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On continuum modeling of the dynamic behavior of layered 
composites 

G. HERRMANN, R. K. KAUL(*), T. J. DELPH (STANFORD) 

A HIERARCHY of new approximate continuum theories to model the dynamic behavior of layered 
composites, termed matched effective stiffness theories, is advanced. In each approximation 
the approximate frequency spectra are matched as closely as possible with the exact spectra, 
and the range of validity of each approximation is ascertained. The procedure followed is con
ceptually not unlike that employed in deriving approximate plate theories. It requires an intimate 
knowledge of exact frequency spectra, together with the associated mode shapes. With the 
example of SH-waves propagating normal to the layering, it is shown that rather simple ap
proximate field equations are capable of describing accurately the important filtering property 
of a composite, which none of the other approximate theories proposed by previous investi
gators were able to do. Similarities to c~rtain ph~nomena in solid state physics are pointed 
out and, finally, an analogy to a system with one degree of freedom is drawn. 

Dokonano znaczneg0 postc~;Ju w doskonaleniu nowych przyblizonych teorii kontynualnych 
zwanych teoriami wyr6wnywanych efektywnych sztywnosci. W kazdej aproksymacji przybli
i:one widma cz~stosci sq dobierane mozliwie jak najblizej widm scislych, a zakres waznosci 
kazdej aproksymacji jest scisle okreslany. D:tlsza procedura jest w koncepcji zblizona do podej
scia, kt6re si~ wykorzystuje przy wyprowadzaniu przyblizonych teorii plyt. Wymaga ona pew
nej znajomosci scislych widm cz~stosci i towarzysz<lcych im postaci drgan. Na przykladzie 
plaskich fal scinania (SH waves) rozprzestrz~niajqcych si~ w kierunku normalnym do uwar
stwienia wykazano, z~ juz dosyc proste przyblii:one r6wnania pola Sq w stanie opis1c popraw
nie wai:nq wlasnosc kompozytu jakq jest filtrowanie, czego zadna z pozostalych teorii przy
blii:onych proponowanych przez poprzednich badaczy nie jest w stanie dokonac. Wskazano 
na podobienstwa do pewnych zjawisk wyst~pujqcych w fizyce ciala stalego, a w koncu poka
zano analogi~ do ukladu z jednym stopniem swobody. 

ITpo~eJlaH 3HaqJ~TeJibH;biH nporpecc B ycoBepmeHCTBOBaHHH HOBLIX, npH6niDKeH;HbiX KOH;
THHyan&HbiX TeOpHH, Ha3biBaeMbiX TCOpHHMH DbipaBHHBaeMbiX 3cPcPCKTHBHbiX >l<eCTKOCTeH. 
B Ka>~<~oH: annpoKCHMau;HH npH6JIIDKeHHLie cneKTpbi qacroT no~6HpaiOTC.fl B03MO>I<H;O caMbiM 
6JIH3KHM o6pa30M K TOl!H;biM cneKTpaM, HH;TCpBaJI >l<e cnpaBe~JIHBOCTH Ka>I<~OH annpoKCH
Mal.l;HH TOtiHO onpe~eJIHeTC.fl. ,UaJibH;eH:maH npou;e~ypa B npHH;u;HITe c6JIH>~<eaa K no~o~y, 
KOTOpbiH HCITOJib3yeTC.fl npH BbiBO~e npH6JIIDKeH;HbiX TCOpHH ITJIHT. Tpe6yeT OH;a H;eKOTOporo 
3H;aH;IDI TOl!H;biX cneKTpOB tiaCTOT H COITYTCTBYJOII.l;HX HM THITOB KOJle6aHHH. Ha npHMepe 
ITJIOCKHX BOJIH C~BHra (SH-BOJIH;bi), pacnpocrpaH;HIOII.l;HXC.fl B H;OpMaJibH;OM H;anpaBJieHHH 
K CJIOHM, ITOKa3aH;o, liTO y>1<e ~OBOJibH;O npOCTbiC ITpH6JIH>I<eH;}lble ypaBaeH;H.fl ITOJI.fl B CO
CTOHH;HH OITHCaTb npaBHJlbHO Ba>I<HOe CBOHCTBO KOMIT03HTa, KaKOM .fiBJl.fleTC.fl cPHJlbTpau;HH, 
a qero H;H O~Ha H3 OCTaJibHbiX npH6JIH>I<eaaLIX TeOpHH, npe~JlO>I<CH;H;biX npe~bi~YII.l;HMH 
Hccne~oBaTeJIHMH, H;e B cocro.HH;HH c~enaT&. YKasaH;LI aH;anorHH c H;eKoTopLIMH HBJleaH.fiMH 
BbiCTynaroll.l;HMH B cPH3HKe TBep~oro Tena, a aaKoH;eu; noKasaHa aaanorHH c CHCTeMoH c o~H;OH 
crenea&ro cBo6o~LI. 

1. Introduction 

IT is by now well recognized that composite materials, such as fiber-reinforced or laminated 
solids, possess several features which make them more attractive for certain structural 
applications than conventional single-phase solids such as steel or aluminum. If linearly 
elastic behavior is assumed, it is conceptually quite straightforward to form ulate the prob-

(*) 1974/75 on leave of absence from the State University of New York, Buffalo, NY 14214. 
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lem of dynamic response of a structural element, such as a beam or a plate, fabricated 
from a composite and subjected to prescribed time-dependent loads. Such a problem could 
be posed as one governed by classical field equations of elasticity, but with variable coef
ficients, to account for different material properties (elastic moduli, mass density) in the 
two materials which make up the composite. Conversely, classical field equations of elas
ticity with constant coefficients within the domain of each material could be used as 
a basis for the analysis, but then at each interface suitable continuity (or jump) conditions 
of traction and displacement would have to be imposed. In spite of the conceptual ease 
with which such problems could be formulated, it becomes very soon quite evident that 
only a very limited class of idealized problems would become analytically tractable on 
the basis of either of the two formulations sketched above. 

Thus, a need arises to construct suitable, effective continuum models of approximate 
nature which would, on one hand, retain some of the essential physical features of the orig
inal system, while, on the other hand, be of sufficient simplicity as to permit analytical 
treatment of initial value problems of bounded bodies. As is outlined in Sect. 2, numerous 
attempts have been made by a variety of authors during the last decade to construct such 
approximate theories to describe the dynamic behavior of composites. Yet, in the view of 
the present authors, no definitive stage of development concerning approximate theories 
has been reached and there is still considerable room for proposing efficient, and in some 
sense optimized, approximate theories. It appears, in fact, that much work in this area is 
devoted to the question as to how to establish an approximate theory, rather than raising 
the question as to what is to be approximated, and to what degree. It is indicated briefly 
in Sect. 3 what the requirements of an approximate theory should or could be, using 
the example of the well-explored dynamic behavior of plates. It is the central thesis of this 
approach that, before attempting any construction of approximate theories, certain fea
tures of the system to be described approximately must be known in detail on the basis 
of an exact treatment, as discussed in Sect. 4 for layered two-phase composites. Similari
ties of this system to the behavior of certain systems of key importance in solid-state phy
sics (e.g. motion of a crystal lattice or motion of an electron through a lattice) are touched 
upon in Sect. 5. With this background, certain simple approximate theories are presented 
in Sect. 6 and compared with other theories. It is found that among all the approximate 
theories proposed, the present one is the only one which is capable of reproducing, within 
a certain range, important phenomena predicted by the exact theory with astonishing 
accuracy, yet retaining relative simplicity as regards the structure of the governing field 
equations and the number of dependent functions involved. Specifically, the characteristic 
filtering property of a periodic composite has not been modeled at all by any of the previous 
approximate continuum theories. 

For the sake of simplicity, attention is confined in the present paper to anti-plane strain 
motions only. 

2. Some earlier work 

A variety of diverse approaches has been taken by numerous investigators to construct 
approximate theories describing the dynamic behavior of composite materials, such as 
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laminated two-phase elastic media. A customary early approach consisted in replacing 
the composite by a homogeneous, but usually anisotropic medium, whose material 
constants are determined in terms of the geometry and in terms of the material properties 
of the constituents of the composite. For a laminated medium the effective elastic 
constants have been computed by PoSTMA[l](l), WHITE and ANGONA [2] and RYTOV [3], 
among others. Theories of this type are termed effective modulus theories. Without 
attempting to provide here a complete survey, some of the other later efforts are 
briefly mentioned in this Section. 

A conceptually different approach was first proposed by HERRMANN and AcHENBACH [4] 
and elaborated upon with regard to its different aspects in several subsequent publications 
[5, 6, 7, 8, 9, 10]. Instead of introducing a representative homogeneous medium by means 
of effective moduli, elastic and geometric properties of individual layers are combined 
into effective sti.ffnesses. By means of a smoothing operation, representative kinetic and 
strain energy densities can be obtained and application of Hamilton's principle yields 
the equations of motion. 

Another approach is based on a generalization of the elementary theory of gas mixtures 
in which the constituents coexist, each exerting its own partial pressure. Examples of this 
approach may be found in the work of BEDFORD and STERN [11, 12]. Extensions have 
been advanced by HEGEMIER et a/ under the name of theories of interacting continua and 
have been laid down in numerous publications [13, 14, 15, 16]. 

Several investigators have proposed continuum theories based on asymptotic expan
sions. As examples of this class of theories, the recent work by BEN-AMOZ [17, 18] and 
BALANIS [19) might be mentioned. 

Other workers have attempted to model the dispersive behavior of harmonic waves 
in composites by means of analogies to other phenomena. The viscoelastic analogy has been 
employed by BARKER [20] and the dielectric analogy by CHRISTENSEN [21]. 

Finally, it might be worth mentioning some investigations where the mathematical 
modeling of a composite as a continuum has been abandoned in favor of at least partially 
discrete theory, as in the papers by CHAO and LEE [22] and NELSON and NAVI [23]. 

Even the partial listing of recent work on approximate mathematical modeling of 
composite materials is indicative of a great variety of attempts to supply an efficient and 
simple theory which is supposed to be useful in solving initial and boundary value problems 
for bonded composite bodies. Yet, it appears that there still is ample room for improve
ment. For example, it is well known that a periodically-layered composite will exhibit 
an important filtering property, as experimentally verified by RoBINSON and LEPPEL
MEIER [24], but so far this phenomenon has not been discussed within the framework of 
an approximate theory. Further, the range of validity and degree of accuracy of the 
approximate and exact frequency spectrum are often times discussed but insufficiently, 
preventing thus a more precise assessment of the capabilities and limitations of 
a given approximate theory. 

(') Numbers in brackets designate References at end of paper. 
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3. Requirements to be imposed on approximate theories 

To assess the requirements which have to be imposed on approximate theories to be 
proposed for two-phase laminated composites, it may be advisable to seek guidance from 
a related but more fully explored problem area such as, for example, the elastic plate 
theory. The subject of waves and vibrations in isotropic and anisotropic plates is concisely 
but rather completely presented in the article by PAo and KAUL [25]. The objective of an 
approximate plate theory is to describe the dynamic behavior in terms of quantities which 
would be functions only of coordinates in the middle plane of the plate, the dependence 
on the coordinate normal to that plane having been eliminated. To achieve this objective 
it is necessary to establish the frequency spectrum on the basis of the exact treatment, as 
given by solutions of the Rayleigh-Lamb frequency equation. Next, a decision has to be 
reached as to the largest frequency or the largest wave number up to which the approxi
mate theory should be valid. In either case, this decision determines a rectangular region 
in the frequency-wave number plane, the lower left-hand corner being the origin. One 
has now to study in detail the spectral lines within the rectangle to be approximated, 
together with associated mode shapes. These mode shapes have to be included approxi
mately in the theory to be constructed. Knowing now what is to be approximated, there 
exists a variety of procedures by which to construct approximate theories. Timoshenko
type beam theories and Mindlin's plate theory may suffice as examples, which can be de
rived themselves in a variety of ways. 

4. Exact treatment 

For the sake of conciseness of presentation, attention will be confined, as mentioned, 
to anti-plane strain motion. With reference to Fig. I, let u be the component of the displace
ment vector parallel to the x-axis and assume it to be of the form 

( ) U( ) 
i(K%Z+Wt) 

u y, z = ye , 

while the other two displacement components vanish. It is noted that u is independent 
of x and thus represents horizontally polarized SH-waves. Floquet's quasi-periodicity 

,}x 
FIG. 1. Laminated medium. 
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across a periodic cell, continuity of stress and displacement at the bonded interfaces be
tween any two layers, together with the displacement equation of motion, lead to the 
dispersion relation(l) 

4ya,B cosn(1 + t)rJ + (ya- {3)2cosn(rx- t,B)- (ya + ,8)2cosn(a + t,B) = 0. 

In this relation the following dimensionless quantities have been introduced: 

y = p,fp/, a2 = p,r//(Jl'e), t = h'/h, 

Q = 2hfn x wf Jl p,/i, 1J = 2hKy/n, C = 2hKzfn 

and 

rx = y!.P - C2' ,8 = y ( aQ)l - C2. 

The dispersion relation is evaluated most conveniently in terms of the dimensionless fre
quency Q as a function of the dimensionless wave numbers 17 and C for given values of the 
ratios y = p,fp,', t = h'fh and a2 .= p,e'f(p,'e). Thus j(Q, rJ, C)= 0 will represent implic
itely a surface which might be thought as having evolved from the conical surface for 

" / 
I 

I 
I 

FIG. 2. Spectral surface for homogeneous body. 

w 

_,.---- ---......... 
' ' \ 

I 

a homogeneous body sketched in Fig. 2, where the parameters y and cJ would have to be 
set equal to unity. 

For a layered composite the surfacej(Q, 17, C) .= 0 is represented qualitatively in Fig. 3. 
It is seen that the surface features a structure given by the Brillouin zones, whose width 
is 2hfd or 1/(1 +t) if d = 2(h+h') and t = h'fh. The surface is single-valued, except at 
theendsoftheBrillouinzones17 = 1/(l+t),rJ = 2/(1+t),1J = 3/(1+t)labeledB1 ,B2 ,B3 , 

respectively. 
For these values of rJ the surface is in general double-valued, except for certain isolated 

values of C. These might be called conical points, or points of coalescence of frequencies 
and their properties are discussed in detail in Ref. [26]. 

A quantitative representation of the surface j(Q, 17, C) = 0 for a2 = 0.06 and t = 0.2 
in terms of projections on the Q -17 plane for various values of C, on the Q-C plane for 

(2) Details of this derivation will be given in a separate forthcoming paper. 

http://rcin.org.pl



410 G. HERRMANN, R. K. KAUL AND T. J. DELPH 
-----------------------------------------

Q 

I 
I 

I 
Bz 

I 
I 

83 

I 
I 

I 

r; 

FIG. 3. Qualit:itive representation of spe~tral surface for laminated medium. 

various values of 'YJ and on the 'YJ- C plane for various values of Q is given in Figs. 4, 5, 
and 6, respectively. Figure 4 clearly exhibits the banded structure for C = 0, 0.5, 1.0 and 
1.5. The complex branches are not shown. For C = 0, the low frequency limit, which is 
given by the effective modulus theory, as is well-known, as well as the high frequency limit, 
which is discussed in Ref. [27], are given as straight lines. Thus, it is to be noted that even 

5~----~----~r-----.--------,------. 

Q f.Jp 1/i./p= 0.06 
h'/h=(/.2 

3-

2 

. High Freq_. 
limit, ?:,=0 

I 
£([modulus 

{. =0 (tow Freq_ 
limit) 

FIG. 4. Spectral lines for constant C of laminated medium. 
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for C = 0, the banded structure of the dispersion curves does not oscillate around a single 
straight line, as is erroneously indicated in Fig. 1 of Ref. [24]. 

Figure 5 shows the dependence of Q on C, the wave number parallel to the layers for 
values of rJ at the ends of the Brillouin zones, i.e, rJ = 0, rJ = 1/(l+t), rJ = 2/(1 +t) and 

f.lP'IJl ;o=006 h'/h=02 
6r-------------------~ 5r--------------------, 
-- Sym '-Sym 

0 J:; 2 0 

Sym '- Asym 

--- Asym'-Sym 

1 s 2 

FIG. 5. Spectral lines and associated mode shapes along ends of Brillouin zones for laminated medium. 
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FIG. 6. Curves of constant frequency (Fermi lines). 
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'YJ = 3/(1 +t), labeled B0 , B1 , B2 and B3 , respectively. Calculations show that the full 
lines for even-subscripted B's correspond to mode shapes which are symmetric with respect 
to the midplanes in all layers, while the dashed lines in the same case correspond to 
mode shapes which are anti-symmetric in all layers. By contrast, for odd-subscripted B's, 
the full lines are associated with mode shapes which are symmetric in layers identified by 
properties with a prime (p', e') and anti-symmetric in the others (p,, e), while mode shapes 
associated with dashed lines are just the other way round. The points of coalescence of 
frequencies already mentioned are also clearly seen in this figure. 

Curves of constant frequency (Fermi lines) in the 'YJ- C plane are plotted in Fig. 6 for 
the first two Brillouin zones. These curves may be interpreted as being evolved from con
centric quarter circles for a homogeneous body, as sketched in Fig. 2. 

Since the group velocity Cg is the gradient of the frequency w in the space of the wave 
number vector, i.e., 

where e, and ez are unit vectors in the y- and z-direction, respectively, it is possible to con
struct the group velocity field, as indicated merely qualitatively in Fig. 7. The principal 

JT/d 2rr/d 3n/d 
Ky 

~ ~ \\ ~~~I~ ~I ~ ~I 
I I I 

~ ~ ~ \ \ ~ ~: ~ \ ~~ ~ 
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~I 
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~ \\\\ Hlv \ ~I ~ 

"" 
~: I I 

~~\\\HI~ \ ~: ~ \ ~I 
I I I 

~ ~ \\\ H1v \ ~I ~ \ ~: 
~\\\ \v~:~ 

I 
v: ' p ~ \ '\ 

I I I 

~~\\~v~lv \ ~~ ~ \ ~: 
I I I 

Kz I I I 

Bo 81 82 83 
{J(J) ow FIG. 7. Qualitative representation of group veloc-

Cg =~w= iJK e>y + iJK ez ity fi !Id. !J z. 

feature of this field is that along the ends of the Brillouin zones the group velocity vector 
is parallel to the layers, i.e. it does not have a component in they-direction. A noteworthy 
exception are points of coalescence of frequencies mentioned earlier. 

5. Similarities to phenomena in solid state physics 

As has already become clear, the analysis of wave propagation through a periodically 
layered composite is closely related to the analysis of certain basic phenomena in solid 
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state physics. Since the lutter area has commanded the attention of researchers for a con
siderably longer period of time, it is understandably more fully explored and, thus, mech
anicians who study composites may benefit from the existing similarities. Indeed, the 
motion of a free electron may be likened to a harmonic wave in a homogeneous elastic 
body, while an electron moving through a lattice corresponds to a wave propagating 
through a ]aminated composite normal to the layering. In both cases banded spectral 
lines contain many of the same features. Mode shapes at ends of the zones have been 
determined in solid state physics many years ago. 

Surfaces of constant frequency in wave number space have a special significance in 
studying properties of metals and are referred to as Fermi surfaces. For details reference 
is made to the texts by ZIMAN [28], SMITH [29], KITTEL [30] and the article by MACKINTOSH 
[31], as well as to the more classical monograph by BRILLOUIN [32]. Some aspects of the 
similarity, however, do not carry through. For one thing, each element (layer) in the 
composite is itself a continuum, by contrast to discrete particles of a lattice. For another, 
in a laminated medium the width of the Brillouin zones depends in a different manner 
on the angle of incidence of a wave than in solid state physics, and there is even a singular 
direction (parallel to the layers) at which this width becomes infinite. 

Fro. 8. Spectral lines of a good conductor. 

w 

FIG. 9. Spectral lines of a good insulator. 

11 Arch. Mech. Stos. nr 3176 
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As in solid state physics, one can term layered composites either as conductors, if 
the passing bands are wide, as indicated qualitatively in Fig. 8, or as insulators, if the 
passing bands are narrow, Fig. 9. Review of existing results in band theories of solids 
suggests that different approximate theories may have to be developed for conductors 
and insulators. The phase velocity CP = wfK.v for a conductor and an insulator is sketched 
qualitatively for the first three Brillouin zones in Fig. 10. Similarly, the group velocity 
C9 = dwjdKy as a function of the wave number Ky is sketched in Fig. 11. 

1- conductor 
2- insulator 

I 
I 

JT/d 2JT/d 3JT/d Ky 

'::!c.:;,. 1 -conductor 
~ 2- insulator .g 

11 
(.)I:)) 

PerFect insulator 

FIG. 10. Qualitative dependence of phase velocity 
on wave number. 

FIG. 11. Qualitative dependence of group velocity on wave number. 

6. A hierarchy of matched effective stiffness theories 

The knowledge which has now been gained concerning the exact frequency spectrum 
f(Q, 'YJ, C) = 0 together with the associated mode shapes can be the basisJ for the establish
ment of a hierarchy of approximate theories. These theories, as regards their derivation, 
will be somewhat similar to the old effective stiffness theories already referenced. An 
important difference will exist, however, in that the coefficients of the various terms of the 
governing field equation, or more precisely of the resulting dispersion relation, will be 
determined by matching the exact and the approximate dispersion curves as closely as 
possible. It will be recalled that the coefficients of the old effective stiffness theories were 
given completely in terms of the material constants and the geometry of the composite. 
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For want of a better term, the new theories will be called Matched Effective Stiffness 
Theories or MES Theories for short. To make the present discussion as concise as possible, 
attention will again be restricted to SH-waves propagating normal to the layers. A hier
archy of three matched effective stiffness theories will be presented, each one identified 
in terms of the number of parameters available for matching. 

6.1. Three-parameter theory 

Suppose that in the effective stiffness theory [5] as presented in [33] attention is con
fined to anti-plane strain motions normal to the layers and, moreover, inertia coupling 
is neglected. The equations of motion reduce then to, in the notation of [33], 

where the 2-direction is normal to the layering. u1 is the gross displacement, 1p21 the 
micro-deformation. The notation o2 = ofox2 is used and dots above variables denote 
partial differentiation with respect to time. 

If one assumes solutions proportional to ei<Kx2 -rot>, the dispersion relation results 

w4- (a.K2 + {3)w2 +yK2 = 0. 

The three parameters a, {3 and y are combinations of the coefficients a3 , a6 , a1 5 , b2 

and b4 which are originally given in terms of geometric and material properties of the 
composite. 

Here, by contrast, these parameters are to be determined in such a way that the ap
proximate theory matches best the exact theory. One possibility to determine the three 
parameters is to require that 

a) dwfdK = Cg at w = K= 0, 

b) dwfdK = 0 at W = WB, K= KB, 

c) W = WB at K=KB. 

In the above wB and K 8 indicate the frequency and the wave number, respectively, 
at the end of the first Brillouin zone. 

11* 

FIG. 12. Spectral lines of three-parameter MES 
theory. 

Q 
QB.--------------------, 

Q6 

Q4 

az a"' 
-Exact 
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With these requirements one obtains 

and the dispersion relation factors into 

( w2 - wi) ( w2 - Ci K2) = 0. 

Thus both branches of the frequency spectrum consist of straight lines in the w- K plane 
(or the Q-'YJ plane). The lower (acoustic) branch has slope Cg and passes through the 
origin, while the upper (optical) branch has vanishing slope. The two branches are un
coupled, cf. Fig. 12. 

6.2. Four-parameter theory 

In this theory the equations of motion for anti-plane strain normal to the layers are 
the same as in the old effective stiffness theory, i.e., cf. [33]; 

a3o22u1-a602"P21 = -b1o22ii1 +b2ii1 +b3o21P2t' 

-a6o2U1 +a1s"P21 = b3o2ii1-b41P21· 

The equations lead to the dispersion relation 

(aK2 +tJ)w4+ (yK2 + b)w2 +K2 = 0. 

In addition to the three requirements in the Three-parameter Theory, the additional 
fourth parameter can be used to require the acoustic branch to pass through the point 
w = wB, K .= K8 . The acoustic and the optic branch are still uncoupled. It is seen from 
Fig. 13 that the acoustic branch of the approximate theory is very close to the exact curve 
in the whole Brillouin zone. 

Q 

O.Br-------------------~ 

0.4 

0.2 

6.3. Six-parameter theory 

0.6 IJ 0.8 81 
---Approx. 

FIG. 13. Spectral lines of four-parameter MES 
theory. 

Assume next that in addition to the terms of the old effective stiffness theory, there 
is a term in the strain energy with the square of the gradient of the micro-deformation, 
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thus generating a term proportional to o22 1p21 in the equations of motion. The equations 
of motion are then 

This leads to the dispersion relation which contains six parameters 

The six independent parameters can be used to satisfy, in addition to the three condi
tions of the Three-parameter Theory, the conditions that the optical branch, on the 
periodic zone scheme, have the same frequency for zero wave number and that at the 
end of the first Brillouin zone the exact and the approximate frequencies coincide, and 
that there, in addition, dwfdK = 0. 

The satisfaction of these requirements leads to a Matched Effective Stiffness Theory 
which reproduces not only the acoustic and the optic branches rather accurately now 
within the first two Brillouin zones, but contains in addition the complex loop correspond
ing to the stopping band, as plotted in Fig. 14. It is to be noted that the old effective 

--- EXACT SOLUTION 

----- MATCHED EFFECTIVE STIFFNESS Th. ( siK parameter) 

- · - · - 'OLD' EFFECTIVE STIFFNESS Th. (second branch off scale) 
1.6 .....-----------..----------~ 

.n 

Re("J) 

FIG. 14. Spectral lines of six-parameter MES theory. 

stiffness theory is very inaccurate as regards the acoustic branch in the second Brillouin 
zone, while the optic branch of the old effective stiffness theory, even in the first Brillouin 
lone, is so inaccurate that it could not be shown on the scale of Fig. 14. 
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It is to be noted that instead of matching the upper branch in the first Brillouin zone 
(on the periodic or reduced zone scheme), it could be matched in the second Brillouin 
zone (on the extended zone scheme). Since the approximate dispersion relation is not 
periodic, a different result would be obtained, but considerably more algebraic work 
would be involved. These and related aspects will be discussed in a separate paper. 

It should be noted further that instead of point-wise matching, a more rigorous match
ing procedure over one or two Brillouin zones could perhaps be devised, rendering the 
average mean square derivation between the exact and the approximate curves a minimum. 
Consideration of these possibilities is also deferred to later studies by the present authors. 

Another new approach to construct approximate theories is based on the application 
of the Lie series. Use of this method will be presented in a separate study and is men
tioned here merely for completeness. 

7. Analogy to a system with one degree of freedom 

It might be of interest to suggest an analogy between Floquet waves propagating 
through a layered composite in the direction normal to the laminates and a system with 
one degree of freedom consisting of a mass m and spring constant k. It is assumed that 
k is made to change periodically with time t from a large value to a smaller value, with 
period T*, as indicated in Fig. 15. The resulting frequency equation will have a structure 

k 

FIG. 15. System with one-degree of freedom as 

2T* t modd for layered composite. 

similar to the dispersion relation for Floquet waves mentioned above. If the period of 
free vibration of the system T = 2njw is large as compared to the period T*, the response 
will essentially be a simple harmonic motion governed by an effective stiffness kf (Fig. 16). 
This case corresponds to the long-wave approximation of Floquet waves. By contrast, 
if T is very much smaller than T*, then the motion will be simple harmonic during the 
time intervals when the spring constant is maintained at the higher value, and also simple 
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X 

GJ=Vk/m' 

T= 21T/w» T11 

t 

FIG. 16. Effective stiffness governs (long-wave approximation). 

harmonic, but with lower frequency, during the remaining time intervals when the spring 
constant k is maintained at the lower value, Fig. 17. This limiting case corresponds to 
the short wave approximation. It is of course possible to discuss the complete response 

X 
w-vk/m 
T""21T/W<<T*' 

t 

Fro. 17. Separate stiffnesses govern (short-wave approximation). 

in all ranges, but this will be deferred to a subsequent study. It might suffice here to men
tion that the proposed analogy could offer interesting possibilities for experimental in
vestigations. 

8. Conclusions 

It is quite apparent, particularly from Fig. 14, that the class of matched effective 
stiffness theories proposed in this paper holds great promise in being more useful, as a 
result of its simplicity combined with a large range of validity, than other approximate 
theories advanced in the past. The proposed theories are merely sketched here and a more 
formal and complete derivation, for motions in anti-plane strain, plane strain, and pos-
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sibly more general situations, is reserved for future presentations. The questions of suit
able boundary and initial conditions, generalized stresses, energy expressions, alternate 
matching procedures and related considerations are also reserved for these later studies. 
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