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Inelastic behaviour of plane frictionless block-systems
described as Cosserat media

D. BESDO (HANNOVER)

THE FIRST remarks are concerned with the linearly elastic global behaviour of systems of blocks
and springs which should be described as Cosserat media. Basing on these ideas, the inelastic
behaviour of frictionless block-systems is treated. They can be models for special rock forma-
tions. It is shown that the classical approach leads to results which are in contradiction to experi-
ments, Then the global material behaviour is formulated by means of Cosserat media; condis
tions for the admissibility of stress fields and for the admissibility of velocity fields and upper
and lower bound theorems are developed. Their applications yield results which are in best
agreement with experiments.

Na wstgpie omowiono globalne wilasnosci liniowo sprezyste ukladow bloczkow i sprezynek
modelujgcych osrodki Cosseratéw. Na tej podstawie dyskutuje si¢ niesprezyste wlasciwosci
uktadow bloczkow bez tarcia, ktore moga symulowaé zachowanie si¢ pewnych formacji skal-
nych. Wykazano, ze podejcie klasyczne prowadzi tu do wynikow sprzecznych z doswiadcze-
niem. Sformulowano nastepnie podstawy globalnego zachowania si¢ materialu za pomocg
teorii oSrodkow Cosseratow; przedstawiono warunki dopuszczalnosci pol naprezen i predkosci
oraz twierdzenia o kresach gornych i dolnych. Ich zastosowania prowadza do wynikéw zgod-
nych z do$wiadczeniami.

B nauvasie obcy»/1eHbI riiobajlbHble JIMHEIHO YIpyrue CBOMCTBa CHCTEM OJIOUKOB M MDY KHUHOK
Mogemupytoumx cpeabl Koccepa. Ha aTolt ocHoBe 00CY»KIOalOTCSI HEYNIPYTHE CBOMCTBA CHCTEM
6noukoB 0e3 TPeHHS, KOTOpble MOTYT MMHTHPOBATH IOBEJEHHE HEKOTOPBIX CKaJIBHBIX (op-
manuii. ITokasaHo, YTO KJIACCHYECKMIl ITOJXO IPUBOJMT 3/eCh K Pe3yJbTaTaM IpOTHBOpeYa-
IHM 3KCIIEpHMEHTaM. 3areM copMy/IHPOBaHbI OCHOBBI IJIODANIBHOIO NOBEJEHHS MaTepHalla
npu nomowx Teopun cpen Koccepa; npencraBieHbl yCIIOBMsA JOMYCTHMOCTH IIOJIEH Halpsi-
MKEHHI H CKOPOCTEH, a TAKyKe TeopeMbl 0 BEPXHHX M HIDKHMX IpaHax. Mx npumenemus: npu-
BOJAT K pe3yJibTartaM COBIIA[JAIOLHM C 3KCIIEpHMEHTAMH.

1. Introductory remarks on elasticity

IN THE LINEAR theory of plane elastic Cosserat continua, the stresses o, and couple
stresses u,; (o = x, y) of Fig. 1 occur as well as the strains yg,, %, of Fig. 2. The strains
can be derived from displacement fields by

(1.1

Yax = OU[OX,

Yy = 0[Oy,
Yxy = Ouldy+y,
Vo = OV[OX—1,
Hze = Oylox,
x,, = OP[oy.

The virtual work per unit volume is given by

(1.2)

3+

OW = Oup OV po+ lhoz 0%
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F1G. 1. Definition of stresses. F1G. 2. Definition of strains and displacements.

The linearly elastic theory combines the stresses with the strains by constants. Those con-
stants expressing g,z by strains y,,, are proportional to Young’s modulus E, the constants
for the combination of u,. and ., are proportional to £ multiplied by the square of a char-
acteristic length L. If this L vanishes the Cosserat-theory turns to a “classical” one.

Hence this length L has to be as large as possible if remarkable differences to the usual
theory are to be expected. This can also be expressed by the sentence: The “bending-
stiffness” of the medium must be high with respect to the shear-stiffness.

In this paper it will be shown that the concept of a Cosserat-continuum can be an
advantageous description of the global behaviour of regularly composed plane structures.
Several papers were concerned with grains consisting of circular needles (cf. [1] to [3]).
But here the bending stiffness is more or less missing, hence the displacement u# and v
are almost not influenced by the Cosserat-theory whereas the field of angles p is described
quite well. As it is well-known, layered media with a high bending-stiffness of the strong
bands compared with the shear-stiffness of the weak bands are advantageously described
by the concept of Cosserat media.

-
im

) 4

FiG. 3. Usual grid. | | m

On the other hand, frames or grids like that of Fig. 3 seem to be of the typical Cosserat-
typeibut_the “bending-stiffness” of this grid having the thickness b is EI/(bl):
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ET

uuxz = Bl_ Hrxs

whereas the shear-stiffness combining oy, and y,, is 12 EI/(bl*). The typical length L of
the Cosserat-continuum is therefore

L = {[EI/(bD)/[12ET] (P> = 1]y 12

which is a rather small value in comparison with the typical length / of the grid itself.
Hence there is no remarkable Cosserat-effect in grids of this type.

7MY,

/2 =

FiG. 4. A special grid. L‘—.]

The situation changes completely if, within this grid, every fourth hole is filled with
a rigid material according to the scheme of Fig. 4. Now L depends on //s which can have
high values:

N

~| tn

Mz = 3 ﬁ Vyxs

1 1)?

Values of L = 5/ can be reached.

3
(i 3+ ;-slz) Hepy, Oxp = 16 B

More about those special grids and other block-systems and their global elastic behav-
iour is written in [4] and [5]. The present paper is to point out that the concept of high
bending stiffness and relatively low shear stiffness leads to remarkable effects of Cosserat
media also in the inelastic case.

2. The inelastic behaviour of frictionless (sliding) blocks

The system of blocks in Fig. 5 can be a model for problems of rock mechanics. It
consists of blocks (in experiments wooden and with smooth surfaces) and two lines of
gaps or clefts which in nature can be filled with mud. Hence, in the presence of water,
an almost frictionless statical state will appear. In the experiments this is approximately
realized by pushing on the table or by vibrations.

Under the action of their weight the blocks are pressed together. Hence relative rota-
tions of neighbouring blocks across lines of type 2 are impossible, whereas they are allowed
at lines of type 1 in the experiments because of the curved surface of the blocks at their
left side. According to these conditions, o,, and u,. at lines of type 1 and o, at lines of
type 2 must vanish, whereas ¢,, and ¢,, can exist but must be negative. The couple stress
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F1G. 5. System of blocks.

Uy can exist but it is bounded because it is derived from the same normal force N a: o,,,
and N cannot act outside the block:

)
@.1) ] < = O

If |u,;| reaches the limit value, the gap will open: the neighbouring blocks can start to
rotate against each other.

3. The simple block system

3.1. The “classical” approach

As mentioned above, o, = 0 and ¢, = 0 are given; shear stresses vanish in directions
other than 90° against each other. Hence, by Mohr’s circle it can be seen that shear stresses
vanish completely, o,, = o,, has to be fulfilled everywhere.

At the right boundary of the field, o,, = 0 has to be satisfied and o,, = 0 at the upper
surface. The equations of equilibrium reduce by o, = 0,, = 0 to

00xx 9oy,
Tx =0 and —-ay =y

(y = specific weight) and yield

0, =0 and o, =7ypy.

This is in contradiction to o,, = 0,,. If the system behaved like a “classical” medium,
it would break down completely. But the experiments (and intuition) show that the system
is stable. Hence the “classical” approach is obviously wrong.

3.2. Relations between stresses in the Cosserat continuum

The virtual work éw of Eq. (1.2) can be expressed by N,, N,, M,, d4u,, ddu,, dAy,
(see Fig. 6) acting in the “typical volume” bhlcose where b is the thickness of a block:

blhcosadw = — N, 0Auy — N»ddu, + M, 3y,



INELASTIC BEHAVIOUR OF PLANE FRICTIONLESS BLOCK-SYSTEMS 607

o
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F1G. 6. Basic statical and kinematical properties: a) Forces and torques acting upon a block, b) Position
of blocks No 0, 1, 2 in the undeformed state and virtual displacements of block 0, ¢) Definition of relative
virtual displacements.

with
I / ;
0Au, = (Ougy — dugg)cosoa— || duyy — 5 oy | — | Buo + 5 Oy, | |sina

etc. Hence the variations d4u,, d4u, and 84y, can be approximated by

84u; = I(dygecosa— dyesina),
3.1 0Au, = h(dynucosa+ dyyesina),

8y, = h(bx;,cosa+ dugesine).
The relations (3.1) and (1.2) inserted in Eq. (2.1) yield because of the independence of
6}’&5’ 6”Ea;

N, N. N, N.
Oy = — _bfl_’ gy = _T;_’ gy = ( th = —b—lz)tana, Ope = 0,
(3.2) o y
Hee = Wz*ta““, B = 3[1

The application of the transformation laws yields
N; N,

Oxx = Oyy =

—

N, N
g =0 "u—(*gz“w)ta”“’

M,
Mxz = 0, Myz = —b!—/COSa.

3.3)

As was assumed above, o, = 0, = u,, = 0 comes out by this theory, too. The normal
forces N,, N, can never be negative and |M,| cannot exceed —1/2 N,I. Hence we can
derive from Egs. (3.2) and (3.3) with these conditions:

3.4) Oty = (Ogy—ogetana), o0,, = (0 —0y)tana = —ag,,
‘ Oge = Oxx,s Opn = Oyy, Opg = Oxy = Mxz = 0
and
/ /
(35) e < 0, Iy,,;;l+ "2L0',m = f,uyz[cosa+ Tayy < 0.

These relations have to be satisfied in every admissible stress field.
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3.3. An admissible stress field

The boundary conditions for an admissible stress field are (cf. Fig. 7):
I) o, = ps; = 0 (valid by the relations (3.3));

1) o, = 0, = u,, = 0: here no stresses appear at all;

III) Oxy = Mxz = Oxx = 0; -

IV) no restriction.

A o
= >
/%’@/

With o,, = o, = 0 the equations of equilibrium reduce to

00 00,
(3.6) =T 5
do,, _
(3.7) =7
or
(3.8) %’g—‘ = ysina,
3.9 S + dom _ cosa
and
Opge | Optn:
il -0
(3.10) GF + o + gy
or
Oty:
(3.11) g; —0,, = 0.
In connection with the boundary conditions, Egs. (3.7) and (3.8) yield
(3.12) Ty =Py
and
B e B fvy in /,
(3.13) Oge = 0xx = gsina(§—£&o(n)) = Vo i 2,

Fi1G. 7. Zones and boundaries of the field.
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hence also
0 in I,
Ty = {Plx—Cpr V0L = y(xtana—y)tane in 2,
and
0. in 1,
FE = = —;-yt.'cmcz(y—xtanoz)2 in 2.
With y = —|y| < 0, the second condition (3.5) yields
sina(y—xtana)® < Iy|.
With increasing ¢, (see Fig. 7), the first failure will occur at y = —1,, x = 0; hence,
(3.14) to < Ifsing

denotes an upper bound for the depth of admissible stress fields of this type. In experiments
| = 2h and tane = 1/2 were given and these values lead to

(3.15) to < 2/ 5h = 4,472h.

The experiments show that the system with 4 blocks at the right side is stable; at 5 or at
least at 6 blocks the right column of blocks begins to rotate combined with sliding. This
is in complete agreement with the relation (3.15).

3.4. Kinematical conditions and an admissible velocity field

Equations (3.3) and (3.4) and the condition (3.5) can be rewritten as

(3.16) |y <0  (replacing u,, = 0),

(3.17) 0] <0,

(3.18) [(0y,— 0.)sinacos o+ g, cosa— a,,sin*a)| < 0,
(3.19) 0. <0,

(3.20) 3— |f6y2| cOS 00 + 0, cO82 0t + 0, SIN22 — (04, + 0,,)sinacosa < 0.

In this form they have the structure of usual yield conditions in plasticity. The normallity
rule yields:

from the relation (3.16): i, is arbitrary, what is obviously correct for the experiment;

from the relation (3.17) y,, = dv,/dx—w is arbitrary (also obviously);

from the relation (3.18): in addition to other strain rates ., = @sinaecose, Y, =
= —@sinacosa, Y.y, = @cosa, p,. = —psina with arbitrary ¢ is possible. After trans-
formation' to &, #-coordinates, this allows identically for an additional y, = Z 0,
which is obvious, too;

from the relation (3.19): if o,, = 0 is valid, an additional y,, = O can appear;

from the relation (3.20): if |w,.|cosa+ ; lo,, = 0 is valid, additional %j:— =

"

2 v - ) . 2
= +x - cosa and 3—7; = y =2 0 may occur. This is exactly the kinematical condition

for the opening of the gap between to neighbouring blocks in the y-direction.
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As the final result it can be stated that every velocity field is admissible which satisfies
the following two conditions:

L ey

(3.21) Vyv_yxytana_‘ 2 ‘ cos o [

. . l . .
Vi T Pystana— 5 [#ey —#cetana] = 0
and

Pax T Vxptana = yege—ypetana = 0.

Using the velocity components u, v in the x, y-directions or U, V in the &, n-directions,
the conditions (3.21) read:

v du / 3w'

R Bt t = Sl I

ay (5)/ +w) an 2cosa | Oy | .
Or

v v [ é0 oo |

| —_ —— —o]t —_— e ———1 =0
(3.22) n +(¢9§ m) ano— %n oE anocj _
and

du du oU av
N e >0 —_— == > 0.
ox +(8y +w)tana or 7E (86 w)tanoc

‘One admissible field with velocity jumps at the boundaries I and II of Fig. 8 and valid
in the shadowed area is

w = —§ = const < 0,
(3.23) u=u(x) = 2(x+Ax)tanax,

1

] 2
v =20 —z—a)-s-a——k(er/lx)tan a—tana(y+dy—xtana).

er

| B

I =
~ A

7/

74
/ I
.L_._ﬂx_ FiG. 8. Area of definition of the velocity field.

4. Upper and lower bound theorems

If the normality rule can be applied, also the different forms of upper and lower bound
theorems should have sense. These make use of the fact that the external power of any
external force F* belonging to an internal stress field %, with an arbitrary velocity field
v**, is equal to the inner power of the stresses 6* combined with the strain rates #** which
are compatible with the velocity field v**

Pex(F*s T)**) == Pin(o*: 7**)
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From the normality rule and from the uniqueness of the material behaviour, the inequal-
ities (" denoting “true” values)

Pin(0. ) < Pip(3,7)  and  Pio(0(»), ¥) = Prao(, )

can be derivAed. Furthermore, in the case of the sliding blocks, it is obvious that P;,(a (), )
and P;,(o, 7) vanish; hence the remaining relations are in the best applicable form:

(4.1)  lower bound theorem: Py (F,v) = Pi,(o, ;‘\,) <0,
(4.2)  upper bound theorem: P,x(ﬁ' ,v) £ 0.

These relations need an interpretation:

RELATION (4.1)

F can stand for a set of given external forces to an arbitrary admissible stress field,
v stands for one of the numerous admissible velocity fields describing all possible real
motions. If the combination yields P“(F v) < 0 for each of those fields o, the forces F
cannot mduce motion at all. If P..(F, ) = 0 can be reached in a approprlate combmatlon
also P;,(o, y) and hence the local Py, (o, y) vanishes. Therefore, then F, o, 2, and y form
“the” quasi-static solution. Hence:

SENTENCE A

If a (statically) admissible stress field exists for given (!) external forces, it belongs
to a quasi-statical solution or cannot induce motion at all. Accelerations are then impossible.

RELATION (4.2)

SENTENCE B N

If an admissible velocity-field 2 induces ch(f;, v) > 0 with given external forces F,

there does not exist any quasi-static solution with these cxternal forces. Accelarations
will then occur.

The application of these sentences with respect to the stress field of Sect. 3.3 and the
velocity field (3.23) produces:

SENTENCE A. As long as ¢, is not t}igher than //sin«, the system is not unstable.
SENTENCE B. The external forces F are the specific weight y in the y-direction. Hence
P (F,v) is in this case

i A
ch(ﬁ', ?) = bjf—yfudxdy.
The result of the integration over the shadowed area of Fig. 8 is

P,x(f?.v) —Qbyz'A [Ay(l /_Tysmoc)+~Axltana]

If Ax tends to zero,

Ay =ty < I/sinx
IS necessary.

As a conclusion: t; = I/sina is at the same time the upper and the lower bound of
the possible depth #,. This is in best agreement with experiments (cf. the photos of Fig. 9).
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FiG. 9. Experiment with the simple block system a) 1, < 4.5h: stable, b) t, > 4.5h: rotation.

5. A less trivial problem

5.1. The problem and the classical approach

In the second example of this paper, the field is filled with blocks of the same type
as in Sect. 3. But with the help of several half-blocks the new structure of Fig. 10a is put
together. In this case only o, = 0 is obvious in the absence of friction. Within the classical
approach this implies og, = 0. Hence then only oz and o,, exist, but they may be different.

The statical boundary-conditions at I, II, III of Fig. 10b are

FiG. 10. A less trivial problem: a) structure, b) geometrical definitions.
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) o0p=0,=0 - O =0y =0,
I oy,=0,,=0 = O = Oy =
1 o, =0 = O = Oy,
The equations of equilibrium yield
00g/0E = psina — gz = ... < 0 (this is 0.k.)

and
00,,[dn = ycosa = 0,,(B) = 0,,(4)+Lycosa  (Fig. 10b).

The second result is in contradiction to the boundary condition at A and B. Hence there
cannot exist any stable “classical” solution if lines as A — B belong to the field.

Fic. 11. Bound for classical solutions.

Systems like that of Fig. 11 with § > « can have a “stable” classical solution. But
experiments show that the system of Fig. 10 is also stable.
Hence the steps of Sect. 3 will now be repeated for the second system.

5.2. Conditions for the stresses

Each block of the field has in this case three pairs of neighbouring blocks, and N,
N,, N, as well as M,, M, exist. These forces and moments are bounded by the conditions

4 4

(5.1 N, =20, N;=2 J IM,|, N;= I—iMs[.
The application of the virtual work theorem now yields:

1 Ox 1 Oy

N.l = —Ug&bh, N.?, = — 2 Uﬂﬂb[_ Esyu—bh, N3 = —«2~ Grmbl+ cagy_a_bh’
(5.2)
1 1
M, = 5 Wbl + bl My = 5 M bl — . bl

The other stresses in &, y-coordinates can always be computed by
5 3 _— O o O'.X)' o = I[lX: >
(5.3) Og =0, o4 =—3- + (o —Os)tanz, e = = + pgstana.

For the further description. s and # are introduced according to Fig. 13, and the following
abbreviations are defined:

o
(5.4) ;ﬁ =Py, ou= -0V, =Dy, Mg=4qy.
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7

7
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& ]
= 7
50
Fic. 12. Numbers of blocks. F16. 13. Introduction of s, r-coordinates.
The equations . of equilibrium yield first
(5.5) oge = —(s—s5.(2))ysine < 0
with '
t/sing in [,
(.6) Yl = 0 in 2.
The other equations of equilibrium can then be written as
(5.7
ap aq . .
=t = —P—Qsina+(s—s,(1))sin?a,
whereas the remaining conditions (5.1) are
/ }

(5.8) lg+Hp| = 7(Q+HP) and  |g—Hp| < - (Q-HP)
with
(5.9) H = 24/l

On the boundaries I, II, and III (cf. Fig. 13) the following conditions have to be satisfied:

) p=FP=04=0,
(5.10) II) g+psina = Q+Psine = g = 0,
I p=P=0.

5.3. Admissible stress fields

A first stress field satisfying Eqs. (5.7) and (5.10) is that of Sect. 3. It has to be rewritten

as

0 in 1,

1 P=p=0, = t4ssina, = 1 . .
(.11} 4 Q hasm 9 —5-t231na in 2.
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The conditions (5.8) reduce to one: f; t3sine < i (t+ssine), hence:

(5.12) t < Ilf/(2sina).

This limit for z has only half the value of the relation (3.14) for the other example. But
experiments show that higher limits of 7 should be possible. In this sense the limit of the
relation (5.12) is a correct lower bound for admissible values of #,, but it is not satisfactory..

In the opposite to Sect. 3, here possibilities for an optimization of the limiting value
exist because 4 fields of stress-variables (P, Q, p, ¢) are to be chosen and are governed by
two equations (5.7) and two conditions (5.8) only. No numerical optimization procedures.
have been applied until now, but a better stress field has been found intuitively basing.
on experimental facts.

The computed field is admissible for s, = 3.5, t, = 50/(2 sinx), H = 1, and tana =
= ]/2. These values are chosen in connection with the experiments. The field consists.

Fi1G. 14. Regions of the stress-field.

of four parts (cf. Fig. 14): In three of them p and g vanish, only in 4 these quantities
differ from zero

I: P=0, Q=t+ssina,
2: P=s5—59, Q= (so—scos?a)/sina,
3: P=sy—s—2tsina,

Q = 21—sofsina+s(1/sina+sina),
4 s,(t):= so(1—1/ty),

1
P = = (ol =1}
Q = (4sino)™! {so/s,(t) —5,(t)} +ssine,

p =25 (1= {[-2(1+0)+e(1+30) TI =)~ T(1 —¢)?},

¢ =Y 1q0-p0-0-2,

where ¢ = 1—1/t, and » = s/s,(¢). T is chosen as T = 0.86. As it can easily be verified,
Egs. (5.7) and the conditions of transition are satisfied; moreover, the condition (5.8)
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in 1, 2 and 3 can be proved trivially, but in region 4 the proof of the conditions (5.8) is
troublesome, nevertheless, it is possible.

The most surprising fact of this stress field is that it contains a single force acting at
A (cf. Fig. 14). Further on, jumps of stresses along line 4 — B appear. The fields of P, Q
and the quotients

Wi,» = (g Hp)[(Q + HP)

are plotted in Fig. 15.

Fi1G. 15. An admissible stress-field, plots: a) P, b) Q, ¢) w, d) w,.

From this field a new limiting value for ¢, can be derived:

So ]/-5— 7 V- 7 =
< = L = =i = — =] " .
o< 5o — 5 S0 =41 5l 5 5h = 7.826h
This is, however, also only a lower bound for this limiting value which, according to the

experiments, should be nearer to 10A.

5.4. Kinematical conditions and bounds
The kinematical conditions corresponding to the conditions (3.21) are now

Ves—Vpetana 2 0
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and
y : : / ; ; :
H(yp+pnetana) £ype 2 o (g t3egetane) £ o]

These conditions are satisfied by the following velocity field defined in the shadowed areas
of Fig. 16 and containing admissible jumps of the velocities along the boundaries I and II.

So-2h/1

S0

FIG. 16, Zones of the second velocity field.

The angular velocity is assumed to be negative and constant:

w = —§ = const,
the velocities U and V are

U= Qlana{—i -(to—t)sinoc+sg(t)=,

V = Q{i—(to—t)sina—(—s},
where s,(¢) is
(1) = 51,1 (t,—t) in 1,
So n 2.
For the computation of P,X(IE, v), the component v is needed:
Ry

cosa | 4

—(to— r)sinoc+scoszoc+sg(r)sin2a} :

The integration of P“(I;, o) has the result

. b0 | L, L
Pu(F o) = — o [soto—iso(l—smoz)l——z-sotosma

1 I 1 _
+ ?Séfo+s3 [—2~ sino—— (l+sm2a)]} <0.

4 Arch. Mech. Stos. nr 6/85
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It has—ash it is necessary — a negative value for s, = #, and 2h/l = 1. The limiting
value P.(F,v) = 0 is reached for

o _ L (1L _’_)
§p  sina i

45,
1 ' 2 . 2 ., . .
+ '/(7+E) +sin o= sina— - sin oc+4—sosma(l—sma)}.

For I/(4s,) = 1/14 and tane = 1/2, this upper limit for 1, is:
to < 2.1470s, = 15.03h.
As the final result for the problem of this chapter, it can be stated that systems are stable
if and only if #, < #;, is valid and that this limiting value has to be in the range of
7.826h < t;, < 15.03A,

Fi1G. 17. Experiments with the less trivial system: a) 7, = 104: undeformed (with friction), b) ro = 10A:
after “deformation” (overstressed by additional loads), c) single force at the right corner: A lot of blocks
can be put out.

The experiments (see the photos of Fig. 17) show that the real value of #;,, lies near 10 A.
That the range in which 7, can vary theoretically is not smaller, follows from the fact
that no optimization procedures have been applied up to now. The solutions will have
to be improved in this direction in the future.

If the fact that half-blocks appear is better taken into account also in the upper bound
calculations, the final result is

7.826h < ti, < 13.18h.

6. Conclusions

It has been shown that the global behaviour of special systems of frictionless blocks
cannot be described properly by a classical approach. But these systems being models
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for possible formations of rocks with clefts are described very well by means of Cosserat
continua.

The application of upper and lower bound theorems derived here, leads in one simple
example to a definite value of a limit for the height of a step in the landscape which is
in best agreement with the result of appropriate experiments. In a less trivial problem,
this limit can only be bounded in a relatively wide range. Here numerical optimization
procedures have to be applied in the future in order to reach better bounds.
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