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Inelastic behaviour of plane frictionless block-systems 
described as Cosserat media 

D. BESDO (HANNOVER) 

THE FIRST remarks are concerned with the linearly elastic global behaviour of systems of blocks 
and springs which should be described as Cosserat media. Basing on these 'ideas, the inelastic 
behaviour of frictionless block-systems is treated. They can be models for special rock forma­
tions. It is shown that the classical approach leads to results which are in contradiction to experi­
ments. Then the global material behaviour is formulated by means of Cosserat media; condi· 
tions for the admissibility of stress fields and for the admissibility of velocity fields and upper 
and lower bound theorems are developed. Their applications yield results which are in best 
agreement with experiments. 

Na wst~pie om6wiono globalne wlasnosci liniowo spr~zyste uklad6w bloczk6w i spr~zynek 
modeluj(lcych osrodki Cosserat6w. Na tej podstawie dyskutuje si~ niespr~i:yste wlasciwosci 
uklad6w bloczk6w bez tarcia, kt6re mog(l symulowac zachowanie si~ pewnych formacji skal­
nych. Wykazano, i:e podejscie klasyczne prowadzi tu do wynik6w sprzecznych z doswiadcze­
niem. Sformulowano nast~pnie podstawy globalnego zachowania si~ materialu za porno~ 
teorii osrodk6w Cosserat6w; przedstawiono warunki dopuszczalnosci p61 napr~i:en i pr~dkosci 
oraz twierdzenia o kresach g6rnych i dolnych. Ich zastosowania prowadl<l do wynik6w zgod­
nych z doswiadczeniami. 

B Hal.JaJie o6cy)f{.QeHhi rJio6a.JihHhie mmeiiHo ynpyrne CBOHCTBa cncTeM 6Jioqi<oB H npy)f{HHOI< 
Mo.QeJIHpyroll(HX cpe.Qhi Koccepa. Ha :noii oCHoBe o6cy)f{.QaiOTCH Heynpyrne caoiicma CHCTeM 
6JIOqi{OB 6e3 TpeHHH, I<OTOpbie MOryT HMHTHpOBaTh llOBe,QeHHe Hei<OTOphiX CI<aJihHbiX cPOp­
Mai.(HH. Tioi<a3aHo, qTo I<JiaccHqeci<Illi no.QXo.Q npHBOrofl 3.Qech I< pe3yJihTaTaM npoTHBopeqa­
Il(HM ::mcrrepHMeHTaM. 3aTeM CcPOPMYJIHpOBaHhl OCHOBhl rJio6aJihHOrO llOBe,QeHHH MaTepHa.Jia 
rrpH rroMoll(H TeopHH cpe.Q Koccepa; rrpe.QCTaBJieHhi ycJioBHH .QorryCTHMOCTH noJieii: HanpH­
)f{eHHH H CI<OpoCTeH, a Tai<)f{e TeopeMhl 0 BepXHHX H HH)f{HHX rpaHHX. 11x IIpHMeHeHHH IIpH­
BO,QHT I< pe3yJihTaTaM COBIIa,QaiOII(HM C ::mcrrepHMeHTaMH. 

1. Introductory remarks on elasticity 

IN THE LINEAR theory of plane elastic Cosserat continua, the stres~es arxp and couple 
stresses ftru(a = x, y) of Fig. 1 occur as well as the strains 'YfJrx., "a of Fig. 2. The strains 
can be derived from displacement fields by 

'Yxx = oujox, 

')'yy = ovjoy, 

(1.1) 
')'xy = oujoy+1p, 

')'yx = ovjoX-1p, 

U:zx = 01pjox, 

U:zy = o1p/oy. 

The virtual work per unit volume is given by 

(1.2) 

3* 
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FIG. 1. Definition of stresses. FIG. 2. Definition of strains and displacements. 

The linearly elastic theory combines the stresses with the strains by constants. Those con­
stants expressing aa.fJ by strains 'Ypa., are proportional to Young's modulus E, the constants 
for the combination of p,(X.% and Xza. are proportional to E multiplied by the square of a char­
acteristic length L. If this L vanishes the Cosserat-theory turns to a "classical" one. 

Hence this length L has to be as large as possible if remarkable differences to the usual 
theory are to be expected. This can also be expressed by the sentence: The "bending­
stiffness" of the medium must be high with respect to the shear-stiffness. 

In this paper it will be shown that the concept of a Cosserat-continuum can be an 
adv.antageous description of the global behaviour of regularly composed plane structures. 
Several papers were concerned with grains consisting of circular needles (cf. [1] to [3]). 
But here the bending stiffness is more .or less missing, hence the displacement u and v 

are almost not influenced by the Cosserat-theory whereas the field of angles "P is described 
quite well. As it is well-known, layered media with a high bending-stiffness of the strong 
bands compared with the shear-stiffness of the weak bands are advantageously described 
by the concept of Cosserat media. 

£I 

FIG. 3. Usual grid. 

On the other hand, frames or grids like that of Fig. 3 seem to be of the typical Cosserat­
type,~bu(the "bending-stiffness" of this grid having the thickness b is EI/(bl): 
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INELASTIC BEHAVIOUR OF PLANE FRICTIONLESS BLOCK-SYSTEMS 605 

whereas the shear-stiffness combining axy and Yyx is I2 Elj(bJ3). The typical length L of 
the Cosserat-continuum is therefore 

L = {[Elj(bl)]j[l2Elj(bf3)]}112 = ljy'I2 

which is a rather small value in comparison with the typical length I of the grid itself. 
Hence there is no remarkable Cosserat-effect in grids of this type. -

FIG. 4. A special grid. 

The situation changes completely if, within this grid, every fourth hole is filled with 
a rigid material according to the scheme of Fig. 4. Now L depends on ljs which can have 
high ~alues: 

E ( I 3 1 12) 
ftxz = l 3 S + -4- S Xzx' 

L = I .. I-~ + (-1 )2 Jl 48 8s 

Values of L = 51 can be reached. 

More about those special grids and other block-systems and their global elastic behav­
iour is written in [4] and [5]. The present paper is to point out that the concept of high 
bending stiffness and relatively low shear stiffness leads to remarkable 'effects of Cosserat 
media also in the inelastic case. 

2. The inelastic behaviour of frictionless (sliding) blocks 

The system of blocks in Fig. 5 can be a model for problems of rock mechanics. It 
consists of blocks (in experiments wooden and with smooth surfaces) and two lines of 
gaps or clefts which in nature can be filled with mud. Hence, in the presence of water, 
an almost frictionless statical state will appear. In the experiments this is approximately 
realized by pushing on the table or by vibrations. 

Under the action of their weight the blocks are pressed together. Hence 'relatiye rota­
tions of neighbouring blocks across lines of type 2 are impossible, whereas they are allowed 
at lines of type I in the experiments because of the curved surface of the blocks at their 
left side. According to these conditions, ax1 and ftxz at lines of type I and a'l; at lines of 
type 2 must vanish, whereas axx and a'~'~ can exist but must be negative. The cQuple stress 

http://rcin.org.pl



606 D. D..soo 
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FIG. 5. System of blocks. 

p,11~ can exist but it is bounded because it is derived from the same normal force N a~ arJ,, 

and N cannot act outside the block: 

I 
(2.1) lp,,d ~ -2 (]'1'1" 

If lft,c 1 reaches the limit value, the gap will open: the neighbouring blocks can start to 
rotate against each other. 

3. The simple block system 

3.1. The "classical" approach 

As mentioned above, ax, = 0 and a,; = 0 are given; shear stresses vanish in directions 
other than 90° against each other. Hence, by Mohr's circle it can be seen that shear stresses 
vanish completely, axx = a, has to be fulfilled everywhere. 

At the right boundary of the field, axx = 0 has to be satisfied and ayy = 0 at the upper 
surface. The equations of equilibrium reduce by axy = ayx = 0 to 

O(]xx = 0 
ox 

(y = specific weight) and yield 

and 

axx = 0 and ayy = YY · 

This is in contradiction to axx = ayy· If the system behaved like a "classical" medium, 
it would break down completely. But the experiments (and intuition) show that the system 
is stable. Hence the "classical" approach is obviously wrong. 

3.2. Relations between stresses in the Cosserat continuum 

The virtual work ~w of Eq. (1.2) can be expressed by Nb N2, M 2, ~L1u1 , ~L1u2 , ~L1VJ 2 
(see Fig. 6) acting in the "typical volume" bhl cos rx where b is the thickness of a block: 

I 

blhcosrx~w ~ -N1 ~L1u1 -N2 ~L1u2+M2~L1"P2 

http://rcin.org.pl



INELASTIC BEHAVIOUR OF PLANE FRICTIONLESS BLOCK-SYSTEMS 607 

a c 

FIG. 6. Basic statical and kinematical properties: a) Forces and torques acting upon a block, b) Position 
of blocks No 0, 1, 2 in the undeformed state and virtual displacements of block 0, c) Definition of relative 

virtual displacements. 

with 

Mu1 = (du01 - bu00)GOS<X~ [ ( ~u. 1 - ~ b1p1)- ( 6u.0 + ~ b1p0 )]sin <X 

etc. Hence the variations l5Lfu1 , l5Lfu2 and l5L11p2 can be approximated by 

l5L1ut = l(l5reecosa-l5y11~sina), 
(3.1) 

l5L11p 2 = h(l5uc'1cosct+ l5uc;sina). 

The relations (3.1) and (1.2) inserted in Eq. (2.1) yield because of the independence of 
l5ya.fJ• l5uca.; 

(3.2) 

The application of the transformation laws yields 

( 
N2 N1) 

<1yx = 7if- bh tana, 
(3.3) 

flxz = 0, 
M2 

flyz = blfcosa. 

As was assumed above, a 'I; = a xz = flxz = 0 comes out by this theory, too. The normal 
forces N 1 , N2 can never be negative and 1M2 I cannot exceed -1/2 N 2l. Hence we can 
derive from Eqs. (3.2) and (3.3) with these conditions: 

(3.4) 
<1~11 = (a,11 -a;etana), <1yx = (axx__.:.<1yy)tanct = -ae'l' 

<1ee = <1xx• O'TJTJ = <1yy• CJTJe = <1xy = flxz = 0 
and 

(3.5) 

These relations have to be satisfied in every admissible stress field. 
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3.3. An admissible stress field 

The boundary conditions for an admissible stress field are (cf. Fig. 7): 
I) Uxy = #xz = 0 (valid by the relations (3.3)); 

II) u.,x = u,., = P,yz = 0: here no stresses appear at all; 
III) Uxy = #xz = Uxx = 0; · 
IV) no restriction. 

FIG. 7. Zones and boundaries of the field. 

With Uxz = u'll = 0 the equations of equilibrium reduce to 

(3.6) O(]xx + OUyx = 0 
ax ay 

(3.7) 
ou.n 
-- = 'Y ay 

or 

(3.8) 
ouu . ----ar = 'Y SID rx , 

ouE ou 
(3.9) __ '1 + _.!!!!__ = y cos rx 

aE a~ ' 
and 

a · a 
(3.10) #E' + p,'1, + (] = 0 aE a~ E, 
or 

(3.11) o;;z - Uyx = 0. 

In connection with the boundary conditions, Eqs. (3. 7) and (3.8) yield 

(3.12) 

and 

(3.13) 

Uyy = 'YY 

in 1 , 

in 2 , 

\0 . BESDO 
) 
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hence also 

and 

1

0 . 

Jl-yz = - {- ytanex(y-xtanex)2 

With y ·~ - /y/ ~ 0, the second condition (3.5) yields 

sinex(y-xtanex)2 ~ llyl. 

in 1, 

in 2. 

m 1, 

in 2, 

With increasing t0 (see Fig. 7), the first failure will occur at y = -10 , x = 0; hence, 

(3.14) ,t0 ~ /fsinex 

609 

denotes an upper bound for the depth of admissible stress fields of this type. In experiments 
I = 2h and tan IX = I /2 were given and these values lead to 

(3.15) t0 ~ 2 y5h = 4,472h. 

The experiments show that the system with 4 blocks. at the right side is stable; at 5 or at 
least at 6 blocks the right column of blocks begins to rotate combined with sliding. This 
is in complete agreement with the relation (3.15). 

3.4. Kinematical conditions and an admissible velocity field 

Equations (3.3) and (3.4) and the condition (3.5) can be rewritten as 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

l#xzl ~ 0 (replacing #xz = 0), 

/<1xyl ~ 0, 

!(ayy- <1xx)sin ex cos ex+ <1yxcos2 ex- <1yxsin2 ex)l ~ 0, 

<1xx ~ 0, 

~ IJ~-yzl cos ex+ <1yyCOS2 ex + <1xxsin2 ex- (axy + <1yx)sin ex cos ex ~ 0. 

In this form they have the structure of usual yield conditions in plasticity. The normallity 
rule yields: 

from the relation (3.16): Xzy is arbitrary, what is obviously correct for the experiment; 
from the relation (3.17) yyx = Ovyjox-w is arbitrary (also obviously); 
from the relation (3.18): in addition to other strain rates Yxy = <psiniXCOSIX, Yxx = 

-<psiniX COS IX, Yxy = <pCOS2
1X, yyx = -<psin2 1X with arbitrary <pis possible. After trans-

formation· to ~, n-coordinates, this allows identically for an additional y~'~ = ~ 0, 
which is obvious, too; 

from the relation (3.19): if axx = 0 is valid, an additional Yxx ~ 0 can appear; 

from the relation (3.20): if /,uyz / cos ex+ ~- Ia'~, = 0 is valid, additional ~; = 

+ x -~- cos IX and av11 = x ~ 0 may occur. This is exactly the kinematical condition - I 017 · 
for the opening of the gap between to neighbouring blocks in they-direction. 
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As the final result it can be stated that every velocity field is admissible which satisfies 
the following two conditions: 

{3.21) • • I I Xzv I • • I I • • I 0 Yvv-Yxvtanct- 2 1 coset = Y?J?J+y11~tana~ 2 xc,-xc~tanct ~ 

.and 

Yxx+Yxvtanct = h~-y11~tanct ~ 0. 

Using the velocity components u, v in the x, y-directions or U, V in the~, 17-directions, 
.the conditions (3.21) read: 

av ( au ) I I ow I - - -+w tana- - ~0 
oy oy 2cosct oy 

·Of 

'(3.22) a v ( ·a v ) 1 I ow aw I - + ~ -w tan a- - - - - tan a , ~ 0 a17 a~ 2 orJ a~ 1 · 

.and 

au (au ) · -+ - +w tana;;?: 0 ax ay or au ( av ) > a~ . - a~ - w tan ct - 0. 

<One admissible field with velocity jumps at the boundaries I and II of Fig. 8 and valid 
iii the shadowed area is 

{3.23) 

w = - Q = const < 0 , 

u = u(x) = Q(x+ LJx)tan a, 

I 
v = Q + (x + LJx) tan2 ct- tan a(y + LJy- xtan a). 

2cos ct 

y 

FIG. 8. Area of definition of the velocity field. 

-4. Upper and lower bound theorems 

If the normality rule can be applied, also the different forms of upper and lower bound 
theorems should have sense. These make use of the fact that the external power of any 
·external force F* belonging to an internal stress field 0'*, with an arbitrary velocity field 
v**, is equal to the inner power of the stresses 0'* combined with the strain rates y** which 
.are compatible with the velocity field v** 

Pex(F*, v**) = Pin(O'*, y**). 
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INELASTIC BEHAVIOUR OF PLAN E FRICTIONLESS BLOCK-SYSTEMS 611 

From the normality rule and from the uniqueness of the material behaviour, the inequal­
ities (denoting "true" values) 

Pin(a, ~) ~ Pin(a, ~) and Pin( a(y), y) ~ P1na(, ~) 

can be derived. Furthermore, in the case of the sliding blocks, it is obvious that Pin(a(y), y) 
and Pin(a, ~) vanish; hence the remaining relations are in the best applicable form: 

(4.1) lower bound theorem: Pex(F, v) = P1n(a, ~) ~ 0, 
A 

(4.2) upper bound theorem: Pex(F, v) ~ 0. 

These relations need an interpretation: 

RELATION ( 4.1) 
F can stand for a set of given external for~es to an arbitrary admissible stress field, 

v stands for one of the numerous admissible velocity fields describing all possible real 
motions. If the combination yields Pex(F, i') < 0 for each of those fields v, the forces F 
cannot induce motion at all. If Pex(F, v) = 0 can be reached in a appropriate combination, 
also Pin(a, ~) and hence the local P1n(a, ~) vanishes. Therefore, then F, a, v, and ~ form 
"the" quasi-static solution. Hence: 

SENTENCE A 
If a (statically) admissible stress field e.xists for given (!) external forces, it belongs 

to a quasi-statical solution or cannot induce motion at all. Accelerations are then impossible. 

RELATION ( 4.2) 
SENTENCE B 

A A 

If an admissible velocity-field v induces Pex(F, v ) > 0 with given external forces F, 
there does not exist any quasi-static solution with these external forces . Accelarations 
will then occur. 

The application of these sentences with respect to the stress field of Sect. 3.3 and the 
velocity field (3.23) produces: 

SENTENCE A. As long as t0 is not higher than l/sina, the system is not unstable. 
SENTENCE B. The external forces F are the specific weight y in the y-direction. Hence 

Pex(f, ·v) is in this case 

A 

Pex(F, v) = b JJ- yvdxdy. 

The result of the integration over the shadowed area of Fig. 8 is 

Pox(i, v) = -.Qbyz~o~ <>- [ Lly(l- Lly sin<>)+-} Llx/tan<>] . 

If L1x tends to zero, 

L1y = t0 ~ lfsina 

is necessary. 
As a conclusion: tri = l/sina is at the same time the upper and the lower bound of 

the possible depth t0 • This is in best agreement with experiments (cf. the photos of Fig. 9). 
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612 D. BESDO 

FIG. 9. Experiment with the simple block system a) 10 < 4.5h: stable, b) t0 > 4.5h: rotation. 

5. A less trivial problem 

5.1. The problem and the classical approach 

In the second example of this paper, the field is filled with blocks of the same type 
as in Sect. 3. But with the help of several half-blocks the new structure of Fig. lOa is put 
together. In this case only a,; = 0 is obvious in the absence of friction. Within the classical 
approach this implies a;YI = 0. Hence then only a~; and aYIYI exist, but they may be different. 

The statical boundary-conditions at I, IT, III of Fig. lOb are 

a b 

FIG. 10. A less trivial problem : a) structure, b) geometrical definitions. 
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INELASTIC BEHAVIOUR OF PLANE FRICTioNLESS BLOCK-SYSTEMS 613 

I) (]XX = (]XY = 0 ~ a;;.= a
17

, = 0, 

II) (]yx = (]YY = 0 ~ a;; = a,., = 0, 

III) (]xy = 0 ~ a;; = a'l'1 . 

The equations of equilibrium yield 

Oa;;/0~ = ysina ~a;;= ... ~ 0 (this is O.k.) 

and 

oa1'/'1fo'YJ = ycosa ~ a,,(B) = a1717(A)+Lycosa (Fig. lOb). 

The second result is in contradiction to the boundary condition at A and B. Hence there 
cannot exist any stable "classical" solution if lines as A- B belong to the field. 

FIG. 11. Bound for classical solutions. 

Systems like that of Fig. 11 with {J ~ a can have a "stable" classical solution. But 
experiments show that the system of Fig. I 0 is also stable. 

Hence the steps of Sect. 3 will now be repeated for the second system. 

5.2. Conditions for the stresses 

Each block of the field has in this case three pairs of neighbouring blocks, and N 1 , 

N2 , N 3 as well as M 2 , M 3 exist. These forces and moments are bounded by the conditions 

(5.1) 

The application of the virtual work theorem now yields: 

Nz = -__!__a bl- axy - bh 
2 1717 cosa ' 

1 b/ (JXY b N3 = - -
2 

a1717 + - - h, 
cos a 

(5.2) 

The other stresses in ~, 17-coordinates can always be computed by 

(5.3) a,;= 0, 

For the further description, s and tare introduced according to Fig. 13, and the following 
abbreviations are defined : 

(5.4) (JXY _ p 
cosa - - y, (JTJYJ = - Qy ' flxz = PY' flTJ C = qy · 
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614 D. BESDO 

FIG. 12. Numbers of blocks. FIG. 13. Introduction of s, !-coordinates. 

The equations . of equilibrium yield first 

(5.5) ae; = - (s-sl (t))ysina ~ 0 

with 

(5.6) 
in 1 , 

in 2. 

The other equations of equilibrium can then be written as 

aP aQ 
--as +Tt =l , 

(5.7) 
ap aq 
Ts + Tt. = -P- Qsina+(s-s1 (t))sin2 a, 

whereas the remaining conditions (5.1) are 

(5.8) 
I 

jq+Hpl? 4 (Q+HP) and 
I 

!q-Hpj ::; 4 (Q-HP) 

with 

(5.9) H = 2hjl. 

On the boundaries I, II, and III (cf. Fig. 13) the following conditions have to be satisfied: 

I) p = P = a~~ = 0, 

(5.10) II) q+psina = Q+Psina = a;~ = 0, 

III) p = P = 0. 

5.3. Admissible stress fields 

A first stress field satisfying Eqs. (5.7) and (5.10) is that of Sect. 3. It has to be rewritten 

as 

(5.11) p = p = 0, Q = t+ssina , 

0 

q = I I 2 . - 2 t sma 

in 1, 

in 2. 
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INELASTIC BEHAVIOUR OF PLANE RFICTIONLESS BLOCK-SYSTEMS 615 

The conditions (5.8) reduce to one:--} t 2sina:::;; ~ (t+ssina), hence: 

(5.12) t::::;; l/(2sinrx). 

This limit for t has only half the value of the relation (3.14) for the other example. But 
experiments show that higher limits of t should be possible. In this sense the limit of the: 
relation (5.12) is a correct lower bound for admissible values of t0 , but it is not satisfactory .. 

In the opposite to Sect. 3, here possibilities for an optimization of the limiting value 
exist because 4 fields of stress-variables (P, Q, p, q) are to be chosen and are governed by 
two equations (5.7) and two conditions (5.8) only. No numeric~! optimization procedures. 
have been applied until now, but a better stress field has been found intuitively basing 
on experimental facts. 

The computed field is admissible for s0 = 3.5 !, t0 = s0 /(2 sin a), H = 1, and tana = 
= 1 /2. These values are chosen in connection with the experiments. The field consists. 

FIG. 14. Regions of the stress-field. 

of four parts (cf. Fig. 14): In three of them p and q vanish, only in 4 these quantities 
differ from zero 

I : P = 0, Q = t+ssinrx, 

2: P = s-s0 , Q = (s0 -scos2 rx)jsinrx, 

3: P = s0 -s-2tsinrx, 

Q = 2t-s0 /sinrx+s(1/sinrx+sinrx), 

4 : sg(t): = s0 (1- tfto), 

1 
P = - 2 {(s0 /sg{t)) 2 -1} s, 

Q = (4sin rx)- 1 {s0 jsg(t)- s9(t)} +ssin rx, 
s2 

P = i (1-e) {[- 2(1 +e) +e(l + 3e) T] (v-v2
)-T(l- e2)v2 

}, 

q = ~r rs~(l-eH1-e2H1-2v), 
where (! = 1- tft0 and v = sjsg(t). Tis chosen as T = 0.86. As it can easily be verified:> 
Bqs. (5.7) and the conditions of transition are satisfied; moreover, the condition (5.8) 
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in J, 2 and 3 can be proved trivially, but in region 4 the proof of the conditions (5.8) is 
troublesome, nevertheless, it is possible. 

The most surprising fact of this stress field is that it contains a single force acting at 
A (cf. Fig. 14). Further on, jumps of stresses along line A- B appear. The fields of P, Q 
and the quotients 

are plotted in Fig. 15. 

W1,2 = (q±Hp)f(Q±HP) 

c 

p 

d 

Q 

I max. 
zu/ 
=1/14 

FIG. 15. An admissible stress-field, plots: a) P, b) Q, c) w 1 d) w2 • 

From this field a new limiting value for t0 can be derived: 

s0 y5 7 ~ I- 7 -
t0 ~ - .- = - s0 = - Jl 51= -l/ 5h = 7.826h. 

· 2sma 2 4 2 

This is, however, also · only a lower bound for this limiting value which, according to the 
experiments, should be nearer to 1 Oh. 

5.4. Kinematical conditions and bounds 

The kinematical conditions corresponding to the conditions (3.21) are now 

Ye; - y 11e tan a ~ 0 
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and 

H(y'111 +yn;tana)±y11E ~ ~ IH(xc11 +xc;tana)±xcel· 

These conditions are satisfied by the following velocity field defined in the shadowed areas 
of Fig. 16 and containing admissible jumps of the velocities along the boundaries I and II. 

II 

Fro. 16. Zones of the second velocity field. 

The angular velocity is assumed to be negative and constant: 

w = -Q = const, 

the velocities U and V are 

where s9 (t) is 

U ~ QtanO< {! -(10 -t)sinO<+s.(t)}, 

V ~ Q{! -(10 -t)sinO<+s}, 

l
_l (to-t) 

sg(t) = 2h 

So 

in 1 , 

in 2. 

For the computation of Pex(F, v), the component v is needed: 

v = _E_J\ 
4

1 
-(t0 -t)sina+scos2 a+sg{t)sin2 a}. 

cos a 

The integration of Pe~.(F, v) has the result 

" Pex(F, v) = bQ { I [ 1 2 ( 1 . )] 1 2 • - - - - s0 t0 - - s0 -sma --s0 t0 sma 
cos (X 4 2 2 

1 2 3 [ 1 . 1 (1 . 2 )] } 0 + 2 s0 to+s0 2 sma- 3 +sm a ~ . 

4 Arch. Mech. Stos. or 6/85 
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618 D. BESDO 

It has- as it is necessary- a negative value for s0 = t0 and 2hfl = I. The limiting 
value PexCF, v) = 0 is reached for 

}I ( 1 I ) 2 
. 2 2 . 2 . 3 I . ( . )} ± -+-- +sm r:x--smr:x- - sm rx+--sma 1-smr:x . 

2 4s0 3 3 4s0 

For lf(4s0 ) = 1/14 and tanr:x = 1/2, this upper limit for t0 is: 

10 ~ 2.1470s0 = 15.03h. 

As the final result for the problem of this chapter, it can be stated that systems are stable 
if and only if t0 ~ tum is valid and that this limiting value has to be in the range of 

7.826h ~ fum ~ 15.03h. 

FIG. 17. Experiments with the less trivial system: a) t0 = lOh: undeformed (with friction), b) to= lOh: 
after "deformation" (overstressed by additional loads), c) single force at the right corner: A lot of blocks 

can be put out. 

The experiments (see the photos of Fig. 17) show that the real value of fum lies near 10 h. 
That the range in which tum can vary theoretically is not smaller, follows from the fact 
that no optimization procedures have been applied up to now. The solutions will have 
to be improved in this direction in the future. 

If the fact that half-blocks appear is better taken into account also in the upper bound 
calculations, the final result is 

7.826h ~ !lim ~ 13.18h. 

6. Conclusions 

It has been shown that the global behaviour of special systems of frictionless blocks 
cannot be described properly by a classical approach. But these systems being models 
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for possible formations of rocks with clefts are described very well by means of Cosserat 
continua. 

The application of upper and lower bound theorems derived here, leads in one simple 
example to a definite value of a limit for the height of a step in the landscape which is 
in best agreement with the result of appropriate experiments. In a less trivial problem, 
this limit can only be bounded in a relatively wide range. Here numerical optimization 
procedures have to be applied in the future in order to reach better bounds. 
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