (2.2) it is seen that functions of invariants 
have a form 

cx 1 = AtrT+f:JtrDT, 

cx2 = 2B, 

cx 3 = 2y, 

cx4 = {:JtrT, 

cx 5 = cx6 = cx 1 = cx 8 = cx 9 = 0. 

Thus the constitutive equation (2.6) contains two unknown constants {:J and y and the 
damage tensor D. If those two constants are determined and if the suitable definition of 
the damage tensor is formulated, all the effective elastic constants entering the constitutive 
equation (2.6) will be easily calculated. 

5 Arch. Mech. Stos. nr 6/85 
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3. Damage tensor 

Usually it is assumed that the principal effect of the material damage consists in the 
net area reduction caused by nucleation and growth of fissures and grain boundary cavities. 
However, such an internal damage has, in general, directional properties resulting also 
in the development of an overall material anisotropy. As it was mentioned in the previous 
section, the material symmetry in the specific case of orthotropic solids can be described 
by the ~ymmetric second rank tensor called the damage tensor. The well known definitions 
of such a tensor proposed by VAKULENKO and KA.CHANOV (1], MURAKAMI and 0HNO [6], 
KRA.JCINOVIC [8] or BETTEN [9] being the generalization of the scalar parameter introduced 
by KA.CHANOV [18] to describe the internal damage, proved to be insufficient when utilizing 
the equation (2.6). Thus it is advisable to derive a modified form of the damage tensor 
suitably describing the mechanical response of the cracked material. 

The considerations presented in this paper are .restricted to the case of the damaged 
material possessing three mutually perpendicular planes of symmetry :n:h :n:2 , n 3 shown 

a b 

Sc2 

FIG. 1. Internal structure of regularly cracked solid. 

in Fig. 1a. The principal directions of the damage tensor should be associated with the 
directions normal to those planes defined by unit vectors n1 , n2 , n3 • Thus the damage 
tensor can be defined as follows: 
(3.1) D = D1 n 1 ~n2 +D2n2®n2 +D3 n3®n3 , 

where D 1 , D 2 and D3 are the principal values of the damage tensor depending on the net 
area reduction due to fissuration determined on the planes perpendicular to the axes 
x 1 , x 2 , x 3 • This definition of the damage tensor is similar to that proposed by KACHANOV 

[2] and MURAKAMI and OHNo [6], but the meaning of the principal values D 1 , D 2 , D3 

is different. It was found in calculating the elastic constants from equation (2.5) that the 
components of the damage tensor must be expressed not only by the cracks area as it 
was suggested in [I, 6, 8, 9], but also by the area of the ligament between the adjacent 
cracks, that means by the net area of the matrix material remained. Thus it is proposed 
to calculate the principal values of the damage tensor as follows 

(3.2) D . = Sci . I 2 3 
I s ' l = ' ' ' 

Li 
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where SCi and Su stand for the respective crack and ligament areas on the plane ni normal 
to the coordinate axis x i shown in Fig. 1 b. In the limit case of absence of fissuration on 
the given plane n;, the appropriate principal component is equal zero what results in the 
overall strength for loading in the direction perpendicular to this plane equal to that 

observed for original undamaged material. On the other hand, if the damage evolution 
reduces the ligament area to zero on the considered plane, the respective component D1 

increases indefinitely and this means that the Young modulus for this direction vanishes. 
Thus the damage tensor defined by (3.1) and (3.2) fully describes not only the material 
symmetry but also the stiffness reduction of the solid. 

4. Effective elastic constants 

The overall mechanical response of the cracked solid shown in Fig. 1 is that observed 
in orthotropic material. It means that its mechanical behavior in the elastic range can be 
described by nine elastic constants: three Young moduli £ 1 , £ 2 , £ 3 , three shear moduli 
G12 , G2 3 , G31 and three Poisson ratios v12 , v2 3 , v31 • All those material constants are 

expressed by the equation (2.5) as functions of the damage tensor D. However, their 
numerical values cannot be calculated directly from (2.5) because this equation contains 
two unknown constants fJ and y. These two constants could be determined if two of nine 
above mentioned elastic constants were known. Considering, for example, the uniaxial 
loading of the damaged material with crack orientation presented in Fig. 2, one obtains 

from (2.5) for uniaxial tension in the direction parallel to longitudinal axes of cracks the 
following set of two linear equations 

(4.1) 

1'21 ')I 

(Dl +D2){J = - ~£--; + E' 

enabling to determine fJ and y. The numerical values of the Young modulus £ 2 and Poisson 
ratio v21 required to calculate fJ and y can easily be measured experimentally, thus in 

order to determine nine elastic constants for orthotropic solids, a very simple experiment 
of uniaxial tension is necessary. However, it appears that there exists another, more effi

cient method to determine fJ and y. For a specific case of loading in the direction parallel 
to longitudinal axis of relatively narrow cracks, that means if their width t is small in 
comparison with the distance P 1 between two adjacent cracks, it is possible to estimate 
E2 and v21 from very simple theoretical considerations. It is obvious that the state- of 

stress in the vicinity of single crack is very complicated and the stress concentration strongly 

depends on the crack geometry. Thus the theoretical determination of the exact values 
of elastic constants E 2 and v21 by considering the deformations of a unit cell of the material 

structure requires the solution of a fairly complicated boundary value problem. However, 
it is justified to assume that the values of those elastic constants for a damaged material 

with cracks of a given length land width t are bounded by the limit values 

5* 
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for I = t = 0, that means for material without cracks and by 

for I = P 2 • In the considered case of narrow cracks where the dimensionless crack width 
T = t/P1 < 0.1, those two limit values are very close to each other, therefore it seems 
unreasonable to look for the exact solution of the problem. To obtain an approximate 
solution furnishing the results very close to those probably obtainable from the exact 
solution, the deformations of the unit cell of the material structure are analysed under 
the following assumptions: a) irregular contour of each crack is approximated by the 
rectangle of dimensions I and t, b) the state of stress in the unit cell of material structure 
uniaxially loaded in the direction parallel to the longitudinal axes of cracks is uniaxial 
and homogeneous; c) the value of uniaxial stress in portion I of the material structure 
(Fig. 2) is equal to the homogenized overall uniaxial stress T22 applied to the damaged 

t Tu 

Xz 

T 
-1 I! 

I 

cf" l 

I 
II I 

L 
x1 

r i T22 

FIG. 2. 

material, d) the value of uniaxial stress in portion II is equal to T22 /(1- r). This approxi
mation gives the following values of the Young modulus E2 and the Poisson ratio v21 : 

(4.2) E
2 

= (1- r)E (1- r)v 
1-r+Ar' v21 = 1-r+Ar' 

where A is the dimensionless crack length A = I/P2 • Inserting (4.2) into (4.1), the following 
values of {J and y are obtained 

(J = 0, 

(4.3) 

http://rcin.org.pl



EFFECTIVE MATERIAL CONSTANTS FOR ORTHOTROPICALLY DAMAGED ELASTIC SOLID 637 

and, finally, all the elastic constants for orthotropic equivalent material can be calculated 
from the equation 

(4.4) 
v l+v 

A ijkl = - E (jij (jkl + 2.£- ( (jlk (jjl + (jil (jjk) 

Xr 
+ 40....=-r)D

2
E (CJ,"DJt + CJJ,Dtt + CJuD1~c+ (}1"D,). 

Thus the homogenized overall elastic behavK>r of the damaged material described by the 
equivalent elastic constants Au~c1 is expressed by the material constants E and v of the 
original undamaged material and by the components of the damage tensor DiJ accounting 
for the current state of the damaged solids. 

5. Experimental results 

To verify the validity of the theoretical considerations concerning the effective elastic 
constants of the damaged material, the suitably designed experiments were performed. 

a b 
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FIG. 4. Young moduli and shear modulus versus crack length for damaged solid with cracks arranged ia 
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Two types of the damaged materials were simulated by means of flat specimens having 
the sets of regularly distributed rectangular openings arranged in square patterns, as shown 
in Fig. 3. In the first case presented in Fig. 3a, the cracks are oriented in the pitch direction, 
and in the second one shown in Fig. 3b- in diagonal direction. The uniaxially loaded 
specimens with a given cracks arrangement were cut out from the aluminium alloy metal 
sheets of thickness 0. 7 mm. The total length of the specimen was equal to 400 mm with 
cracked portion 210 mm long and 70 mm wide. The details concerning the specimens 
preparation and experimental technique are presented in [19]. The process of the damage 
evolution in the models tested was simulated by changing length of the openings expressed 
by the rations 1/P = 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7, where Pis the pitch of the square pattern 

0.5 

• Vz4 

-Theory 
))12 

o • Experiment 
\) 21 0 

0.5 to 
). · liP-

FIG. 5. Poisson ratio versus crack length for damaged solid with cracks arranged in pitch direction. 
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FIG. 6. Dependence of Young modulus and Poisson ratio on the loading orientation for damaged solid 
with cracks arranged in pitch direction. 
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of cracks. The width of rectangular openings t remained constant and equal to 1 mm. 
To study the directional properties of the material, the uniaxial loading applied to the 
specimens was inclined at angles a = 0, n/12, n/6, n/4, n/3, 5n/12 and n/2 with respect 
to the cracks longitudinal axes parallel to the coordinate axis x 2 , as shown in Fig. 3. 

The longitudinal and transversal strains of the specimens were measured by means 
of electric strain gauges 50 mm long. This enabled determining four elastic constants 
E 1 , £ 2 , G12 and v21 or v21 , so that the experiments furnished ·the results necessary to 
analyse the plane stress problems. Wide variety of loading orientations defined by the 
angle a made it possible to study the dependence of the effective Young modulus E2 (cx.) 
and Poisson ratio v21 (a) determined for the specimens loaded in various directions with 
respect to the symmetry axes of the crack pattern. All the experimental results concerning 
the elastjc range are shown in Fig. 4, 5, 6, 7, 8 and 9. The specimens were loaded up to 

1.0 

..EJ. 
E 

-Theory 

0.5 

.1.1 
E 

_£) 
E 

§i 
E 

0 
0.5 10 

A=i/P-

Flo. 7. Young moduli and shear modulus versus crack length for damaged solid with diagonal cracks 
arrangement. 
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FIG. 8. Poisson ratio versus crack length for damaged solid with diagonal cracks arrangement. 

rupture and the mechanical characteristics in the plastic range as well as at failure were 
studied. However, those problems are out of scope of this note and will not be presented 
here. The preliminary discussion of plastic behavior and failure modes of the models 
simulating the damaged materials are presented in [20, 21, 22]. 
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FIG. 9. Dependence of Young modulus and Poisson ratio on the loading orientation for damaged solid 
with diagonal cracks arrangement. 

6. Discussion of results 

In the case of the models simulating the damaged material used in the experiments, 
the principal values of the damage tensor calculated from (3.2) are 

A T 
(6.1) D1 = 

1
_ A and D2 = 

1
_ T , 

where A = 1/P and T = 0.1 for cracks arranged in the pitch direction, and A = lj y 2P 
and T = 0.1jy2 for diagonal orientation of cracks. The equation (4.4) written in terms 
of the damage tensor components (6.1) made it possible to calculate all the elastic constants 
for an orthotropic equivalent material. Comparison of these values with those measured 
experimentally is shown in Fig. 4, 5, 7 and 8. 

To study the directional properties of the damaged material, the dependence of the 
material constants on the loading orientation was also analysed. The comparison of the 
Young modulus E2 ( oc) and Poisson ratio v21 ( oc) measured experimentally for the specimens 
loaded at various directions (defined by angle oc) with the corresponding values obtained 
from (4.4) suitably transformed according to the rotation of the coordinate system is 
shown in Fig. 6 and 9. To calculate the theoretical values of E2 (oc) and v21 (ex), well known 
expressions discussed for example by LEKHNICKIJ [23] were used. 

Good agreement of the numerical results obtained theoretically and experimentally 
can be considered as an evidence that very simple constitutive equation of elasticity derived 
in this paper describes satisfactorily the mechanical behavior of the cracked solid. More-
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over, it is seen from the results presented in Fig. 4, 5, 6, 7, 8 and 9 that the damage tensor 
defined by equations (3.1) and (3.2) fully determines not only the symmetry of the material,. 
but also the variation of the material constants for cracked solid. 

7. Conclusions 

The constitutive equation of elasticity for damaged material with the regular crack 
array possessing three mutually perpendicular planes of symmetry was formulated employ
ing Rivlin's and Ericksen's representation theory [16]. The effective ·material constants 
entering the constitutive equation were expressed in terms of the elastic constants of 
matrix material and the damage tensor components accounting for the current state of 
the cracked solid. Comparison of the theoretical results with the effective elastic constants 
measured experimentally on models simulating the damaged material confirmed the 
validity of the definition of the damage tensor proposed and the constitutive equation 
derived. 
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