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Kinetic theory of hydrodynamic flows 

J. R. DORFMAN, H. VAN BEIJEREN, C. F. McCLURE (MARYLAND) 

WE consider a dilute monatomic gas, flowing around a macroscopic heavy object. We derive 
an extended Boltzmann equation for the gas in the presence of the object, and show that the 
extended Boltzmann equation is equivalent to the usual Boltzmann equation, supplemented 
by the boundary conditions imposed on the distribution function at the surface of the object. 
We then proceed to solve the equation in two ways: (A) In the case when the mean free path 
of a gas molecule is small compared to the characteristic size of the object, we look for normal 
solutions of the Boltzmann equation where the distribution function is a functional of the 
local density, local velocity, and local temperature. This method of solution leads to the Navier­
Stokes hydrodynamic equations, together with the boundary conditions that must be used to 
solve them. We also find that, beyond this order, boundary layer effects must be taken into 
account when formulating the boundary conditions satisfied by the hydrodynamic variables. 
We discuss the flow around a sphere, and consider the theory for stick flow, slip flow, and the 
region between pure stick and slip flows. (B) In the case when the mean free path is large com­
pared to the size of the object, we solve the Boltzmann equation by an iteration method which 
is appropriate for describing the flow of a rarefied gas about the object, and we discuss the 
close relation between this iteration and the Knudsen iteration usually used in rarefied gas 
dynamics. We also show that the iteration method can also be used to treat the case when the 
mean free path is small compared to the object's size, and we derive Stokes' Law and the Lamb 
formula for the force on a sphere and a cylinder, respectively. By relating the terms in this 
iteration expansion to the dynamical events taking place in the fluid, we are able to discuss 
the dynamical origin of Stokes' Law and the Lamb formula. 

Rozwazany jest rozrzedzony gaz jednoatomowy oplywajl:lCY waiki obiekt makroskopowy. 
Wyprowadzono rozszerzone r6wnanie Boltzmanna dla gazu wraz z obiektem i pokazano, ie 
rozszerzone r6wnanie Boltzmanna jest r6wnowaine zwyklemu r6wnaniu Boltzmanna, uzupel­
nionemu warunkami brzegowymi, nalozonymi na funkcj~ rozkladu na powierzchni obiektu. 
Z kolei przystl:lpiono do rozwil:lzania tego r6wnania dwoma sposobami. (A) W przypadku, 
gdy droga swobodna CZI:lsteczki gazu jest mala w por6wnaniu z charakterystycznym wymiarem 
obiektu, poszukuje si~ normalnych rozwil:lzaD. r6wnania Boltzmanna, w kt6rych funkcja roz­
kladu jest funkcjonalem lokalnej g~stosci, lokalnej pr~dkosci i lokalnej temperatury. Ta metoda 
post~powania prowadzi do r6wnan hydrodynamiki Naviera-Stokesa, kt6re naleiy rozwi~ac 
wraz z warunkami brzegowymi. Wykazano r6wniez, ie opr6cz tego przy formulowaniu warun­
k6w brzegowych, spelnianych przez zmienne hydrodynamiczne, mUSZI:l bye uwzgl~niane 
efekty warstwy przysciennej. Przedyskutowano przeplyw wok61 kuli i rozwaiono teori~ dla 
przeplywu z przyleganiem, przeplywu poslizgowego oraz obszar mi~dzy idealnym przeplywem 
z przyleganiem i przeplywem bez poslizgu. (B) W przypadku, gdy droga swobodna jest duia, 
r6wnanie Boltzmanna rozwil:lzano metodl:l iteracyjnl\, kt6ra jest sluszna dla opisu przeplywu 
rozrzedzonego gazu wok61 obiektu oraz przedyskutowano scisll:l zaleznosc mi~ tl:l iteracj'l, 
a iteracjl:l Knudsena, stosowanl:l zwykle w dynamice gaz6w rozrzedzonych. Pokazano r6wniez, 
ie metoda iteracyjna moze bye wykorzystana w przypadku, gdy droga swobodna jest mala 
w por6wnaniu z rozmiarami ciala oraz wyprowadzono prawo Stokesa i wz6r Lamba odpowied­
nio na sil~ na kuli i na walcu. Przez powil:lzanie odpowiednich czlon6w w tym rozwini~iu 
iteracyjnym z dynamicznymi efektami zachodZI:lcymi w cieczy jestesmy w stanie przedyskuto­
wae dynamiczne pochodzenie prawa Stokesa i wzoru Lamba. 

PaccMaTpusaeTcn paape>f<ellHbiH, OAHOaTOMH.biH raa, o6Tei<aiOI.I.Ulli BecoMbiH Mai<poCI<OIIH­
tieCI<Hii o6'hei<T. BbiBe.l{eHo pacwupeaaoe ypaBHellHe BoJibQMaHa .wxn raaa COBMeCTHo c o6'hei<­
TOM H noi<a3aHo, tiTO pacwupeaaoe ypaBHeHHe BoJibQMaHa 3I<BHBaJieHTHO OObii<HOBemtOMY 
ypaBHellHIO Eon&~Maaa .l{OnOJIHellHOMY rpaHHtiHhiMH ycnoBIDIMH, HaJIO>KeHHbiMH Ha <l>YHJ<InfiO 
pacnpeAeneau..s~ aa nosepXHOCTH o6'hei<Ta. B cso10 oqepeAb npucrynaeTcH 1< peweaHIO 3Toro 
ypaBHeHHR ABYMH cnoco6aMu: (A) B cnyqae, J<OrAa ,l{mma cso6oAHoro npo6era MOJieJ<YJibi 
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ra3a Ma.rra no cpaaae.Hmo c xapai<TepHCTHl.leCI<HM pa3MepoM o6'hei<Ta, H~yrc.a aopMam,J:lbie 
pemeaHH: ypaBl:leHH.a EoJibQMaaa, B I<oTopbiX <PYlli<QH.a pacnpe~eJiel:lHH .aan.aeTc.a <f>Yili<QHO­
llaJIOM JIOI<aJibllOH nJIOTllOCTH, JIOI<a.TibllOH CI<OpOCTH H JIOI<aJibllOH TeMnepaTypbi. 3TOT MeTO~ 
nocrynaHHH ae~eT I< ypaBl:le.HHHM rH~po~Hl:laMHI<H Haabe-CToi<ca, I<OTOpbie cne~yeT pemaTb 
coaMecrao c rpaaHl.lllbiMH yCJIOBHHMH. Tome ~oi<a3aao, l.ITO I<poMe 3Toro npH <PopMyJIHpOBI<e 
rpaRHl.lllbiX yCJioaHH:, y~oaneTaopeHl:lbiX r~po~Hl:laMHl.leci<HMH nepeMel:lllbiMH, ~OJillil:lbi 
6biTb Y1.J:Tel:lbi 3<P<Pei<Tbi norpaHHl.IHoro cno.a. 06cy~eHO o6Tei<al:lHe c<Pepbi H paccMoTpeaa 
TeOpHH ~JI.a 06Tei<aHHH C npHJIHral:lHeM, 06Tei<al:lHH CO CI<OJibmeHHeM, a TaJ<)J{e ~JI.a 06JiaCTH 
Me~ ~eaJibllbiM o6Tei<aaHeM c npHJIHral:lHeM H o6Tei<al:lHeM 6e3 CI<OJibmel:lH.a. (E) B cny1.1ae, 
I<Or~a ~JIHlla cao6o~oro npo6era 6oJibiiia.a, ypaaaeHHe EonLQMaaa pemeHo mepaQHOl:lHbiM 
MeTO~OM, I<OTOpbiH Cnpaae~B ~JI.a OnHCaHHH o6Tei<aHHH 06'hei<Ta pa3pemel:lHbiM ra30M, 
a TaJ<)J{e o6cym~eHa Tecaa.a 3aBHCHMOCTb Mem~y 3TOH HTepaQHeH: H mepaQHeii KHy~ceaa, 
npHMeHHeMOH 06bll.lll0 B ~HllaMHI<e pa3pellie.HllbiX ra30B. Iloi<a3al:lO TOme, l.ITO HTepaQHOlll:lbiH 
MeTo~ MomeT 6biTb HCUOJib30Bal:l B CJIYl.lae, i<or~a ~JIHH:a cao6o~aoro npo6era MaJia no cpaa­
aeamo c pa3MepaMH Tena H BbiB~eH 3ai<Oll CToi<ca H <PopMyna J13M6a cooTaeTcraeaao ~n.a 
CHJibl l:la c<Pepe H l:la QHJIHH:~pe. IlyreM B3aHMOCBH3H COOTBeTCTBYIOIQHX l.IJleH:OB B 3TOM 
HTepaQHOlll:lOM pa3JIO)J{el:lHH C ~HH:aMHl.leCI<HMH 3<P<Pei<TaMH, npOHCXO~~~~ B mH~I<OCTH, 
Mbi a coCTOHl:lHH o6cy~Tb ~HH:aMHl.leci<oe npoHcxo>l<,l:(eRHe 3ai<oaa CToi<ca H <PopMyJibi J13M6a. 

1. Introduction 

CoNSIDER the flow of a gas stream around a soli<!, heavy, macroscopic object. Let V be 
a characteristic velocity of the gas stream; c, the velocity of sound in the gas; R, a charac­
teristic size of the object; I, the mean free path of a molecule in the gas; and a, the range 
of the intermolecular forces of the gas molecules. From these we construct the dimension­
less quantities, the Mach number M = Vfc, the Knudsen number K = 1/R, and the ratio 
of the range of the intermolecular forces to the mean free path a/ I. One of the central 
problems of the kinetic theory of gases is to determine the properties of the gas flow as 
a function of M, K, and afl, assuming that the intermolecular force and the gas-solid 
interaction are known. 

Here we will discuss one aspect of this problem, namely the kinetic theory for the 
Knudsen number depende.nce of the slow flow (M < I) of a dilute gas, for which af I < I, 
around a sphere or a cylinder. Even for these conditions there are a number of difficult 
problems, and we shall take the liberty of ignoring here the additional complications 
that arise when one attempts to extend the theory to higher densities or higher Mach 
numbers. 

The starting point is, of course, the Boltzmann transport equation, satisfied by the 
one particle distribution function for the gas particles. To treat the flow around an object, 
the Boltzmann equation must be supplemented with boundary conditions satisfied by the 
distribution function at (i) the surface of the object (which takes into account the micro­
scopic interaction mechanism between the gas particles and the object) and (ii) points 
very far from the object [I]. Then the quantities of interest for describing the flow are 
expressed in terms of the distribution function. Such quantities are e(r, t), the average 
mass density of the gas at a point rat time t; u(r, t), the average local velocity of the 
gas at r, t; F(t), the force exerted on the object by the gas at t; and so on. 

So far most of the work on these gas flows has been concentrated on the limiting 
cases where K ~ I, the Stokes or Clausius regime where the mean free path is much 
smaller than the characteristic size of the object, and K ~ 1, the rarefied or Knudsen 
regime where the mean free path is much larger than the characteristic size of the object [2]. 
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For K ~ 1, the Boltzmann equation should lead to Stokes Law for the force on 
a sphere, say, and to the same results for e(r, t) and u(r, t) as given by the continuum 
Navier-Stokes hydrodynamic equations. In fact, one might be tempted to think that 
since the Chapman-Enskog normal solution [3] of the Boltzmann equation leads directly 
to the Navier-Stokes hydrodynamic equations, the derivation of Stokes Law should be 
simply an exercise in classical hydrodynamics. However, this procedure skips over some 
problems which have still not been solved in general. That is, the Chapman-Enskog 
procedure does not take into account the interactions of the fluid particles with the macro­
scopic object, but rather it ignores the possible presence of an object or boundaries, in 
general. As a result, it is not clear a priori that the Chapman-Enskog solution is a solu­
tion of the Boltzmann equation when the boundaries are properly taken into account. 
In fact, as we will discuss later, the Chapman-Enskog solution breaks down near the 
surface of the macroscopic object, and there are kinetic boundary layer effects which 
must be taken into account [4]. Furthermore, the Chapman-Enskog solution does not 
give the boundary conditions which the hydrodynamic variables must satisfy. Instead, 
these boundary conditions must be imposed on the variables without being related to the 
boundary conditions that the distribution function itself must satisfy. 

It seems clear that a satisfactory derivation of Stokes Law along these lines must 
proceed by deriving both the Navier-Stokes hydrodynamic equations and the appropriate 
boundary conditions for the hydrodynamic variables from the Boltzmann equation and 
the boundary conditions satisfied by the distribution function. We shall discuss this problem 
in more detail in Sect. 3. 

Another approach to the derivation of Stokes Law from the Boltzmann equation 
has been developed by CERCIGNANI and eo-workers for simple model gases, by using 
variational methods [5]. In addition, ScHARF has obtained Stokes Law for the force on 
a sphere and Lamb's formula for the force per unit length on a cylinder by adding source 
terms to the Boltzmann equation [6]. However, he does not derive these source terms 
from the microscopic gas-solid interaction mechanism. 

In any event, a discussion of the hydrodynamic results for the flow of a dilute gas 
around an object on the basis of the kinetic theory of gases (i.e., from the Boltzmann 
equation) requires that one understand: 

(a) The derivation of the Navier-Stokes hydrodynamic equations from the Boltzmann 
equation, together with the boundary conditions the hydrodynamic variables must satisfy. 

(b) The role of higher order hydrodynamic equations, such as the Burnett and super­
Burnett equations, in treating these gas flows (one must also have a derivation for the 
additional boundary conditions these higher order equations require). 

(c) The dynamical origin of the hydrodynamical results, such as Stokes Law and the 
Lamb formula for the force on a cylinder, in terms of collision processes in the gas. In 
particular, one would like to understand the dramatic difference between the form of 
Stokes Law F = CV for the force on a sphere, which is linear in the flow velocity, and 
the form of Lamb's formula F = aV/(b+log M) for small M for the force per unit length 
on a cylinder whose long axis is perpendicular to the flow [7]. 

(d) How to extend the discussion of results for K ~ 1 to higher Knudsen numbers 
and eventually connect them to the results for rarefied gas flows. 

6* 
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The other limit where the Boltzmann equation has been extensively applied to study 
gas flows is the case of rarefied flows where K ~ I. Here one solves the Boltzmann equation 
by expanding the distribution function in terms of the inverse Knudsen number, explicitly 
taking into account collisions between gas molecules and between the molecules and the 
object. As an illustration, this expansion leads to an expression for the force F on a sphere, 
for K ~ 1, given by [8, 9a] 

(1.1) ... ' 

where F0 is the free molecular flow force, which is determined by single collisions between 
the gas molecules and the object, and F0 is proportional to nR2

, the cross sectional area 
of the sphere, and to the flow velocity V. The coefficient a 1 is determined by sequences 
of three or more collisions taking place among two gas particles and the object, as il­
lustrated in Fig. 1 (b,c,d.); a~ is determined by sequences of four collisions among three 
particles and the sphere as illustrated in Fig. I e; and a2 is determined by collision se­
quences involving three or more particles and the sphere. For special models the coefficients 
a1 and a2 are known [10]. Moreover, the force F, for small V, appears to be linear in V 

>0 
a b 

c d 

e 

Fro. 1. The collisions of fluid particles with the sphere which are taken into account in the expansion of the 
force on the sphere in powers of the inverse Knudsen number. Fig. la represents the collision which is 
responsible for the free molecular flow force. Figs. 1 b,c,d represent dynamical events which contribute 
to the K- 1 correction of this value. Fig. ld represents a process where the second fluid particle does not 
hit the sphere but would have done so, had the second collision not taken place. Fig. le represents events 
which contribute to order K- 2 Iog K- 1 , and the events represented by Fig. lf contribute to order K- 2

• 
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for all Knudsen numbers. There is a close relation between the form of the expansion 
ofF as given by (1.1) and the density expansion of the transport coefficients. For example, 
the viscosity 'YJ of a moderately dense gas is given by 

(1.2) 'YJ /'YJo = 1 + 'YJ 1 (na3
) + 'YJ~ (na3

)
21og(na3

) + 'YJ 2 (na3
)

2 + ... , 

where n is the number density of the gas and 'YJo the viscosity at low density. This relation 
exists because the corresponding coefficients, (Fo, 'YJo), (a1 , 'YJ 1), (a~, 17~), etc., are deter­
mined by similar kinds of dynamical events [9, 10]. 

The force per unit length, f, on a cylinder when K ~ 1 and M < 1 has also been 
studied. Even for rarefied flows I is not linear in V, but has an expansion of the form 
[9, 11] 

(1.3) IIIo = l+K- 1 [bt +b~log M]+ ... , 

where lo is the free molecular flow force. The log M term is the result of dynamical pro­
cesses in which a particle, after colliding with the cylinder, makes a long excursion into 
the fluid, traveling several mean free paths before returning to the cylinder. Similar pro­
cesses occur in the flow around a sphere, but they do not lead to divergences in F/ F0 as 
M -+ 0. In addition, there is a close relation between the K-t expansion of I and the density 
expansion of the transport coefficients of a hypothetical two-dimensional gas [9]. We 
will discuss this relation further in Sect. 4. 

Although the properties of slow gas flows at large Knudsen numbers seem to be well 
understood, as was mentioned in Problem (d) above it still remains to extend the theory 
to smaller Knudsen numbers and eventually to connect the results derived for both ex­
tremes. 

In this paper we will discuss some of our recent work on problems (a)-(d) mentioned 
above. In Sect. 2 we will discuss our starting point, which is a way of writing the Boltz­
mann equation so that the boundary conditions satisfied by the distribution function at 
the object's surface are explicitly taken into account. In Sect. 3 we will use this Boltzmann 
equation to discuss the gas flow for K ~ 1 and show that a generalization of the Chap­
man-Enskog normal solution method, when the boundary conditions are explicitly taken 
into account, leads to the hydrodynamic results for the gas flow. In Sect. 4 we will show 
how kinetic theory can explain the flow at high and low Knudsen numbers from a unified 
point of view - by showing that the dynamical events responsible for the force on the 
object are essentially the same in both cases. In Sect. 4 we will also discuss the difference 
between the flows around a sphere and the flows around a cylinder. In Sect. 5 we conclude 
with a brief discussion of the main results of this study. Here we will not give all the details 
of the relevant calculations, but merely summarize the main results. A more detailed 
description of these calculations will be published elsewhere. 

2. The extended Boltzmann equation 

We begin by considering the equation satisfied by l(r, v, t), the single particle dis­
tribution function of the gas particles. We take l(r, v, t) to be normalized so that 
l(r, v, t)drdv is the number of gas particles in dr about rand in dv about vat timet. In 

http://rcin.org.pl



338 J. R. DORFMAN, H. VAN BEIJEREN AND C. F. McCLURE 

the absence of external forces, but in the presence of a macroscopic object, f(r, v, t) can 
change in time through three different processes: 

(i) Free streaming, where molecules at (r, v) at time t move to (r+vdt, v) at time 
t+dt; 

(ii) Collisions of gas molecules with each other. The effects of these collisions on 
f( r, v, t) is taken to be given by the usual Boltzmann collision operator; and 

(iii) Collisions of the gas molecules with the object. These collisions also cause f( r, v, t) 
to change in time. Although these collisions are usually treated by formulating their 
effect onf as a boundary condition, there is no need to do so, and the result of the collisions 
can be incorporated directly into the Boltzmann equation. We will limit our discussions 
here to the case where the particles make specular or diffuse collisions with the object. 
Even more general collision mechanisms can be incorporated, but we have not yet at­
tempted to discuss more general cases. 

Taking into account the three above mentioned processes by which f(r, v, t) may 
change in time, we are led to the extended Boltzmann equation 

(2.1) of(ra;· t) = v· V/(r, v, t)+J(f,f)+Tf(r, v, t). 

Here, the term -v · Vf on the right-hand side of the Eq. (2.1) accounts for the change 
in f due to free streaming. J(f,f) takes into account the molecule-molecule collisions 
and is given by 

a 2:n 

(2.2) J(f,f) = J dv1 J bdb J df/>lv-v11[/(r, v~, t)f(r, v~, t)-f(r, v, t)f(r, v1, t)], 
0 0 

where b is an impact parameter, 4> the azimuthal angle, v' and v~ the restituting velocities 
of two particles which lead to velocities v and v1 when the particles collide with impact 

parameter b and azimuthal angle 4> + n. The term Tf describes the rate of change ofF due 

to molecule-object collisions, and the precise form of T depends on the shape of the 
object and the interaction mechanism [11, 12, 13]. In the case when the object is a sphere, 
Tf is given by 

(2.3) Tsp/ = R2 f da!v. al {O(v. a) ~(r-R&) 

xf(r, v-2(v· a)n, t)-~(r-Ra)O(-v· a)f(r, v, t)} 
and 

(2.4) Tdif .= R 2 f d&jv. &! {O(v. a)lf>o.w(v) (2nPwm)1' 2 

X ~(r-R&) f dv'O( -v'. &)lv'. alf(r' v', t)- ~(r- Ra)O( -V. a)f(r' V' t)} 

for specular and diffuse collisions, respectively. Here R is the radius of the sphere which 
is assumed to be centered at the origin [14], a denotes a unit vector, O(x) is the unit step 
function O(x) = I for x ~ 0, and is zero elsewhere. 4>o.w(v) is the equilibrium distribution 

(2.5) ( 
p m )3/2 _{Jwm v2 

4>o.w(v) = ;n e 2 
, 
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where Tw .= (kpfJw)- 1 is the temperature of the macroscopic sphere. The action of the 
operators Tsp and Tdi can be understood by referring to Fig. 2. Here we take the sphere 
to be centered at the origin, and the vertical axis to be in the direction of v. To compute 
the rate of decrease of particles with velocity v through collisions with the sphere, we 

FIG. 2. Collisions of a fluid particle with the 
sphere. In Fig. 2a the fluid particles make specular 
collisions with the sphere. In Fig. 2b particles that v 
collide with the sphere are re-emitted according 

,.. 
V 

a 

,.. 
V 

to a Maxwell-Boltzmann distribution function. b 

V 

v' 

note that such particles will collide with the sphere at point r = Ra, on the hemisphere 
v · er < 0. These collisions are accounted for by the second terms on the right-hand sides 
of Eqs. (2.3) and (2.4). The factor lv · al occurs because one needs the rate at which 
particles with velocity v strike the sphere. To compute the rate at which particles with 
velocity v are produced at the sphere, we need to consider the specular and diffuse mech­
anisms separately. In the case of specular reflection, particles with velocity v are pro­
duced at a point r = Rer, on the hemisphere V. a > 0, whenever a particle with velocity 
v-2(v ·a) a strikes the sphere at the point. This accounts for the structure of the first 
term on the right-hand side of Eq. (2.3). In the case of diffuse reflection, we assume that 
whenever a particle hits the sphere it is absorbed and immediately re-:-emitted according 
to a Maxwell-Boltzmann distribution function, described by a temperature Tw, into 
direction pointing outward from the sphere. Therefore a molecule with velocity vis pro­
duced at a point r = Ra on the hemisphere if a molecule with velocity v' strikes the sphere 
at this point (v' · a < 0) and is re-emitted with velocity v. These facts, together with the 
requirement that the rate at which particles hit the sphere at the point r = Ra be equal 
to the rate at which they leave, determine the structure of the first term on the right-hand 
side of Eq. (2.4). 
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We now show that the extended l!_oltzmann equation (2.2) is equivalent to the ordi­
nary Boltzmann equation, where the Tf term does not appear, but is supplemented by the 
boundary conditions that are imposed on the distribution function at the surface of the 
sphere, in the case of specular or diffuse reflection. To do this, we look for solutions of 
Eq. (2.1) which vanish inside the sphere, since no particles should be located there. That 
is, we look for solution f of the form 

(2.6) 

where 

(2.7) 

f(r, v, t) .= W(r)./(r, v, t), 

1 for r ~ R, 
~(r)-

- 0 for r < R 

and wherej(r, v, t) is taken to be continuous, as a function of r, as r-+ R<+>. Substituting 
f, given by Eq. (2.6) into Eq. (2.1) and noting that 

(2.8) v · VW(r) .= "· v~(r-R), 

where r .= r/jrj is a unit vector in the direction of r, we obtain [15] 

(2.9) W(r){ r +v· vj-J<.f,.f)} = Tj, 

where 

(2.10) T/ = T/-./(v. r)~(r-R). 
Using Eqs. (2.3) and (2.4) we find that Tsp and T4 i are given by 

(2.11) Tspf= O(v· r)~(r-R) jv· r/ ri(r, v-2(v·r)r, t)-i{r, v, t)] 

and 

(2.12) Tdij = O(v · r) ~(r-R) jv · rj f9'o.w(v) (2nfJwm) 112 

X I dT'jv'. rJO( -v'. r)./(r, v', t)-/(r, V, t)]. 

Since the right-hand side of Eq. (2.9) is proportional to ~(r-R), and j is assumed to be 
continuous at r = R, a solution to this equation can only be found if the right and left-

hand sides vanish identically. The vanishing of the lef-hand side requires that j satisfy 

(2.13) aj - - -
7ft +v · Vf= J(f, f), r > R 

and the vanishing of the right-hand side requires, in the case of specular reflection, that 

(2.14) j(r, v, t) =i(r, v-2(v· r)r, t), at jrj = R for v· r > 0 

and in the case of diffuse reflection that 

(2.15) j(r, v, t) = 9'o.w(2nfJwm)112 J dv'jv' ·riO( -v' ·r)/(r, v', t), 

at r = R for V. r > 0. 

The Eq. (2.13) together with the boundary conditions (2.14) and (2.15) form the 
usual starting point for the kinetic theory of gas flows [1] and we see that they are equi-
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valent to Eq. (2.1). We also see that from Eqs. (2.5), (2.9) and (2.11) or (2.12) the distri­
bution function /(r, v) = nq>0 (v)W(r) is the solution of Eq. (2.1) which corresponds to 
the case of total equilibrium. A similar discussion can be given for cylindrically shaped 
objects and so on, but we will not elaborate this here. 

There are two principal advantages in using Eq. (2.1) as the starting point of our 
analysis. 

(1) The boundary conditions are already incorporated into the equation, and this 
simplifies some of the mathematics. 

(2) The treatment of the molecule-object collisions by means of a binary collision 
operator in the Boltzmann equation will greatly facilitate the dynamical analysis of the 
gas flows. 

A third advantage is that the use of collision operators in this way allows us to treat 
the case where the macroscopic object can move, e.g., the case of Brownian motion, by 
methods similar to those employed here. 

3. Normal solutions of the extended Boltzmann equation 

As we discussed earlier, the Chapman-Enskog normal solution of the Boltzmann 
equation ignores the possible presence of boundaries, and hence provides a derivation 
of the hydrodynamic equations but not the boundary conditions needed to solve them. 
In this section we shall briefly consider the normal solutions of the extended Boltzmann 
equation (2.1), or equivalently Eq. (2.9), in order to discuss some of the features that 
arise when the boundary conditions are explicitly taken into account. We will discuss 
the flow around a sphere here and refer the reader to the discussion of more general flows 
given by CERCIGNANI [1, 2]. 

We first consider whether it is possible to apply the Chapman-Enskog method in 
order to obtain a normal solution to (2.9). This would require that outside the sphere 

j be a Chapman-Enskog normal solution, while at the surface of the sphere J should 
satisfy the condition T] = 0. From the work of Chapman and Enskog we know that 
the normal solution !Ns(r, v, t) depends on time through the time variation of the local 
density n(r, t), the local velocity u(r, t), and the local temperature T(r, t), and in ad­
dition is given by an expansion in powers of K = 1/R, the Knudsen number, in the form 

(3.1) !Ns(r, v, t) =/0 (r, vjn, u, T)+/1 (r, vln, u, T)+ ... , 

where / 0 is a local equilibrium distribution given by 

( 
p(r, t)m )

312 
p(r, t)m 2 (3.2) / 0{r, vjn, u, T) = n(t, t) 

2
n exp-

2 
C (r, t), 

where p(r, t) = (kpT(r, t))- 1 and C(r, t) = v-u(r, t), / 1 is proportional to the 
gradients of the hydrodynamic variables and is given by 

(3.3) / 1 (r, v!n, u, T) = / 0 [ A(C2) ( /l(r :/)m C2 -5/2) C · VlogT(r, t) 

+B(C2
) (cc- ~

2 1): Vu(r, t). 
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Here I is the unit dyadic tensor, and the functions A(C2
) and B(C2) are determined by 

solving an inhomogeneous, linearized Boltzmann equation [3]. This normal solution, 
when inserted into the equations expressing the conservation of particle number, mo­
mentum, and energy, then leads to the result that n, u, T satisfy the hydrodynamic equa­
tions. For example, keeping only lo in Eq. (3.1) one obtains the Euler equations, for lo 
and 11 one obtains the Navier-Stokes equations, and so on. However, to complete the 
discussion one has ·to show that INs satisfies TINs = 0. Since INs is expanded in powers 
of 1/R, this requirement implies that 

(3.4) T/;(r, vjn, u, T) .= 0, for i .= 0, 1, 2 .... 

If one restricts oneself to the leading orders, boundary conditions can be obtained from 
Eq. (3.4) for specular and for diffuse reflection, respectively, and are the familiar hydro­
dynamic boundary conditions, given in Table 1. The boundary conditions for specular 

Table 1. Boundary conditions on the hydrodynamic variables at the surface of sphere 
r = R. 

where 

Specular Reflection 

u(r). r = 0 

(r~+~r): vu= o 
(re+er): vu= o 

r·$=r·e=o 
~·~=e·e=t 
r · Vr T(r) = 0 

Diffuse Reflection 

u(r) = 0 

T(r) = T..., 

reflection are derived from Eq. (3.4) using i = 0, 1, and for diffuse reflection, using only 
i .= 0. 

These boundary conditions lead to expressions for the force on the sphere given by 

(3.4') Fsp = 4n'YJRV, F4 i = 6n'YJRV 

for specular and diffuse reflection, respectively. Here 'YJ is the shear viscosity of the gas. 
One of the interesting consequences of this analysis appears when one introduces a re­
flection mechanism which is a linear combination of specular and diffuse reflection with 
accomodation coefficient ex by [1, 2, 16] 

(3.5) 

When ex is of order K, i.e. ex "' 1/R, Trz leads to a boundary condition where the tangential 
stress on the sphere is proportional to the tangential fluid velocity at the surface, and the 
corresponding slip coefficient Cs is 

(3.6) Cs = 2/ex. 

The result has been obtained before by more elementary methods [16]. The force on the 
sphere is then given by 

(3.7) 
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where A is a length on the order of a mean free path, given by A = 'Y}({Jmnf2) 1' 2(nm)- 1 • 

The Eq. (3.7) holds only as long as ~is 0(1/k), but for all ~the product ~cs is of order 1. 
Therefore when ~ is 0(1), stick boundary conditions are correct up to terms of order 
1/R, and the force on the sphere is given by the usual form of Stokes Law, Eq. (3.4'h. 

If one attempts to use (3.4) to derive higher order boundary conditions on the hydro­
dynamic variables for use in solving the Burnett, super-Burnett, etc., hydrodynamic 
equations, one is led immediately to serious inconsistencies with the lower order boundary 
conditions, and other difficulties [17] which force one to conclude that after some order 
in If R the normal solution is no longer a solution of the extended Boltzmann equation. 
This is not surprising since it is well known, from other kinetic theory calculations, that 
there are boundary layers close to the surface of the sphere in which the distribution 
function changes over distances of the order of a mean free path, and hence cannot be 
described by a normal solution of the Boltzmann equation. Therefore we must look for 
generalized normal solutions of the extended Boltzmann equation which approach the 
Chapman-Enskog solution far from the sphere but include the effects of the boundary 
layer extending over a few mean free paths in the vicinity of the surface of the sphere. 

For simple model gases and for simple gas flows- for example, the flow of a B.G.K. 
gas past a fixed wall [1]- it is possible to find the generalized normal solution explicitly, 
and to exhibit the boundary layer effects. However, even for this simple case a number 
of problems remain to be solved. For example, in spite of the fact that the distribution 
function is known, the role of the higher order hydrodynamic equations is not clear, nor 
is it clear how to derive the boundary conditions that must be used to obtain their solu­
tion. 

In the discussion of dynamical events taking place in the gas (in the next section) we 
will sketch the derivation of an equation [Eq. (4.22)] which might be a convenient 
starting point for the derivation of the generalized normal solutions of the stationary, 
linearized Boltzmann equation. These solutions, in turn, lead to the stationary, linearized 
hydrodynamic equations with the boundary layers taken into account. However, we 
have not yet made a detailed study of these generalized normal solutions. 

We may conclude, therefore, that a generalization of the Chapman-Enskog normal 
solution method to this case where the boundary is taken into account does lead to 
Stokes Law for the flow around a sphere, but the structure of the boundary layer and the 
role of higher order hydrodynamic equations needs considerably more investigation. 

4. From rarefied gas dynamics to hydrodynamics 

When the mean free path I is much larger than the characteristic size, R, of the object, 
the equations of hydrodynamics cannot be used to describe the gas flow, since it is assumed 
in their derivation that 1/R is small. Instead, when 1/R ~ 1 one may regard the molecule­
object collisions as a perturbation to the free molecular flow of the gas. In this section 
we will show how the equations of rarefied gas dynamics are obtained from the extended 
Boltzmann equation. We will also show how these equations may be used to obtain an 
analysis of hydrodynamic flows in terms of dynamical events taking place in the gas, and 
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to obtain the correct form of Stokes' Law, and Lamb's formula for the force on a sphere 
and cylinder, respectively. We will first consider the force on a sphere of radius R, and 
then discuss the modifications needed to derive expressions for the force on a cylinder. 

By considering the momentum transferred to the sphere by the gas particles, we easily 
find that the force on the sphere is given by the formula 

(4.1) F = - J dr J dvmvTf(r, v, t). 

To obtain an expression for J, we consider the case where the Mach number M ~ 1, and 
we suppose that the disturbance in the gas caused by the presence of the sphere is small 
enough that we may expand the solution of the Eq. (2.1) about the equilibrium solution, 
and keep only terms linear in the deviation from equilibrium. We assume that infinitely 
far away from the sphere the distribution function of the gas is 

(4.2) /(r, v) = n ( ~ r2 

exp- p; (v-V)'"' n'l'o(v) (I +Pmv· V}, as r-+ oo 

and suppose that the temperature of gas at r -. oo is equal to that of the sphere, in the 
case of diffuse reflection. Since we are interested in the steady state force on the sphere, 
we look for stationary solutions of the Eq. (2.1) of the form 

(4.3) /(r, v) := nW(r)<p0 (v)+nP(r, v)<p0 

and the equation for, 'P is [18] 

(4.4) (v~ V-L-f)'P(r, v)<p0 (v) = 0, 

where the linearized Boltzmann collision operator is given by 
a 2n 

(4.5) L'P<po = n J dv1 J bdb J d<plv-v1 l<p0 (v)<p0 (v1)[P(r, v~)+P(r, v')-IJI(r, v) 
0 0 

- P (r, v 1)]. 

In deriving Eq. (4.3) we have used the fact that n W(r)<p0 (v) is the equilibrium solution 
of Eq. (2.1). We separate the distribution function into its asymptotic part and a part d1p 

which vanishes far from the sphere, as 

(4.6) 

to write the Eq. ( 4.4) as 

(4.7) 

P(r, v) = {3mv · V+ d1p(r, v) 

(v· V-L-T)d'P = Tpmv ·V, 

where we have used the fact that both v · V and L vanish when acting on v · V <p0 • The 
Eq. (4.6) leads to an expression for d1p which is linear in V. We may write the solution 
of Eq. (4.6) formally as 

(4.8) d1p(r, v)<p0 (v) = (v· V-L-f)- 1 T{3mv· V<p0 • 

Further, by iterating the inverse operator about the operator (v ·V-L)- 1
, called the 

Boltzmann propagator, we obtain an expression for d1p<p0 (v) as 

(4.9) d1p(r, v)<p0 (v) = {(v· V-L)- 1 T+(v· V-L)-1 T{v· V-L)- 1 

+ (v ·V -L)-1 T(v ·V -L)- 1 T(v ·V -L)-1 + ... } {Jmv · V<p0 • 
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Using Eqs. (4.1), (4.3), (4.6) and (4.9), we obtain an expression for F 

(4.10) F = -n J dr J dvmv{T+T(v· V-L)- 1 T+ ... }pmv· Vcp0 (v), 

where we have used the fact that the equilibrium distribution function n W(r)cp0 (v) does 
not give any contribution to the force on the sphere. The first term in the expansion re­
presents the free molecular flow force on the sphere. The second term contains all dynamical 
processes in which there are two collisions between gas particles and the sphere, and an 
arbitrary number of intermediate collisions between the gas molecules. The third term 
contains processes with three collisions between the gas molecules and the sphere, sepa­
rated by intermediate collisions among the gas molecules, and so on. An expansion of F 
in powers of the inverse Knudsen number K- 1 := R/1 can be obtained from Eq. (4.10) 
by expanding the Boltzmann propagators in powers of the free particle propagator 
(v · V)- 1 • This leads to the following expansion for F 

(4.11) F = -n J dr J dv mv{T+ T(v. v)- 1 L(v. v)- 1 T 

+ T(v. v)- 1 L(v. v)- 1 L(v. v)- 1 T + T(v. V)- 1 L (v. v)- 1 

xf(v· V)- 1L(v· V)- 1 T+ ... }pmv · Vcp0 , 

where we have used the identity T(v · V)- 1 f = 0, based on the fact that a particle 
cannot hit the sphere more than once without the intervention of at least one other gas 
particle. The first term on the right in Eq. (4.11), the free molecular flow contribution, 
is F0 in Eq. (1.1) and represents the contribution to the force from processes where 
particles whose momentum distribution is <p0 (1 + Pmv · V) collide once with the sphere. 
This process is illustrated in Fig. la. The force due to these collisions is proportional 
to the cross-sectional area of the sphere, nR2

, and to the velocity, V. The second term 
represents contributions from dynamical processes taking place between two gas particles 
and the sphere where one of the particles with momentum distribution <p0 (1 + Pmv · V) 
collides with the sphere, then suffers a collision with the other gas particle, and then 
one of the two gas particles involved in the collision hits the sphere again. Events of this 
type are sketched in Fig. lb,c,d. These events give corrections of O(R/1) to the free molec­
ular flow force, and determine the coefficient a1 in Eq. (1.1). For a B.G.K. model gas, 
the coefficient has been explicitly computed by WILLIS, by W ANG, and by KAN, and for 
a hard sphere gas a1 has been computed by SENGERS, KuPERMAN and W ANG, and for 
Maxwell molecules, by LIU, et a/ [10]. The third and fourth terms on the right in Eq. (4.11) 
take into account the dynamical processes between three gas particles and the sphere 
in which there are two molecule-molecule collisions and two or three molecule-object 
collisions, respectively. Typical events which contribute to the third and fourth terms in 
Eq. (4.11) are illustrated in Fig. le,f, respectively. While the third term on the right in 
Eq. ( 4.11) formally gives corrections of order K- 2 to F0 , its contribution to F is actually 
divergent [11]. Moreover, almost all of the terms in Eq. (4.11) are divergent. This diver­
gence is analogous to the divergence that appears in the order (na3) 2 term in the virial 
expansion of the transport coefficients of a moderately dense gas, and is due to collision 
processes where the particles travel arbitrarily long distances between collisions. Actually, 
because of the presence of all the other particles in the gas, a particle travels only a mean 
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free path or so between collisions. The individual terms in the expansion given in Eq. 
(4.11) fail to take these other collisions into account, and one must perform a resumma­
tion of the terms in the K- 1 expansion in order to include them. From these arguments 
one can conclude that the expansion of the Boltzmann propagator (v· V-L)- 1 in Eq. 
(4.10) in powers of the free particle propagators should not have been made. In view 
of the divergence difficulties of Eq. (4.11), workers in rarefied gas dynamics usually ex­
pand the Boltzmann propagators, using L := LN + L 1 , as 

(4.12) (v· V-L)-1 = (v· V-LN)-1+(v· V-LN)- 1L 1(v· V-LN)- 1+ ... , 

where for an arbitrary function of velocity, g(v), LNcp0 (v)g(v) is given by 

(4.13) LNcp0 (v)g(v) = -nk(v)cp0 (v)g(v) 

with 

(4.14) 

The operator LN takes into account a "collisional damping" which restricts the length 
of the trajectory of a particle in the gas to a mean free path or so. When the expansion 
given by Eq. (4.12) is inserted into Eq. (4.10), an expansion ofF is obtained where every 
term appears to be finite, and the resulting expansion ofF in terms of K- 1 is given by 
Eq. ( 1.1 ). The resummation does not affect the coefficient of order K - 1 , but replaces 
a divergent term of order K- 2 by a finite term of order K- 2logK - 1 • For a B. G .K. gas, 
the coefficient a~ has been computed by K.AN [10] and for this model one has that 

(4.15) 

where 

F _ 2V (nmnR2
) (8 + n) . 

o - T (2n{Jm)112 ' 

where 'YJo is the coefficient of shear viscosity for the B.G.K. gas, in the case that the gas 
molecules are reflected diffusely from the sphere. However, there is as yet no proof that 
the expansion given by (1.1) is convergent. 

At this point an interesting question arises: since it is possible to associate specific 
dynamical events with each term in the expansion of the right-hand side of Eq. (4.11), 
is it possible to derive Stokes' Law by using this expansion, and thus learn which dynamical 
events are important in the hydrodynamic regime? In fact, we have shown that this is 
possible, and to do it we proceed as follows. 

To derive Stokes' Law from Eq. (4.11), we do not iterate the Boltzmann propagators 
about the free particle propagator, but instead separate (v ·V -L)- 1 into a hydrodynamic 
part and a nonhydrodynamic part, as 

(4.16) 

Here P is a projection operator which projects onto the space of the (linearized) normal 
solution of the Boltzmann equation, given by 

(4.17) Pg(r, v)cp0 = f/>,.(r, v)<p0(v)a,.(r)+4»11(r, v) · a11(r)<p0(v)+f/>T(r, v)aT(r)<po(v), 
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where 
<Pn(r, v) = I , 

(4.18) 
4>,(r, v) = (.8m)1

'
2{v+ B~:) {vv- v; 1) · V+O(V2)}. 

<lir(r, v) = ( ~ r {( p; v2-3/2) +A(v) ( p; v2
- ; ) v. V+O(V2)}. 

a,(r) = J dv~i(r, v)g(r, v)gJ0 (v), i = n, v, T 

and A(v2), B(v2) are determined as the solutions of the linearized Boltzmann equations 

(4.19) LA ( 2) ( {Jm 2 5 ) ( {Jm 2 5 ) 
V 2 V - 2 V(/Jo = Z V - 2 V(/Jo 

and 

(4.20) 

respectively. Also g(r, v) is an arbitrary function of rand v. P J.. projects on the orthogonal 
space, and both P and PJ.. commute with (v· V-L)- 1 • Similarly we may separate ~VJ 

into a hydrodynamic part P~1p and an orthogonal part P J.. ~VJ. By inserting Eq. (4.16) 
into Eq. (4.9) and collecting some terms we obtain an expansion for P~VJ given by 

(4.21) P~VJ97o = {P(v· V-L)- 1PT+P(v· V-L)- 1PTP(v· V-L)- 1PT+ ... }{Jmv·V9Jo 

or 

(4.22) 

where 

(4.23) 

or 

(4.24) f = PTP+PT{PJ..(v· V-L)- 1PJ.. +PJ..(v· V-L)- 1PJ..TPJ..(v· V 

-L)-1PJ.. + ... }PJ..TP. 

The orthogonal part P J.. ~'P97o can also be expressed in terms of f and the projected prop­
agators, but we omit the details here. The first term in the right side of Eq. (4.24) for 
the collision operator f describes dynamical processes in which the fluid particle collides 
once with the sphere [19]. The remaining terms in the expression for f describe processes 
where the particles suffer any number of collisions with the sphere, but the particles travel 
only a mean free path or so between such collisions, since the propagator P J.. (v · V-L)-1 P J.. 
describes processes where the particle travels only a distance of the order of mean free 
path. On the other hand, the hydrodynamic propagator P(v · V-L)- 1 P describes dynamic­
al processes in which fluid particles travel over distances of several mean free paths and 
suffer many collisions with other fluid particles. Thus, the dynamical events which con­
tribute to the terms in the expansion (4.21) can be considered as combinations of collisions 
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of fluid particles with the sphere, described by T, connected by long excursions of 
fluid particles into the fluid, described by P(v · V- L)- 1 P. The sum in the curly 
brackets in Eq. ( 4.21) can now be written as 

00 

(4.25) P~1pg;0(v) = }; P~'ljJ<n>(r, v)g;0 (v) 
n=l 

with 

(4.26) P~tp<n>(r, v)g;0 = [P(v· V-L)- 1Pf]n{3mv· Vg;0 (v). 

To leading order in the Knudsen number these equations can be solved. For the case 
of diffuse reflection P~tp<n>g;0 is given to leading order by combination of two normal 
solutions as 

(4.27) 

where 

(4.28) 

(4.29) 

2 

P~tp<n>g;0 = }; a~n>u;(r, v)g;o(v) 
i=l 

Ut (r, v) = f/Jv(r, v) ·Ut (r), 

u2(r, v) = f/Jv(r, v) · u2 (r) 

with f/Jv given by the Eq. (4.18), and flow fields ut and u2 (r) are 

(4.30) A A A ( 1 R 1 ( R )
3

) A A A A ( 1 R 1 ( R )
3

) (z·r)r ----- +(z-(z·r)r) --+--
3 r 15 r 6 r 30 r 

ut (r) = 

( ( )3) ( ( )3) A AA 1 r 1 r A A AA 1 r 2 r 
(z. r)r 3R- 15 R +(z-(z. r)r) 3R- T5 R 

(4.31) A A " ( 2 R 4 ( R )
3

) (A A A)A) ( 1 R 2 ( R )J) (z·r)r ------ + z-(z·rr --+--
3 r 15 r 3 r 15 r 

A A A ( 1 r 1 ( r )
3

) A A A A ( 1 r 2 ( r )
3

) (z. r)r 3R + 15 R +(z-(z. r)r) 3R + T5 R 

for r > R, 

for r < R; 

for r > R, 

for r < R, 

where z is a unit vector in the direction of V. The successive values of a~n+l> are related 
by the equation 

(4.32) 

where M is the 2 x 2 matrix 

(4.33) 

a<n+ 1> - \' M a<n> 
i - L.J ij j ' 

1 

-~a~], 
7 R 

--{3-
15 A 

where A= 'YJo(nm)- 1({3nm/2)t' 2 , and a and {3 are positive. Theyarefunctionsof R/Awhich 
appear to be of order unity for all R/ A. To calculate M, we start from the relation 

(4.34) P~'ljJ<n+I>(r, v)g;0 = P(v ·V-L)- 1 PTP~tp<n>g;0 
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which we write as 

(4.35) 

and then substitute Eq. (4.27) for b7p<n> on the right-hand side. One can show that 

(4.36) P'iP~'P'"'rpo = - ( 1~ a'1"' + ; a~"') a(4>, · l) (l · i) ~(r- R)rp0 

-(+a~"'+ :5 a~') p4>, · (Z- (i · i)i) ~(r-R)rp0 • 

It is then possible to solve Eq. (4.35), to write the solution for b7p<n+o also in the form 
of Eq. (4.27), and to obtain M by relating a~n+t> to a~">. The factors et and fJ are determined 
by the structure of the boundary layer and their exact values are not known. 

From Eqs. (4.25), (4.27) and (4.32), it follows that Pb7pcp0 is 

(4.37) Pb7pcp0 =]; [1-M]ij 1ajl>uicp0 , 

i , j 

where 1 is the 2 x 2 unit matrix. As can be seen from Eq. (4.33) for M, the summation 
of Pb1p<n> leading to Eq. (4.37) is a summation of a power series in R/1. In the hydro­
dynamic limit, R/1 is a large quantity, and in order to apply the summation to the hydro­
dynamic limit, we regard to Eq. (4.37) as the analytic continuation of the result obtained 
by summing the terms in Eq. (4.27) inside their radius of convergence. 

The results obtained from Eq. (4.37) in the limit R/1 ~ 1 agree completely with those 
obtained by means of the normal solution. To leading order (now in 1/R) the constants 
et and fJ drop out, indicating that to leading order only the reflection mechanism of the 
particles by the sphere is important, but not the structure of the boundary layer. In fact 
the same result is obtained if f is replaced by the first term in Eqs. (4.23), (4.24), PTP. 
This shows that the dynamical events which are responsible for Stokes' Law are those 
in which the gas particles make long excursions into the fluid between collisions with 
the sphere. 

The force on the sphere can be shown to be given by 

(4.38) F = -n J dr J dvmvT[f:Jmv · Vcp0 +Pb7pcp0 ] 

and the evaluation of the force to leading order in 1/R leads to Stokes' Law, F = 6nrJRV. 
In a similar way the case of specular reflection and the intermediate case of a linear 
combination of specular and diffuse reflection lead to the results for F given by Eqs. (3.4)1 

and (3. 7), respectively. 
If we attempt to apply the preceeding analysis to compute the force per unit length 

on a cylinder, f, for both large and small K, serious difficulties arise almost at once. If we 
assume that, like the force on a sphere, f is linear in V, and then try to expand f, for 
large K, as a power series in K-t, using an expression similar to Eq. ( 4.11) for the 
sphere, we find that the first correction to the free molecular flow force, f0 , is divergent, 
as are all higher terms in the expansion of f in powers of K- 1 [11]. This divergence 
forces us to return to the analog of Eqs. (4.10), (4.11) for the cylinder 

(4.39) f = -J~~n ~ f dr f dvmv{Tcr1+Tcyt{v· V-L)- 1 Tcrt+ ... }{Jmv· Vcpo 

7 Arch. Mecb. Stos. nr 3/76 
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where L is the length of the cylinder and Tcri is the collision operator for molecule-cylinder 
collisions. Unlike the case of the sphere, the second term and all higher terms in the ex­
pansion are divergent even at large Knudsen numbers. These divergences come from 
the contribution of the hydrodynamic part of the (v · V-L)- 1 operator and are due to 
collision processes where the particles travel several mean free paths between collisions; 
they are similar to the divergences that appear in the "renormalized" theory of transport 
coefficients for a hypothetical two-dimensional gas. Unlike the divergence in the K - 1 

expansion, the divergences in Eq. (4.39) cannot be removed by further summation of 
the terms in the expansion. Instead, the difficulty can be traced to the assumption that 
the distribution function and the force are linear in V. This difficulty can be overcome 
by linearizing the distribution function about the asymptotically correct distribution 
function nq;0 (v, V) given by 

( 
{Jm )3/2 pm ( V)2 

nq;0 (v, V)= n 
2
n e-T v-

and retaining higher terms in V. For the case of high Knudsen numbers, this linearization 
leads to an expansion for f as [9a] 

(4.40) //10 = 1 + K- 1 [b 1 +b~ logM] + ... 
where M is the Mach number Vjc, and non-linear terms in V appear. To treat the case 
where K ~ I, one can use the normal solution method outlined in Sect. 3, but the Ossen 
corrections must be used to solve the resulting hydrodynamic equations; or one can use 
an iteration procedure similar to that outlined here. In the latter procedure one sums 
a geometric series in powers of [(R/ I) log (V/ c)]. The resulting expression for f, valid 
for K ~ I, is 

(4.41) f = 4n1JV 
I I ' 

--C-log-Re 
2 4 

where C is Euler's constant and the Reynolds number Re is 

RnmV 
(4.42) Re=--. 

1}o 

Thus we see that for a cylinder f"' Vlog V at large K, and to make the transition to 
small Knudsen numbers, one must sum a series in powers of (log V) which leads to f"""" 
"' VflogV for small K and V. 

5. Conclusion 

We have discussed the force on a sphere and on a cylinder placed in a gas stream. 
We considered the case where the Mach number is small and studied the force as a func­
tion of the Knudsen number. We generalized the Chapman-Enskog normal solution to 
the case where a macroscopic object is present, and we also solved the Boltzmann equa­
tion by iteration. The latter method was shown to be capable of giving the force on the 
object at both high and low Knudsen numbers. We may therefore conclude that the 
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force on the object is due to the same dynamical events in both limits. However, in the 
rarefied gas regime the dominant term is the free molecular flow term, while in the hydro­
dynamic regime the force on the object depends on the fact that the particles make many 
collisions with the object, and between these collisions they make long excursions into 
the fluid, traveling many mean free paths. 

It is interesting to notice that qualitatively, the force on a sphere is of the form 

(X(K)R2V 
F "' 1 + {J(K)R/1 ' 

where (X(K), {J(K) are functions of the Knudsen number but are of order unity for all 
values of K. The free molecular flow results and Stokes' Law can be obtained from this 
formula in the case when R/1--+ 0 and oo, respectively. To compute F in the intermediate 
region one would need to determine (X(K), {J(K) for all K and these quantities are in turn 
determined by the structure of the boundary layers around the sphere. To determine 
(X, f3 we would need a complete solution of the Boltzmann equation, which is very dif­
ficult to find, in general. However, Cercignani and eo-workers have developed a varia­
tional method which appears to give very good approximations to (X and {3 [5]. 

In the case of the force on a cylinder we have seen that the linear relation F = CV 
breaks down at both small and large Knudsen numbers. This breakdown of the linear 
laws of hydrodynamics seems to be a general feature of fluid systems with basically two­
dimensional geometry. It would be very interesting to know if the divergence difficulties 
which appear in the theory of transport processes in two-dimensional fluids [20] could 
be solved as well by the introduction of non-linear relations between the hydrodynamic 
fluxes and the related driving forces. 
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