401.

A NOTATION OF THE POINTS AND LINES IN PASCAL'S THEOREM.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. Ix. (1868), pp. 268-274.]
Taking six points $1,2,3,4,5,6$ on a conic ; let $A, B, C, D, E, F, G, H, I, J, K, L, M, N, O$ denote each a combination of three lines, thus

$|$| $12.34 .56=A$ | $12.35 .64=F$ | $12.36 .45=K$ |
| :--- | :--- | :--- |
| $13.45 .62=B$ | $13.46 .25=G$ | $13.42 .56=L$ |
| $14.56 .23=C$ | $14.52 .36=H$ | $14.53 .62=M$ |
| $15.62 .34=D$ | $15.63 .42=I$ | $15.64 .23=N$ |
| $16.23 .45=E$ | $16.24 .53=J$ | $16.25 .34=O$ |

then any hexagon formed with the six points may be represented by a combination of some two of the letters $A, B, \& c$., viz. the three alternate sides are the lines represented by one letter, and the other three alternate sides the lines represented by the other letter: for example, the hexagon 123456 is $A E$; and so for the other hexagons. Any duad $A E$ thus representing a hexagon may be termed a hexagonal duad; the number of such duads is sixty. Each Pascalian line may be denoted by the symbol of the hexagon to which it belongs; thus, the line which belongs to the hexagon $A E$, is the line $A E$.

I form the following combinations:
IMO. DHJ each involving all the duads 12 , \&c. except those of 123.456 , DEG.BNO " " \quad " 124.356,
ELM.BCJ

$"$	$"$	$"$	$125 \cdot 346$,
$"$	$"$	$"$	$126 \cdot 345$,
$"$	$"$	$"$	$134 \cdot 256$,
$"$	$"$	$"$	$135 \cdot 246$,
$"$	$"$	$"$	$136 \cdot 245$,
$"$	$"$	$"$	145.236,
$"$	$"$	$"$	$146 \cdot 235$,
$"$	$"$	$"$	$156 \cdot 234$,

and also the combinations:
AEGMI involving all the duads 12,13 , \&c.,

ABHJN	$"$	$"$
BCFIO	$"$	$"$
CDGJK	$"$	$"$
DEFHL	$"$	$"$
KLMNO	$"$	$"$

which I call respectively the ten-partite and six-partite arrangements. It is to be remarked that (considering IMO.DHJ as standing for the six duads IM, IO, MO $D H, D J, H J$, and so for the others) the ten-partite arrangement contains all the sixty hexagonal duads: and in like manner, (considering $A E G M I$ as standing for the ten duads $A E, A G, A M, A I, E G, E M, E I, G M, G I, M I$, and so for the others) the six-partite arrangement contains all the sixty hexagonal duads.

The 60 Pascalian lines intersect by 4's in the 45 Pascalian points p, by 3 's in 20 points g and in 60 points h, and by 2's in 90 points $m, 360$ points $r, 360$ points t, 360 points z, and 9 points w.

The intersections of the Pascalian lines thus are

$45 p$	counting	as	270
$20 g$	$"$	$"$	60
$60 h$	$"$	$"$	180
$90 m$	$"$	$"$	90
$360 r$	$"$	$"$	360
$360 t$	$"$	$"$	360
$360 z$	$"$	$"$	360
$90 w$	$"$	$"$	$\frac{90}{1770}=\frac{1}{2} 60.59$,

and the intersections on each Pascalian line are

$3 p$	counting	as	9
$1 g$	$"$	$"$	2
$3 h$	$"$	$"$	6
$3 m$	$"$	$"$	3
$12 r$	$"$	$"$	12
$12 t$	$"$	$"$	12
$12 z$	$"$	$"$	12
$3 w$	$"$	$"$	$\frac{3}{59}$

For the ten-partite arrangement, any double triad such as $A B I . D K L$ gives 15 intersections; $10 \times 15=150$; and any pair of double triads such as $A B I . D K L$ and AEH. CKO gives 36 intersections; $45 \times 36=1620$; and these are

$$
\begin{aligned}
& 10 \times \begin{cases}6 g & 60 g \\
9 m & 90 m\end{cases} \\
& 45 \times \begin{cases}6 p & 270 p \\
4 h & 180 h \\
8 r & 360 r \\
8 t & 360 t \\
8 z & 360 z \\
2 w & 90 w \\
-36 & \frac{1620}{1770}\end{cases}
\end{aligned}
$$

For the six-partite arrangement any pentad such as $A B H J N$ gives 45 intersections; $6 \times 45=270$; and any two pentads such as $A B H J N$ and $A E G M I$ give 100 intersections; $15 \times 100=1500$; and these are

$$
\begin{gathered}
6 \times \begin{cases}30 h \\
15 m\end{cases} \\
\hline 15 \times \begin{cases}450 h \\
4 g & -60 g \\
18 p & 270 p \\
24 r \\
24 t & 360 r \\
24 z & 360 t \\
6 w & 360 z \\
-100 & \frac{90 w}{1500}\end{cases} \\
\end{gathered}
$$

I analyse the intersections of a Pascalian line, say $A E$, by the remaining 59 Pascalian lines as follows:

Observe that $A E$ belongs to the triad $A E H$, the complementary triad whereof is $C K O$; it also belongs to the pentad $A E I M G$. We thus obtain, corresponding to $A E$, the arrangement

		H		
H	H	H		
H	A	B	N	J
H	E	F	L	D
		I	M	G
		K	C	O

viz. $H A B N J$, is the pentad which contains $H A$, the arrangement of the last three letters B, N, J thereof being arbitrary; $H E F L D$ is the pentad that contains $H E$, but the last three letters are so arranged that the columns $H B F, H N L, H J D$ are each of them a triad, $I M G$ is then the residue of the pentad $A E I M G$, and $K C O$ is the complementary triad to $A E H$, but the arrangement of the letters $I M G$, and of the letters $K C O$, are each of them determinate; viz. these are such that we have BFICO, NLMKO, JDGCK, each of them a pentad.

And this being so we derive from the arrangement

```
2g AH,EH;
3m KC, KO, CO;
6h AI, AM, AG;EI, EM, EG;
12z IB,IF,MN,ML,GI, GD;HB,HF,HN,HL,HJ,HD;
    9p AB,AN,AJ;EF,EL,ED;BF,NL,JD;
1 2 r ~ C B , C F , C J , C D ; O B , O F , O N , O L ; K N , K L , K J , K D ;
12t FL,FD,LD;BN,BJ,NJ;IC,IO;MK,MO;GK,GC;
3w IM,IG,MG;
```

$\stackrel{-}{5} 9$
viz. the line $A E$ in question meets $A H, E H$ each of them in a point $g ; K C, K O, C O$ each in a point m; and so on. By constructing in the same way an arrangement for each of the lines $A H$, \&c., we find the nature of the point of intersection of any two of the lines $A B, A E, A H$, \&c.; and we may then present the results in a table (see Plate), which shows at a glance what is the point of intersection (whether a point g, m, h, z, p, r, t, or w) of any two of the Pascalian lines.

I further remark that representing the 45 Pascalian points as follows:

$12.34=a$	$13.24=g$	$14.23=m$	$15.23=s$	$16.23=y$
$12.35=b$	$13.25=h$	$14.25=n$	$15.24=t$	$16.24=z$
$12.36=c$	$13.26=i$	$14.26=o$	$15.26=u$	$16.25=\alpha$
$12.45=d$	$13.45=j$	$14.35=p$	$15.34=v$	$16.34=\beta$
$12.46=e$	$13.46=k$	$14.36=q$	$15.36=w$	$16.35=\gamma$
$12.56=f$	$13.56=l$	$14.56=r$	$15.46=x$	$16.45=\delta$
$23.45=\epsilon$	$25.34=\lambda$	$34.56=\rho$		
$23.46=\zeta$	$25.36=\mu$	$35.46=\sigma$		
$23.56=\eta$	$25.46=\nu$	$36.45=\tau$		
$24.35=\theta$	$26.34=\xi$			
$24.36=\iota$	$26.35=\omega$			
$24.56=\kappa$	$26.45=\pi$			

$A E$	123456	12.4523 .5634 .61	$d \eta \beta$
AH	125634	12.6325 .3456 .41	$c \lambda r$
EH	145236	$14.23 \quad 45.36 \quad 52.61$	$m \tau \alpha$
CK	123654	12.6523 .5446 .41	feq
CO	143256	14.25 43.5632 .61	$n \rho y$
KO	125436	$12.43 \quad 25.3654 .61$	$a \mu \delta$
$A M$	126534	12.5326 .3465 .41	$b \xi r$
$A G$	125643	12.6425 .4356 .31	$e \lambda l$
$A I$	124365	12.3624 .6543 .51	скv
$E G$	132546	13.5432 .4625 .61	j¢ α
$D F$	126435	12.4326 .3564 .51	$a \omega x$
$F L$	124653	12.6524 .5346 .31	$f \theta k$
DL	134265	13.2634 .6542 .51	$i \rho t$
$B N$	132645	13.6432 .4526 .51	$k \in u$
$B J$	135426	13.4235 .2654 .61	$g \omega \delta$
$J N$	153246	15.2453 .4632 .61	$t \sigma y$
$G K$	125463	$12.4625 .63 \quad 54.31$	$e \mu j$
$K M$	126354	$12.3526 .54 _63.41$	$b \pi q$
IO	152436	$15.43 \quad 52.36 \quad 24.61$	$v \mu z$
MO	143526	$14.5243 .26 \quad 35.61$	$n \xi \gamma$
$E M$	145326	14.3245 .2653 .61	$m \pi \gamma$
$E I$	154236	$15.23 \quad 54.36 \quad 42.61$	stz
$A N$	123465	12.4623 .6534 .51	$e \eta v$
$A J$	124356	$12.35 \quad 24.5643 .61$	$b_{\kappa} \beta$
$A B$	126543	12.5426 .4365 .31	$d \zeta l$
$D E$	154326	15.3254 .2643 .61	$s \pi \beta$
$E L$	132456	$13.45 \quad 32.56 \quad 24.61$	$j \eta z$
$E F$	123546	12.5423 .4635 .61	$d \zeta \gamma$
$C D$	143265	$14.2643 .65 \quad 32.51$	ops
$C F$	123564	12.5623 .6435 .41	$f \zeta p$

$C G$	132564	13.56	32.64	25.41	$l \zeta n$
CI	142365	14.36	42.65	23.51	$q \kappa s$
$M N$	146235	14.23	46.35	62.51	$m \sigma u$
$G J$	135246	13.24	35.46	52.61	$g \sigma \alpha$
BI	136245	13.24	36.45	62.51	$g \tau u$
$D G$	134625	13.62	34.25	46.51	$i \lambda x$
LM	135624	13.62	35.24	56.41	$i \theta r$
FI	124635	12.63	24.35	46.51	$c \theta x$
BH	136254 ,	13.25	36.54	62.41	hтo
FH	125364	12.36	25.64	53.41	$c \nu p$
FO	125346	. 12.34	25.46	53.61	$a_{\nu} \gamma$
LO	134256	13.25	34.56	42.61	$h \rho z$
DK	126345	12.34	26.45	63.51	$a \pi w$
$K L$	124563	12.56	24.63	45.31	$f \iota j$
BO	134526	13.52	34.26	45.61	$h \xi \delta$
NO	152346	15.34	52.46	23.61	$v \nu y$
$B C$	132654	13.65	32.54	26.41	$l e o$
CJ	142356	14.35	42.56	23.61	$р к у$
$J K$	124536	12.53	24.36	45.61	$b \iota \delta$
KN	123645	12.64	23.45	36.51	$e \epsilon w$
DH	143625	14.62	43.25	36.51	o入 w
HJ	142536	14.53	42.36	25.61	$p \iota \alpha$
$H L$	136524	13.52	36.24	65.41	hır
HN	146325	14.32	46.25	63.51	$m \nu w$
$B F$	126453	12.46	26.53	64.31	$d \omega k$
DJ	153426	15.42	53.26	34.61	$t \omega \beta$
LN	132465	13.46	32.65	24.51	$k \eta t$
$G M$	135264	13.26	35.64	52.41	$i \sigma n$
$I M$	142635	14.63	42.35	26.51	$q \theta u$
$G I$	136425	13.42	36.25	64.51	$g \mu x$

C. VI.

Each Pascalian point belongs to four different hexagons; viz. a to the hexagons $K D, K O, F D, F O$; and so for the other points, thus:

a	$(K, F)(D, O)$	$x(D, I)(F, G)$
b	$(A, K)(M, J)$	$y(C, N)(J, O)$
c	$(A, F)(H, I)$	$z(E, O)(I, L)$
d	$(A, F)(B, E)$	$\alpha(E, J)(G, H)$
e	$(A, K)(G, N)$	$\beta(A, D)(E, J)$
f	$(C, L)(K, F)$	$\gamma(E, O)(F, M)$
g	$(B, G)(I, J)$	$\delta(B, K)(J, O)$
h	$(B, L)(H, O)$	$\epsilon(B, K)(C, N)$
i	$(D, M)(G, L)$	$\zeta(C, E)(F, G)$
j	$(E, K)(G, L)$	$\eta(A, L)(E, N)$
k	$(B, L)(F, N)$	$\theta(F, M)(I, L)$
l	$(A, C)(B, G)$	$\ddots(H, K)(J, L)$
m	$(E, N)(H, M)$	$\kappa(A, C)(I, J)$
n	$(C, M)(G, O)$	$\lambda(A, D)(G, H)$
o	$(B, D)(C, H)$	$\mu(G, O)(I, K)$
p	$(C, H)(F, J)$	$\nu(F, N)(H, O)$
q	$(C, M)(I, K)$	$\xi(A, O)(B, M)$
r	$(A, L)(H, M)$	$\omega(B, D)(F, J)$
s	$(C, E)(D, I)$	$\pi(D, M)(E, K)$
t	$(J, L)(D, N)$	$\rho(C, L)(D, O)$
u	$(B, M)(I, N)$	$\sigma(G, N)(J, M)$
v	$(A, O)(N, I)$	$\tau(B, E)(H, I)$
w	$(D, N)(H, K)$	

I have constructed on a very large scale a figure of the sixty Pascalian lines, and the forty-five Pascalian points, marking them according to the foregoing notation; but the figure is from its complexity, and the inconvenient way in which the points are either crowded together or fly off to a great distance, almost unintelligible.

