401.

A NOTATION OF THE POINTS AND LINES IN PASCAL'S THEOREM.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. IX. (1868), pp. 268-274.]

TAKING six points 1, 2, 3, 4, 5, 6 on a conic; let A, B, C, D, E, F, G, H, I, J, K, L, M, N, O denote each a combination of three lines, thus

12.34.56 = A	12.35.64 = F	12.36.45 = K
13.45.62 = B	13.46.25 = G	13.42.56 = L
14.56.23 = C	14.52.36 = H	14.53.62 = M
15.62.34 = D	15.63.42 = I	15.64.23 = N
16.23.45 = E	16.24.53 = J	16.25.34 = 0

then any hexagon formed with the six points may be represented by a combination of some two of the letters A, B, &c., viz. the three alternate sides are the lines represented by one letter, and the other three alternate sides the lines represented by the other letter: for example, the hexagon 123456 is AE; and so for the other hexagons. Any duad AE thus representing a hexagon may be termed a hexagonal duad; the number of such duads is sixty. Each Pascalian line may be denoted by the symbol of the hexagon to which it belongs; thus, the line which belongs to the hexagon AE, is the line AE.

I form the following combinations:

IMO.DHJ	each involving all	the duads 12,	&c. except those	e of 123.456,
DEG.BNO	>>	>>	"	124.356,
ELM.BCJ	"	>>	"	125.346,
HLN.CGI))	, ,,	33	126.345,
EFI.JKN	>>	"	"	134.256,
AEH.CKO	"	"	"	135.246,
AMN.CDF	"	33	"	136.245,
AGJ.ELO	>>	22	"	145.236,
ABI.DKL	>>	23	"	146.235,
GKM.BFH	>>	>>	>>	156.234,

401] A NOTATION OF THE POINTS AND LINES IN PASCAL'S THEOREM. 117

and also the combinations:

AEGMI	involving all	the duads	12, 13, &c.,
ABHJN))	3)	
BCFIO	"	"	
CDGJK	"	22	
DEFHL		"	
KLMNO	× 081 "		

which I call respectively the ten-partite and six-partite arrangements. It is to be remarked that (considering IMO.DHJ as standing for the six duads IM, IO, MODH, DJ, HJ, and so for the others) the ten-partite arrangement contains all the sixty hexagonal duads: and in like manner, (considering AEGMI as standing for the ten duads AE, AG, AM, AI, EG, EM, EI, GM, GI, MI, and so for the others) the sixty hexagonal duads.

The 60 Pascalian lines intersect by 4's in the 45 Pascalian points p, by 3's in 20 points g and in 60 points h, and by 2's in 90 points m, 360 points r, 360 points t, 360 points z, and 9 points w.

The intersections of the Pascalian lines thus are

45 p	counting	g as	s 270	
20 g	"	"	60	
60 h	>>	>>	180	
90 m	>>	"	90	
360 r	"	,,	360	
360 t	"	"	360	
360 z	>>	"	360	20 = 4 -
90 w	"	"	90	
			1770 =	$=\frac{1}{2}60.59,$

and the intersections on each Pascalian line are

3 p	counti	ng as	s 9
1 g	"	,,	2
3h	"	"	6
3 m	"	"	3
12 r	"	>>	12
12 t	>>	23	12
12 z	"	,,	12
3 w	"	"	3
			59.

118 A NOTATION OF THE POINTS AND LINES IN PASCAL'S THEOREM. [401

For the ten-partite arrangement, any double triad such as ABI.DKL gives 15 intersections; $10 \times 15 = 150$; and any pair of double triads such as ABI.DKL and AEH.CKO gives 36 intersections; $45 \times 36 = 1620$; and these are

10 ×	$\int 6g$	60 g
10 ×	9 m 	$\frac{90 m}{ 150}$
	(6p	270p
45 × -	4 h	180 h
	8r	360 r
40 X -	8 t	360 t
	8 z	360 z
	2 w	90 w
		1620
		1770.

For the six-partite arrangement any pentad such as ABHJN gives 45 intersections; $6 \times 45 = 270$; and any two pentads such as ABHJN and AEGMI give 100 intersections; $15 \times 100 = 1500$; and these are

6 v	(30 h	$180 \ h$		
$6 \times \begin{cases} 30 \ h \\ 15 \ m \end{cases}$		90 m		
	<u> </u>	270		
	(4 g	60 g		
	18 p	270p		
15 × {	24 r	360 r		
	24 t	360 t		
	24 z	360 z		
	6 w	90 w		
100				
		1770.		

I analyse the intersections of a Pascalian line, say AE, by the remaining 59 Pascalian lines as follows:

Observe that AE belongs to the triad AEH, the complementary triad whereof is CKO; it also belongs to the pentad AEIMG. We thus obtain, corresponding to AE, the arrangement

	Н Н Н
H A	BNJ
H E	FLD
8	I M G
	KCO

401 A NOTATION OF THE POINTS AND LINES IN PASCAL'S THEOREM. 119

viz. HABNJ, is the pentad which contains HA, the arrangement of the last three letters B, N, J thereof being arbitrary; HEFLD is the pentad that contains HE, but the last three letters are so arranged that the columns HBF, HNL, HJD are each of them a triad, IMG is then the residue of the pentad AEIMG, and KCO is the complementary triad to AEH, but the arrangement of the letters IMG, and of the letters KCO, are each of them determinate; viz. these are such that we have BFICO, NLMKO, JDGCK, each of them a pentad.

And this being so we derive from the arrangement

2 g AH, EH;
3 m KC, KO, CO;
6 h AI, AM, AG; EI, EM, EG;
12 z IB, IF, MN, ML, GJ, GD; HB, HF, HN, HL, HJ, HD;
9 p AB, AN, AJ; EF, EL, ED; BF, NL, JD;
12 r CB, CF, CJ, CD; OB, OF, ON, OL; KN, KL, KJ, KD;
12 t FL, FD, LD; BN, BJ, NJ; IC, IO; MK, MO; GK, GC;
3 w IM, IG, MG;

viz. the line AE in question meets AH, EH each of them in a point g; KC, KO, CO each in a point m; and so on. By constructing in the same way an arrangement for each of the lines AH, &c., we find the nature of the point of intersection of any two of the lines AB, AE, AH, &c.; and we may then present the results in a table (see Plate), which shows at a glance what is the point of intersection (whether a point g, m, h, z, p, r, t, or w) of any two of the Pascalian lines.

I further remark that representing the 45 Pascalian points as follows:

12.34 = a	13.24 = g	14.23 = m	15.23 = s	16.23 = y
12.35 = b	13.25 = h	14.25 = n	15.24 = t	16.24 = z
12.36 = c	13.26 = i	14.26 = o	15.26 = u	16.25 = α
12.45 = d	13.45 = j	14.35 = p	15.34 = v	$16.34 = \beta$
12.46 = e	13.46 = k	14.36 = q	15.36 = w	$16.35 = \gamma$
12.56 = f	13.56 = l	14.56 = r	15.46 = x	$16.45 = \delta$
$23.45 = \epsilon$	$25.34 = \lambda$	$34.56 = \rho$		
$23.46 = \zeta$	$25.36 = \mu$	$35.46 = \sigma$		
$23.56 = \eta$	25.46 = v	$36.45 = \tau$		
$24.35 = \theta$	$26.34 = \xi$	1.3beSteaster		
$24.36 = \iota$	$26.35 = \omega$	01/01/032424		
$24.56 = \kappa$	$26.45 = \pi$			

120 A NOTATION OF THE POINTS AND LINES IN PASCAL'S THEOREM. [401

the sixty hexagons and their Pascalian lines then are

AE	123456	$12.45\ 23.56\ 34.61$	$d\eta\beta$
AH	125634	12.63 25.34 56.41	$c\lambda r$
EH	145236	14.23 45.36 52.61	mτα
CK	123654	12.65 23.54 36.41	$f\epsilon q$
CO	143256	$14.25\ 43.56\ 32.61$	npy
KO	125436	$12.43\ 25.36\ 54.61$	αμδ
AM	126534	$12.53\ 26.34\ 65.41$	bξr
AG	125643	$12.64\ 25.43\ 56.31$	exl
AI	124365	$12.36\ 24.65\ 43.51$	ски
EG	132546	13.54 32.46 25.61	jζa
DF	126435	$12.43\ 26.35\ 64.51$	awx
FL	124653	12.65 24.53 46.31	fθk
DL	134265	$13.26\ 34.65\ 42.51$	ipt
BN	132645	13.64 32.45 26.51	keu
BJ	135426	$13.42\ 35.26\ 54.61$	gωδ
JN	153246	$15.24\ 53.46\ 32.61$	tσy
GK	125463	$12.46\ 25.63\ 54.31$	еµј
KM	126354	$12.35\ 26.54\ 63.41$	$b\pi q$
IO	152436	15.43 52.36 24.61	vµz
MO	143526	$14.52\ 43.26\ 35.61$	ηξγ
EM	145326	$14.32\ 45.26\ 53.61$	mπγ
EI	154236	$15.23\ 54.36\ 42.61$	STZ
AN	123465	12.46 23.65 34.51	eŋv
AJ	124356	12.35 24.56 43.61	Ьκβ
AB	126543	$12.54\ 26.43\ 65.31$	$d\zeta l$
DE	154326	15.3254.2643.61	$s\pi\beta$
EL	132456	13.45 32.56 24.61	$j\eta z$
EF	123546	12.54 23.46 35.61	$d\zeta\gamma$
CD	143265	$14.26\ 43.65\ 32.51$	ops
CF	123564	12.56 23.64 35.41	fζp

401]

CG	132564	13.56 32	. 64	25.41	lζn
CI	142365	14.36 42	. 65	23.51	qĸs
MN	146235	14.23 46	. 35	62.51	тσи
GJ	135246	13.24 35	. 46	52.61	gσa
BI	136245	13.24 36	. 45	62.51	gтu
DG	134625	13.62 34	. 25	46.51	ilx
LM	135624	13.62 35	. 24	56.41	iθr
FI	124635	12.63 24	. 35	46.51	cθx
BH	136254	13.25 36	5.54	62.41	hтo
FH	125364	12.36 25	5.64	53.41	cvp
FO	125346	12.34 25	. 46	53.61	ανγ
LO	134256	13.25 34	. 56	42.61	hpz
DK	126345	12.34 26	. 45	63.51	$a\pi w$
KL	124563	12.56 24	. 63	45.31	fıj
BO	134526	13.52 34	. 26	45.61	hξδ
NO	152346	15.34 52	. 46	23.61	vvy
BC	132654	13.65 32	. 54	26.41	leo
CJ	142356	14.35 42	2.56	23.61	рку
JK	124536	12.53 24	. 36	45.61	ыδ
KN	123645	12.64 23	8.45	36.51	eew
DH	143625	14.62 43	3.25	36.51	ολω
HJ	142536	14.53 42	2.36	25.61	рга
HL	136524	13.52 36	3.24	65.41	hır
HN	146325	14.32 46	3.25	63.51	mvw
BF	126453	12.46 26	5.53	64.31	dwk
DJ	153426	15.42 53	3.26	34.61	tωβ
LN	132465	13.46 32	2.65	24.51	kηt
GM	135264	13.26 35	6.64	52.41	iσn
IM	142635	14.63 42	2.35	26.51	$q\theta u$
GI	136425	13.42 36	6.25	64.51	gµx

C. VI.

16

122 A NOTATION OF THE POINTS AND LINES IN PASCAL'S THEOREM. [401

Each Pascalian point belongs to four different hexagons; viz. a to the hexagons KD, KO, FD, FO; and so for the other points, thus:

a	(K, F)(D, O)	20	(D, I)(F, G)
Ъ	(A, K)(M, J)	y	(C, N)(J, 0)
с	(A, F)(H, I)	Z	(E, 0)(I, L)
d	(A, F)(B, E)	α	(E, J)(G, H)
е	(A, K)(G, N)	β	(A, D)(E, J)
f	(C, L)(K, F)	γ	(E, 0)(F, M)
g	(B, G)(I, J)	8	(B, K)(J, 0)
h	(B, L)(H, 0)	e	
i	(D, M)(G, L)	ξ	(C, E)(F, G)
j	(E, K)(G, L)	η	(A, L)(E, N)
k	(B, L)(F, N)	θ	(F, M)(I, L)
l	(A, C)(B, G)	Ŀ	(H, K)(J, L)
m	(E, N)(H, M)	ĸ	(A, C)(I, J)
n	(C, M)(G, 0)	λ	(A, D)(G, H)
0	(B, D)(C, H)		(G, 0)(I, K)
p	(C, H)(F, J)		(F, N)(H, O)
q	(C, M)(I, K)		(A, 0)(B, M)
r	(A, L)(H, M)		(B, D)(F, J)
8	(C, E)(D, I)	- π	(D, M)(E, K)
t	(J, L)(D, N)	ρ	(C, L)(D, 0)
u	(B, M)(I, N)	σ	(G, N)(J, M)
v	(A, 0)(N, I)	τ	(B, E)(H, I)
w	(D, N)(H, K)		

I have constructed on a very large scale a figure of the sixty Pascalian lines, and the forty-five Pascalian points, marking them according to the foregoing notation; but the figure is from its complexity, and the inconvenient way in which the points are either crowded together or fly off to a great distance, almost unintelligible.

www.rcin.org.pl

▲ 通信在工業者 一条例 花堂寺局的建立社会局 持定