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Kinetic theory of hydrodynamic flows

J. R. DORFMAN, H. VAN BEIJEREN, C. F. McCLURE (MARYLAND)

WE consider a dilute monatomic gas, flowing around a macroscopic heavy object. We derive
an extended Boltzmann equation for the gas in the presence of the object, and show that the
extended Boltzmann equation is equivalent to the usual Boltzmann equation, supplemented
by the boundary conditions imposed on the distribution function at the surface of the object.
We then proceed to solve the equation in two ways: (A) In the case when the mean free path
of a gas molecule is small compared to the characteristic size of the object, we look for normal
solutions of the Boltzmann equation where the distribution function is a functional of the
local density, local velocity, and local temperature. This method of solution leads to the Navier-
Stokes hydrodynamic equations, together with the boundary conditions that must be used to
solve them. We also find that, beyond this order, boundary layer effects must be taken into
account when formulating the boundary conditions satisfied by the hydrodynamic variables.
We discuss the flow around a sphere, and consider the theory for stick flow, slip flow, and the
region between pure stick and slip flows. (B) In the case when the mean free path is large com-
pared to the size of the object, we solve the Boltzmann equation by an iteration method which
is appropriate for describing the flow of a rarefied gas about the object, and we discuss the
close relation between this iteration and the Knudsen iteration usually used in rarefied gas
dynamics. We also show that the iteration method can also be used to treat the case when the
mean free path is small compared to the object’s size, and we derive Stokes’ Law and the Lamb
formula for the force on a sphere and a cylinder, respectively. By relating the terms in this
iteration expansion to the dynamical events taking place in the fluid, we are able to discuss
the dynamical origin of Stokes’ Law and the Lamb formula.

Rozwazany jest rozrzedzony gaz jednoatomowy oplywajacy wazki obiekt makroskopowy.
Wyprowadzono rozszerzone réwnanie Boltzmanna dla gazu wraz z obiektem i pokazano, ze
rozszzrzone rownanie Boltzmanna jest rOwnowazne zwyklemu réwnaniu Boltzmanna, uzupel-
nionemu warunkami brzcgowyml, nalozonyml na funkcje rozkladu na powierzchni obiektu.
Z kolei przystapiono do rozwigzania tego réwnania dwoma sposobami. (A) W przypadku,
gdy droga swobodna czasteczki gazu jest mala w poréwnaniu z charakterystycznym wymiarem
obiektu, poszukuje si¢ normalnych rozwiazan réwnania Boltzmanna, w ktérych funkcja roz-
kladu jest funkcjonalem lokalnej gestoéci, lokalnej predkoéci i lokalnej temperatury. Ta metoda
postgpowania prowadzi do réwnan hydrodynamiki Naviera-Stokesa, ktdre nalezy rozwigzywac
wraz z warunkami brzegowymi. Wykazano réwniez, ze oprocz tego przy formulowaniu warun-
kéw brzegowych, spelnianych przez zmienne hydrodynamiczne, musza by¢ uwzgledniane
efekty warstwy przyéciennej. Przedyskutowano przeplyw wokét kuli i rozwazono teorie dla
przeplywu z przyleganiem, przeplywu poélizgowego oraz obszar miedzy idealnym przeplywem
z przyleganiem i przeplywem bez poélizgu. (B) W przypadku, gdy droga swobodna jest duza,
réwnanie Boltzmanna rozwigzano metoda iteracyjna, ktéra jest stuszna dla opisu przeplywu
rozrzedzonego gazu wokol obiektu oraz przedyskutowano $cisty zaleZzno$é miedzy ta iteracja,
a iteracja Knudsena, stosowang zwykle w dynamice gazbw rozrzedzonych. Pokazano réwniez,
7e metoda iteracyjna moze by¢ wykorzystana w przypadku, gdy droga swobodna jest mala
w poréwnaniu z rozmiarami ciata oraz wyprowadzono prawo Stokesa i wzdr Lamba odpowied-
nio na sit¢ na kuli i na walcu. Przez powigzanie odpowiednich czlonéw w tym rozwinieciu
iteracyjnym z dynamicznymi efektami zachodzacymi w cieczy jeste$my w stanie przedyskuto-
waé dynamiczne pochodzenie prawa Stokesa i wzoru Lamba.

PaccmaTpHBaeTCA paspe)eHHbIH, OJHOATOMHBIH Tras, oOTeKalolmWid BECOMBIH MaKPOCKOMH-
ueckuit o6bext. BoiBenero paciunpenHoe ypapHeHue BosbumaHa [UIs ra3a COBMECTHO ¢ 00BeK-
TOM M IOKA3aHO, UTO DACUIMpPEHHOE ypaBHeHHe BoJblMaHa SKBUBATIEHTHO OOGLIKHOBEHHOMY
ypaBHeHuI0 BosslmMana AONOMHEHHOMY IPAHHYHBIME YCIOBHSIMH, HANIOYKEHHBIMHE Ha QYHKIMIO
pacnpefiesieHus Ha MOBEPXHOCTH 00bexTa. B CBOIO OYepe/h NPHCTYIAETCA K PEIUCHHIO 3TOr0
YypaBHeHHA ABYMs criocobamu: (A) B ciryuae, xorma ammma cBoGogHoro mpoGera MOJIEKYJIbI

6 Arch. Mech. Stos. nr 3/76



334 J.R. DorFMAN, H. vAN BEUDEREN AND C. F. McCLURE

rasa Maja 1Mo CPABHEHMIO C XApaKTEPHCTHYECKHM DPasMepoM OOBeKTa, HIIYTCA HOpMambHbIE
pelIeHust ypaBHeHus BosblumaHa, B KOTOPBIX QYHKIMA Daclipele/IeHHA ABNACTCA (hyHKIMO-
HAJIOM JIOKANIbHOM IJIOTHOCTH, JIOKATBHOH CKOPOCTH M JIOKAIBHON TEMIEPaTyphl. DTOT METOX
HOCTYNaHuA BeJeT K ypaBHeHMAM rugpomnHamuxn Hasne-Crokca, KOTOpEIE CleyeT pellaTh
COBMECTHO C FPaHHYHBIME YCIoBHAMH. To)ke [OKa3aHO, YTO KPOME 3TOr0 IpH GOPMYIHPOBKE
TPaHHYHBIX YCJIOBHMH, YAOBJIETBODEHHBIX THIOPOAMHAMHYECKMMH TMEepPEMEHHBIMH, HODKHBI
6bITh yuTeHb! 3ddexTs! norpanmuHoro cnos. O6cy:xaeno obTexanue cdepsl H paceMoTpeHa
TeopHA A ODTEKaHHA ¢ MpHINTaHHEM, OOTEKAHHA CO CKOJIBMKEHHEM, a TaKKe JUIst oBnacTu
MEM(TY HaeaTbHbIM 0OTeKaHHEM C MpuimMraHuem H obrexanuem Ge3 ckombykenus. (B) B ciyuae,
Koraa aymHa ceobogHoro mpobera Gonmbluas, ypaBHeHHe BosbliMaHa pellleHO HTEpAaLMOHHBIM
METOJOM, KOTOPBHIH CIpPaBEUIMB JJA OMHCAHHA 00TeKaHUs 00beKTa paspe)KeHHBIM Ta3oM,
a TaroKe obCY)HOeHA TeCcHAadA 3aBHCHMOCTB MEXKAY 3TOoil MTepanmedl M HMrepaumeit Knymcena,
DpUMeHsAEMOi 0OLIYHO B IMHAMHKE Pa3peXKeHHbIX ra3oB. IToKa3aHo TOMKeE, YTO HTEPALIHOHHBIH
MeTo[J MO)KeT OBITh MCTIONB30BAH B CIyvae, KOrja JAJMHa cBoSomHoro mnpobera mana 1o cpas-
HEHMIO C pasMepaMu Tea H BbiBegeH 3akoH Croxca u ¢opmyna JIamba coOTBETCTBEHHO AMA
cunbl Ha cdepe ¥ Ha wuauHApe. ITyTem B3aHMOCBA3H COOTBETCTBYIOIUMX UJIEHOB B 3TOM
MTEPaUMOHHOM Da3lOMEHHH C AHHAMAYECKHMH 3(¢eKTaMH, NPOKCXOAAIIMMHE B YKHIKOCTH,
MBI B COCTOAHHMM 0GCYaHUThH AMHAMHUYECKOE IPOMCXOXKIeHMe 3aKoHa Crokca u dopmyns! Jlam6a.

1. Introduction

ConsiDerR the flow of a gas stream around a solid, heavy, macroscopic object. Let ¥ be
a characteristic velocity of the gas stream; c, the velocity of sound in the gas; R, a charac-
teristic size of the object; /, the mean free path of a molecule in the gas; and a, the range
of the intermolecular forces of the gas molecules. From these we construct the dimension-
less quantities, the Mach number M = V/¢, the Knudsen number K = //R, and the ratio
of the range of the intermolecular forces to the mean free path a/l. One of the central
problems of the kinetic theory of gases is to determine the properties of the gas flow as
a function of M, K, and afl, assuming that the intermolecular force and the gas-solid
interaction are known.

Here we will discuss one aspect of this problem, namely the kinetic theory for the
Knudsen number dependence of the slow flow (M < 1) of a dilute gas, for which afl < 1,
around a sphere or a cylinder. Even for these conditions there are a number of difficult
problems, and we shall take the liberty of ignoring here the additional complications
that arise when one attempts to extend the theory to higher densities or higher Mach
numbers.

The starting point is, of course, the Boltzmann transport equation, satisfied by the
one particle distribution function for the gas particles. To treat the flow around an object,
the Boltzmann equation must be supplemented with boundary conditions satisfied by the
distribution function at (i) the surface of the object (which takes into account the micro-
scopic interaction mechanism between the gas particles and the object) and (ii) points
very far from the object [1]. Then the quantities of interest for describing the flow are
expressed in terms of the distribution function. Such quantities are o(r, t), the average
mass density of the gas at a point r at time ¢; u(r, ¢), the average local velocity of the
gas at r, ¢; F(¢), the force exerted on the object by the gas at ¢; and so on.

So far most of the work on these gas flows has been concentrated on the limiting
cases where K < 1, the Stokes or Clausius regime where the mean free path is much
smaller than the characteristic size of the object, and K > 1, the rarefied or Knudsen
regime where the mean free path is much larger than the characteristic size of the object [2].
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For K < 1, the Boltzmann equation should lead to Stokes Law for the force on
a sphere, say, and to the same results for o(r, ) and u(r, 7) as given by the continuum
Navier-Stokes hydrodynamic equations. In fact, one might be tempted to think that
since the Chapman-Enskog normal solution [3] of the Boltzmann equation leads directly
to the Navier-Stokes hydrodynamic equations, the derivation of Stokes Law should be
simply an exercise in classical hydrodynamics. However, this procedure skips over some
problems which have still not been solved in general. That is, the Chapman-Enskog
procedure does not take into account the interactions of the fluid particles with the macro-
scopic object, but rather it ignores the possible presence of an object or boundaries, in
general. As a result, it is not clear a priori that the Chapman-Enskog solution is a solu-
tion of the Boltzmann equation when the boundaries are properly taken into account.
In fact, as we will discuss later, the Chapman-Enskog solution breaks down near the
surface of the macroscopic object, and there are kinetic boundary layer effects which
must be taken into account [4]. Furthermore, the Chapman-Enskog solution does not
give the boundary conditions which the hydrodynamic variables must satisfy. Instead,
these boundary conditions must be imposed on the variables without being related to the
boundary conditions that the distribution function itself must satisfy.

It seems clear that a satisfactory derivation of Stokes Law along these lines must
proceed by deriving both the Navier-Stokes hydrodynamic equations and the appropriate
boundary conditions for the hydrodynamic variables from the Boltzmann equation and
the boundary conditions satisfied by the distribution function. We shall discuss this problem
in more detail in Sect. 3.

Another approach to the derivation of Stokes Law from the Boltzmann equation
has been developed by CERCIGNANI and co-workers for simple model gases, by using
variational methods [5]. In addition, SCHARF has obtained Stokes Law for the force on
a sphere and Lamb’s formula for the force per unit length on a cylinder by adding source
terms to the Boltzmann equation [6]. However, he does not derive these source terms
from the microscopic gas-solid interaction mechanism.

In any event, a discussion of the hydrodynamic results for the flow of a dilute gas
around an object on the basis of the kinetic theory of gases (i.e., from the Boltzmann
equation) requires that one understand:

(a) The derivation of the Navier-Stokes hydrodynamic equations from the Boltzmann
equation, together with the boundary conditions the hydrodynamic variables must satisfy,

(b) The role of higher order hydrodynamic equations, such as the Burnett and super-
Burnett equations, in treaiing these gas flows (one must also have a derivation for the
additional boundary conditions these higher order equations require).

(c) The dynamical origin of the hydrodynamical results, such as Stokes Law and the
Lamb formula for the force on a cylinder, in terms of collision processes in the gas. In
particular, one would like to understand the dramatic difference between the form of
Stokes Law F = (V for the force on a sphere, which is linear in the flow velocity, and
the form of Lamb’s formula F = aV/(b+log M) for small M for the force per unit length
on a cylinder whose long axis is perpendicular to the flow [7].

(d) How to extend the discussion of results for K < 1 to higher Knudsen numbers
and eventually connect them to the results for rarefied gas flows.

6*



336 J.R. DorFMAN, H. VAN BEUEREN AND C.F. McCLURE

The other limit where the Boltzmann equation has been extensively applied to study
gas flows is the case of rarefied flows where K > 1. Here one solves the Boltzmann equation
by expanding the distribution function in terms of the inverse Knudsen number, explicitly
taking into account collisions between gas molecules and between the molecules and the
object. As an illustration, this expansion leads to an expression for the force F on a sphere,
for K > 1, given by [8, 9a]

(1.1) F|Fy = 1+a,K ' +a}K-2logK~* +a,K~2+ ...,

where F, is the free molecular flow force, which is determined by single collisions between
the gas molecules and the object, and F, is proportional to mR?, the cross sectional area
of the sphere, and to the flow velocity V. The coefficient a; is determined by sequences
of three or more collisions taking place among two gas particles and the object, as il-
lustrated in Fig. 1 (b,c,d.); a; is determined by sequences of four collisions among three
particles and the sphere as illustrated in Fig. le; and a, is determined by collision se-
quences involving three or more particles and the sphere. For special models the coefficients
a, and a, are known [10]. Moreover, the force F, for small V, appears to be linear in V

N

3 >
5 7

e f

FIG. 1. The collisions of fluid particles with the sphere which are taken into account in the expansion of the
force on the sphere in powers of the inverse Knudsen number. Fig. 1a represents the collision which is
responsible for the free molecular flow force. Figs. 1b,c,d represent dynamical events which contribute
to the K=! correction of this value. Fig. 1d represents a process where the second fluid particle does not
hit the sphere but would have done so, had the second collision not taken place. Fig. le represents events
which contribute to order K-2 logK~!, and the events represented by Fig. 1f contribute to order K=2,
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for all Knudsen numbers. There is a close relation between the form of the expansion
of F as given by (1.1) and the density expansion of the transport coefficients. For example,
the viscosity # of a moderately dense gas is given by

(1.2) n[no = 1+n,(na®)+n3(na)’log(na) +n,(na®)>+ ...,

where 7 is the number density of the gas and %, the viscosity at low density. This relation
exists because the corresponding coefficients, (Fy, 7o), (@, 7,), (@3, 73), etc., are deter-
mined by similar kinds of dynamical events [9, 10].

The force per unit length, £, on a cylinder when K > 1 and M < 1 has also been
studied. Even for rarefied flows f is not linear in ¥, but has an expansion of the form
[9, 11]

(1.3) flfo = 1+K=1[b, +bilog M)+ ...,

where f, is the free molecular flow force. The log M term is the result of dynamical pro-
cesses in which a particle, after colliding with the cylinder, makes a long excursion into
the fluid, traveling several mean free paths before returning to the cylinder. Similar pro-
cesses occur in the flow around a sphere, but they do not lead to divergences in F/F, as
M — 0. In addition, there is a close relation between the K=! expansion of fand the density
expansion of the transport coefficients of a hypothetical two-dimensional gas [9]. We
will discuss this relation further in Sect. 4.

Although the properties of slow gas flows at large Knudsen numbers seem to be well
understood, as was mentioned in Problem (d) above it still remains to extend the theory
to smaller Knudsen numbers and eventually to connect the results derived for both ex-
tremes.

In this paper we will discuss some of our recent work on problems (a)-(d) mentioned
above. In Sect. 2 we will discuss our starting point, which is a way of writing the Boltz-
mann equation so that the boundary conditions satisfied by the distribution function at
the object’s surface are explicitly taken into account. In Sect. 3 we will use this Boltzmann
equation to discuss the gas flow for K < 1 and show that a generalization of the Chap-
man-Enskog normal solution method, when the boundary conditions are explicitly taken
into account, leads to the hydrodynamic results for the gas flow. In Sect. 4 we will show
how kinetic theory can explain the flow at high and low Knudsen numbers from a unified
point of view — by showing that the dynamical events responsible for the force on the
object are essentially the same in both cases. In Sect. 4 we will also discuss the difference
between the flows around a sphere and the flows around a cylinder. In Sect. 5 we conclude
with a brief discussion of the main results of this study. Here we will not give all the details
of the relevant calculations, but merely summarize the main results. A more detailed
description of these calculations will be published elsewhere.

2. The extended Boltzmann equation
We begin by considering the equation satisfied by f(r, v, #), the single particle dis-

tribution function of the gas particles. We take f(r,v,t) to be normalized so that
S(r, v, t)drdv is the number of gas particles in dr about r and in dv about v at time ¢z In
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the absence of external forces, but in the presence of a macroscopic object, f(r, v, t) can
change in time through three different processes:

(i) Free streaming, where molecules at (r, v) at time ¢ move to (r+vdt, v) at time
t+dt;

(ii) Collisions of gas molecules with each other. The effects of these collisions on
f(r,v, 1) is taken to be given by the usual Boltzmann collision operator; and

(iii) Collisions of the gas molecules with the object. These collisions also cause f(r, v, )
to change in time. Although these collisions are usually treated by formulating their
effect on fas a boundary condition, there is no need to do so, and the result of the collisions
can be incorporated directly into the Boltzmann equation. We will limit our discussions
here to the case where the particles make specular or diffuse collisions with the object.
Even more general collision mechanisms can be incorporated, but we have not yet at-
tempted to discuss more general cases.

Taking into account the three above mentioned processes by which f(r, v, t) may
change in time, we are led to the extended Boltzmann equation
@2.1) ﬂgﬁ = v-VA(r, v, )+ I, )+ TS (x, v, 1).
Here, the term —v- Vf on the right-hand side of the Eq. (2.1) accounts for the change
in f due to free streaming. J(f,f) takes into account the molecule-molecule collisions
and is given by

@2) I = [dv, [bdb [ dplv—v,|Lf(x,vi, OFCr, v, A, v, DA, ¥4, D],
0 0

where b is an impact parameter, ¢ the azimuthal angle, v’ and v; the restituting velocities
of two particles which lead to velocities ¥ and v, when the particles collide with impact

parameter b and azimuthal angle ¢ + . The term T describes the rate of change of F due

to molecule-object collisions, and the precise form of - depends on the shape of the
object and the interaction mechanism [11, 12, 13]. In the case when the object is a sphere,

Tf is given by
23) T.,f=R*[délv-5|{6(v- 5)6(—R&)

xf(r,v=2(v: 6)&, t)—8(r—R3)O(—v- &) f(r, v, )}
and

Q@4 Tuf= R [ dolv- §{8(v" $)do.w(®) Qrpm)'?
x8(r—R3) [ avo(—v - OV - 5If(x, V', )= 8(x— RD)O(—v " O)f(x, V, 1)}

for specular and diffuse collisions, respectively. Here R is the radius of the sphere which
is assumed to be centered at the origin [14], & denotes a unit vector, 6(x) is the unit step
function 6(x) = 1 for x > 0, and is zero elsewhere. ¢, (v) is the equilibrium distribution

32 fum
@9 owt®) = (B )5,
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where T, = (ksf,)""! is the temperature of the macroscopic sphere. The action of the
operators i'_",, and T can be understood by referring to Fig. 2. Here we take the sphere
to be centered at the origin, and the vertical axis to be in the direction of v. To compute
the rate of decrease of particles with velocity v through collisions with the sphere, we

~

v
4
v
vi’
v
a
v
v
v.I'
Fig. 2. Collisions of a fluid particle with the .~
sphere. In Fig. 2a the fluid particles make specular
collisions with the sphere. In Fig. 2b particles that v
collide with the sphere are re-emitted according
to a Maxwell-Boltzmann distribution function. b

note that such particles will collide with the sphere at point r = Rg, on the hemisphere
v+ ¢ < 0. These collisions are accounted for by the second terms on the right-hand sides
of Egs. (2.3) and (2.4). The factor |v- g| occurs because one needs the rate at which
particles with velocity v strike the sphere. To compute the rate at which particles with
velocity v are produced at the sphere, we need to consider the specular and diffuse mech-
anisms separately. In the case of specular reflection, particles with velocity v are pro-
duced at a point r = Rd, on the hemisphere v+ @ > 0, whenever a particle with velocity
v—2(v- 6)¢ strikes the sphere at the point. This accounts for the structure of the first
term on the right-hand side of Eq. (2.3). In the case of diffuse reflection, we assume that
whenever a particle hits the sphere it is absorbed and immediately re-emitted according
to a Maxwell-Boltzmann distribution function, described by a temperature Ty, into
direction pointing outward from the sphere. Therefore a molecule with velocity v is pro-
duced at a point r = Ro on the hemisphere if a molecule with velocity v’ strikes the sphere
at this point (v'- @ < 0) and is re-emitted with velocity v. These facts, together with the
requirement that the rate at which particles hit the sphere at the point r = R be equal
to the rate at which they leave, determine the structure of the first term on the right-hand
side of Eq. (2.4).
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We now show that the extended Boltzmann equation (2.2) is equivalent to the ordi-
nary Boltzmann equation, where the ff term does not appear, but is supplemented by the
boundary conditions that are imposed on the distribution function at the surface of the
sphere, in the case of specular or diffuse reflection. To do this, we look for solutions of
Eq. (2.1) which vanish inside the sphere, since no particles should be located there. That
is, we look for solution f of the form

(2.6) S, v, t) = WIOAr, v, 1),
where

1 for r> R,
1) W) = 0forr<R

and where f(r, v, t) is taken to be continuous, as a function of 7, as r —» R+, Substituting
f, given by Eq. (2.6) into Eq. (2.1) and noting that

(2.8) v-VW({r) ="-vé(r—R),

where T = r/|r| is a unit vector in the direction of r, we obtain [15]

29 WOl L +v-i-1G.5| = 7,

where

(2.10) Tf = Tf—f(v- ) 6(r—R).

Using Eqgs. (2.3) and (2.4) we find that T, and T are given by

@.11) T, f = 0(v- P)8(r—R) |v- #| [fix, v—2(v-D)E, )—f(x, v, 1)]
and

212) Tuf=0-5)8(¢—R) |v: 1| [po,.(v) 2nB,m)'?
x [ aviv - #16(=v - DA, V', )-f,v, D).

Since the right-hand side of Eq. (2.9) is proportional to 8(r—R), and f is assumed to be
continuous at r = R, a solution to this equation can only be found if the right and left-

hand sides vanish identically. The vanishing of the lef-hand side requires that f satisfy

(2.13) % +v-Vf=J(f, /), r>R
and the vanishing of the right-hand side requires, in the case of specular reflection, that
(2.14) fle,v, ) =f@x,v=2(v- i, 1), atfrl]=R forv-7>0

and in the case of diffuse reflection that
2.15) F@,9,0) = go@rpum) [ aviv-HO(=v -Df(x, v, 1),
atr=R for v-7>0.

The Eq. (2.13) together with the boundary conditions (2.14) and (2.15) form the
usual starting point for the kinetic theory of gas flows [1] and we see that they are equi-
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valent to Eq. (2.1). We also see that from Egs. (2.5), (2.9) and (2.11) or (2.12) the distri-
bution function f(r, v) = npe(2) W(r) is the solution of Eq. (2.1) which corresponds to
the case of total equilibrium. A similar discussion can be given for cylindrically shaped
objects and so on, but we will not elaborate this here.

There are two principal advantages in using Eq. (2.1) as the starting point of our
analysis.

(1) The boundary conditions are already incorporated into the equation, and this
simplifies some of the mathematics.

(2) The treatment of the molecule-object collisions by means of a binary collision
operator in the Boltzmann equation will greatly facilitate the dynamical analysis of the
gas flows.

A third advantage is that the use of collision operators in this way allows us to treat
the case where the macroscopic object can move, e.g., the case of Brownian motion, by
methods similar to those employed here.

3. Normal solutions of the extended Boltzmann equation

As we discussed earlier, the Chapman-Enskog normal solution of the Boltzmann
equation ignores the possible presence of boundaries, and hence provides a derivation
of the hydrodynamic equations but not the boundary conditions needed to solve them.
In this section we shall briefly consider the normal solutions of the extended Boltzmann
equation (2.1), or equivalently Eq. (2.9), in order to discuss some of the features that
arise when the boundary conditions are explicitly taken into account. We will discuss
the flow around a sphere here and refer the reader to the discussion of more general flows
given by CERCIGNANI [1, 2].

We first consider whether it is possible to apply the Chapman-Enskog method in
order to obtain a normal solution to (2.9). This would require that outside the sphere
fbea Chapman-Enskog normal solution, while at the surface of the sphere f should
satisfy the condition 7f = 0. From the work of Chapman and Enskog we know that
the normal solution fys(r, v, t) depends on time through the time variation of the local
density n(r, ), the local velocity u(r, ¢), and the local temperature 7'(r, t), and in ad-
dition is given by an expansion in powers of K = //R, the Knudsen number, in the form
3.1 Sus(r, v, 1) = fo(r, vin,u, T)+fi(r,vjn,u, )+ ...,

where f, is a local equilibrium distribution given by
3.2) Sox,vin,u, T) = n(r, t)(ﬁ( t)m) exp— -ﬁ(—r’zg?—icz(r, N,

where B(r,t) = (kgT(r,2))"* and C(r,?) = v—u(r,1?), f, is proportional to the
gradients of the hydrodynamic variables and is given by

33) £, vin,u,T) = ,;,[A(Cz)(ﬁ(r

» )m 2*5;2) C-VlogT(r, 1)

+B(C3)(CC—~——I) Vu(r, 1).
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Here I is the unit dyadic tensor, and the functions 4(C?) and B(C?) are determined by
solving an inhomogeneous, linearized Boltzmann equation [3]. This normal solution,
when inserted into the equations expressing the conservation of particle number, mo-
mentum, and energy, then leads to the result that », u, T satisfy the hydrodynamic equa-
tions. For example, keeping only f, in Eq. (3.1) one obtains the Euler equations, for f
and f, one obtains the Navier-Stokes equations, and so on. However, to complete the
discussion one has to show that fys satisfies Tfys = 0. Since fys is expanded in powers
of //R, this requirement implies that

(3.4) Tfi(r, vin,u, T) = 0, for i = 0,1,2 ...

If one restricts oneself to the leading orders, boundary conditions can be obtained from
Eq. (3.4) for specular and for diffuse reflection, respectively, and are the familiar hydro-
dynamic boundary conditions, given in Table 1. The boundary conditions for specular

Table 1. Boundary conditions on the hydrodynamic variables at the surface of sphere

r=R.
Specular Reflection Diffuse Reflection
uf®)-F=0 ur) =0
(fP+@r): Vu=0 7o) = Tw
(fO+6r): Vu=0

where
{-§mt-@m=0
$d s Glin
T V. T(®) =0

reflection are derived from Eq. (3.4) using i = 0, 1, and for diffuse reflection, using only
i=0.

These boundary conditions lead to expressions for the force on the sphere given by
(3.4') F,, = 4xnRV, Fy = 6xnRV
for specular and diffuse reflection, respectively. Here % is the shear viscosity of the gas.
One of the interesting consequences of this analysis appears when one introduces a re-
flection mechanism which is a linear combination of specular and diffuse reflection with
accomodation coefficient « by [, 2, 16]
(3.5 T, = aTa+(1-a)T,,.
When « is of order K, i.e. « ~ I/R, T, leads to a boundary condition where the tangential
stress on the sphere is proportional to the tangential fluid velocity at the surface, and the
corresponding slip coefficient £, is
(3.6 Lo = 2/a.
The result has been obtained before by more elementary methods [16]. The force on the
sphere is then given by
2R+ 25,1)

3.7 = 2l gy
3.7 F 6m}RV(2R+3(§',Z
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where 1 is a length on the order of a mean free path, given by 1 = n(Bmn/2)'*(nm)~1.
The Eq. (3.7) holds only as long as a is 0(//k), but for all & the product af; is of order 1.
Therefore when a is 0(1), stick boundary conditions are correct up to terms of order
1R, and the force on the sphere is given by the usual form of Stokes Law, Eq. (3.4'),.

If one attempts to use (3.4) to derive higher order boundary conditions on the hydro-
dynamic variables for use in solving the Burnett, super-Burnett, etc., hydrodynamic
equations, one is led immediately to serious inconsistencies with the lower order boundary
conditions, and other difficulties [17] which force one to conclude that after some order
in //R the normal solution is no longer a solution of the extended Boltzmann equation.
This is not surprising since it is well known, from other kinetic theory calculations, that
there are boundary layers close to the surface of the sphere in which the distribution
function changes over distances of the order of a mean free path, and hence cannot be
described by a normal solution of the Boltzmann equation. Therefore we must look for
generalized normal solutions of the extended Boltzmann equation which approach the
Chapman-Enskog solution far from the sphere but include the effects of the boundary
layer extending over a few mean free paths in the vicinity of the surface of the sphere.

For simple model gases and for simple gas flows — for example, the flow of a B.G.K.
gas past a fixed wall [I] — it is possible to find the generalized normal solution explicitly,
and to exhibit the boundary layer effects. However, even for this simple case a number
of problems remain to be solved. For example, in spite of the fact that the distribution
function is known, the role of the higher order hydrodynamic equations is not clear, nor
is it clear how to derive the boundary conditions that must be used to obtain their solu-
tion.

In the discussion of dynamical events taking place in the gas (in the next section) we
will sketch the derivation of an equation [Eq. (4.22)] which might be a convenient
starting point for the derivation of the generalized normal solutions of the stationary,
linearized Boltzmann equation. These solutions, in turn, lead to the stationary, linearized
hydrodynamic equations with the boundary layers taken into account. However, we
have not yet made a detailed study of these generalized normal solutions.

We may conclude, therefore, that a generalization of the Chapman-Enskog normal
solution method to this case where the boundary is taken into account does lead to
Stokes Law for the flow around a sphere, but the structure of the boundary layer and the
role of higher order hydrodynamic equations needs considerably more investigation.

4. From rarefied gas dynamics to hydrodynamics

When the mean free path / is much larger than the characteristic size, R, of the object,
the equations of hydrodynamics cannot be used to describe the gas flow, since it is assumed
in their derivation that //R is small. Instead, when //R > 1 one may regard the molecule-
object collisions as a perturbation to the free molecular flow of the gas. In this section
we will show how the equations of rarefied gas dynamics are obtained from the extended
Boltzmann equation. We will also show how these equations may be used to obtain an
analysis of hydrodynamic flows in terms of dynamical events taking place in the gas, and
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to obtain the correct form of Stokes” Law, and Lamb’s formula for the force on a sphere
and cylinder, respectively. We will first consider the force on a sphere of radius R, and
then discuss the modifications needed to derive expressions for the force on a cylinder.

By considering the momentum transferred to the sphere by the gas particles, we easily
find that the force on the sphere is given by the formula

4.1 F=— fdrfdvmvff(r, v, 1),

To obtain an expression for f, we consider the case where the Mach number M < 1, and
we suppose that the disturbance in the gas caused by the presence of the sphere is small
enough that we may expand the solution of the Eq. (2.1) about the equilibrium solution,
and keep only terms linear in the deviation from equilibrium. We assume that infinitely
far away from the sphere the distribution function of the gas is

3/2
42 f@,v=n (%;1) exp— ﬁTm (v—V)? = npo(v) (1+Pmv-V), as r - o0

and suppose that the temperature of gas at r — oo is equal to that of the sphere, in the
case of diffuse reflection. Since we are interested in the steady state force on the sphere,
we look for stationary solutions of the Eq. (2.1) of the form

(4.3) S, v) = nW(r)o(v) +n?(r, v) o
and the equation for, ¥ is [18]
(4.4 (v V—L-T)¥(r, V) @o(v) = 0,

where the linearized Boltzmann collision operator is given by

a 2n
@5) L¥po=n [ dv, [ bdb [ dplv—v,|pe(0)go @), vi)+¥(x, V)-¥(r, V)
0 0
=¥(r, vyl
In deriving Eq. (4.3) we have used the fact that nW(r)go(v) is the equilibrium solution

of Eq. (2.1). We separate the distribution function into its asymptotic part and a part dy
which vanishes far from the sphere, as

4.6) Y(r,v) = fmv-V+dy(r,v)
to write the Eq. (4.4) as
@.7) (V-V—L-T)éy = Tmv- V,

where we have used the fact that both v-V and L vanish when acting on v- Vg,. The
Eq. (4.6) leads to an expression for dy which is linear in V. We may write the solution
of Eq. (4.6) formally as

(4.8) Sy(r, Vo) = (v V—L—T)"Thmv- Vo,.

Further, by iterating the inverse operator about the operator (v:V—L)~!, called the
Boltzmann propagator, we obtain an expression for dygpq(v) as

4.9)  y(r,V)pe(v) = {(v-V—-L) 'T+(v: V-L) 'T(v-V-L)!
+ (V- V=L)'T(v - V=L)'T(v-V—=L) "+ ...} fmv - Vep,.
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Using Egs. (4.1), (4.3), (4.6) and (4.9), we obtain an expression for F
(4.10) F=—n[dr [ dvmy{T+T(v- V=L)"'T+ ...} pmv- Voo (o),

where we have used the fact that the equilibrium distribution function nW(r) p,(v) does
not give any contribution to the force on the sphere. The first term in the expansion re-
presents the free molecular flow force on the sphere. The second term contains all dynamical
processes in which there are two collisions between gas particles and the sphere, and an
arbitrary number of intermediate collisions between the gas molecules. The third term
contains processes with three collisions between the gas molecules and the sphere, sepa-
rated by intermediate collisions among the gas molecules, and so on. An expansion of F
in powers of the inverse Knudsen number K~* = R// can be obtained from Eq. (4.10)
by expanding the Boltzmann propagators in powers of the free particle propagator
(v-V)~!. This leads to the following expansion for F

@11) F= —n]dr [dvmy{T+T(v-V)'L(v-V)"'T
+T(v: V) L(v- V) 'L(v: V)" *T+T(v: V)~'L(v- V)~!
xT(v- V) IL(v- V) 1T+ ...} pmv - Voo,

where we have used the identity T(v:-V)~!T = 0, based on the fact that a particle
cannot hit the sphere more than once without the intervention of at least one other gas
particle. The first term on the right in Eq. (4.11), the free molecular flow contribution,
is Fy in Eq. (1.1) and represents the contribution to the force from processes where
particles whose momentum distribution is @o(1+pfmv- V) collide once with the sphere.
This process is illustrated in Fig. 1a. The force due to these collisions is proportional
to the cross-sectional area of the sphere, #R?, and to the velocity, V. The second term
represents contributions from dynamical processes taking place between two gas particles
and the sphere where one of the particles with momentum distribution @y(1+pgmv-V)
collides with the sphere, then suffers a collision with the other gas particle, and then
one of the two gas particles involved in the collision hits the sphere again. Events of this
type are sketched in Fig. 1b,c,d. These events give corrections of O(R//) to the free molec-
ular flow force, and determine the coefficient a, in Eq. (1.1). For a B.G.K. model gas,
the coefficient has been explicitly computed by WiLLis, by WANG, and by KAN, and for
a hard sphere gas a, has been computed by SENGERS, KUPERMAN and WANG, and for
Maxwell molecules, by Liu, et al [10]. The third and fourth terms on the right in Eq. (4.11)
take into account the dynamical processes between three gas particles and the sphere
in which there are two molecule-molecule collisions and two or three molecule-object
collisions, respectively. Typical events which contribute to the third and fourth terms in
Eq. (4.11) are illustrated in Fig. le,f, respectively. While the third term on the right in
Eq. (4.11) formally gives corrections of order K~2 to F,, its contribution to F is actually
divergent [11]. Moreover, almost all of the terms in Eq. (4.11) are divergent. This diver-
gence is analogous to the divergence that appears in the order (na®)* term in the virial
expansion of the transport coefficients of a moderately dense gas, and is due to collision
processes where the particles travel arbitrarily long distances between collisions. Actually,
because of the presence of all the other particles in the gas, a particle travels only a mean
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free path or so between collisions. The individual terms in the expansion given in Eq.
(4.11) fail to take these other collisions into account, and one must perform a resumma-
tion of the terms in the K=! expansion in order to include them. From these arguments
one can conclude that the expansion of the Boltzmann propagator (v-V—L)~! in Eq.
(4.10) in powers of the free particle propagators should not have been made. In view
of the divergence difficulties of Eq. (4.11), workers in rarefied gas dynamics usually ex-
pand the Boltzmann propagators, using L = Ly+L;, as

(4.12)  (v-V-L)y'= (v-V=Ly) '+ V=Ly) Ly (v- V=Ly)" + ...,

where for an arbitrary function of velocity, g(v), Lypo(v)g(v) is given by

(4.13) Lygo(v)g(v) = —nk(2)po()g(v)
with
(4.18) k@) = na? [ dv,lv—v,|po(@,).

The operator Ly takes into account a “collisional damping” which restricts the length
of the trajectory of a particle in the gas to a mean free path or so. When the expansion
given by Eq. (4.12) is inserted into Eq. (4.10), an expansion of F is obtained where every
term appears to be finite, and the resulting expansion of F in terms of K~! is given by
Eq. (1.1). The resummation does not affect the coefficient of order K~!, but replaces
a divergent term of order K=2 by a finite term of order K~2logk~!. For a B.G.K. gas,
the coefficient @; has been computed by Kan [10] and for this model one has that

(4.15) F = Fy(1—0.4293K"* +0.0672K~2logK~=* + ...),
where

P oY (nmaR?) (8+m) -1 - "R _m_)”z
T3 @apm)'z T ome \ 28]

where 7, is the coefficient of shear viscosity for the B.G.K. gas, in the case that the gas
molecules are reflected diffusely from the sphere. However, there is as yet no proof that
the expansion given by (1.1) is convergent.

At this point an interesting question arises: since it is possible to associate specific
dynamical events with each term in the expansion of the right-hand side of Eq. (4.11),
is it possible to derive Stokes’ Law by using this expansion, and thus learn which dynamical
events are important in the hydrodynamic regime? In fact, we have shown that this is
possible, and to do it we proceed as follows.

To derive Stokes’ Law from Eq. (4.11), we do not iterate the Boltzmann propagators
about the free particle propagator, but instead separate (v- V—L)~* into a hydrodynamic
part and a nonhydrodynamic part, as

(4.16) (v-V—L)' = P(v-V—L)"'P+P, (v-V-L)"*P, .

Here P is a projection operator which projects onto the space of the (linearized) normal
solution of the Boltzmann equation, given by

(4.17)  Pg(r, V)@ = Dy(r, ¥) go(0) a,(r) + B, (r, v) - 2,(r) 9o (v) + P1(r, V)ar(r) po(®),
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where
¢ll(]'-l ") Lo 1)

- 12 B(“'z)( _v ) z}
- ®,(r,v) = (Bm) {v+ g V=3 1) VO,

Dy(r, V) = (%)112 {(_ﬁ%n_ 2? -3,1’2) + A(9) (E;-"— 92— %) \& V+0(V3)},

a @ = [ avdir, Ve, Vo), i=n,v,T

and A(v?), B(v?) are determined as the solutions of the linearized Boltzmann equations

5 5
@19) ] L e L
and
(4.20) 180 (= 5-1) 90 = pm [~ 51),

respectively. Also g(r, v) is an arbitrary function of r and v. P, projects on the orthogonal
space, and both P and P; commute with (v-V—L)~'. Similarly we may separate dy
into a hydrodynamic part Pdy and an orthogonal part P, éy. By inserting Eq. (4.16)
into Eq. (4.9) and collecting some terms we obtain an expansion for Pdy given by
(421) Péyp, = {P(v-V—L)"'PT+P(¥-V—L)"'PTP(v-V—L)"'PT+...} fmv-Vg,

or

4.22) Péyg, = [P(v-V—L)P—T]"'PTBmv- Vo,,
where

(4.23) T = PTP+PTP,[P,(v-V—L—T)P,]"'P, TP
or

(424) T = PTP+PT{P,(v-V—L)"'P,+P,(v-V—L)"*P, TP, (v*V
'—'L)_‘I'PJ_'Q' '}P_LTP

The orthogonal part P, dyg, can also be expressed in terms of T and the projected prop-
agators, but we omit the details here. The first term in the right side of Eq. (4.24) for
the collision operator 7* describes dynamical processes in which the fluid particle collides
once with the sphere [19]. The remaining terms in the expression for T describe processes
where the particles suffer any number of collisions with the sphere, but the particles travel
only a mean free path or so between such collisions, since the propagator P, (v: V—L)™*P;
describes processes where the particle travels only a distance of the order of mean free
path. On the other hand, the hydrodynamic propagator P(v - V— L)~ P describes dynamic-
al processes in which fluid particles travel over distances of several mean free paths and
suffer many collisions with other fluid particles. Thus, the dynamical events which con-
tribute to the terms in the expansion (4.21) can be considered as combinations of collisions
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of fluid particles with the sphere, described by 7, connected by long excursions of
fluid particles into the fluid, described by P(v:V—L)~'P. The sum in the curly
brackets in Eq. (4.21) can now be written as

(4.25) Poygo(®) = D) Poy™(r, v)go(0)
with !
(4.26) Poy™(r, V)go = [P(v- V—L) ' PT]fmv - Voo(@).

To leading order in the Knudsen number these equations can be solved. For the case
of diffuse reflection Péy™g, is given to leading order by combination of two normal
solutions as

2
(4.27) Poy™go = ) aPuy(r, V)po(®)
where =
(4.28) uy(r, v) = Dy(r, v) - u,(r),
4.29) uy(r, v) = D,(r, v) - u,(r)
with @, given by the Eq. (4.18), and flow fields u, and u,(r) are
(4.30) @ i (%% - (g)a) +(@-GE- ) (-1‘5- 24 %(%)3) fit# R,
Wi () = 3 3
(i-i-‘)f(-%-;— - %(;) )+(i—(i- £)r) (—;-—;— = 723(%) ) for r < R;
@ |- (%% . (_f_)s) +G-G D) (%—‘f- . (%)3) for r > R,
u(r) = 3 3
G- i (;—% +%(%) ) +@E-G- D) (;-% + '12—5(7%) ) for r < R,

where Z is a unit vector in the direction of V. The successive values of a{®*" are related
by the equation

4.32) ar+d = DM af,
]
where M is the 2x 2 matrix
4 . R 2 . R
152 T 5T
(4.33) M= ,
1 R 7 ﬁi
=5k “BP3

where A = 1,(nm)~1(Bm[2)*/2, and « and B are positive. They are functions of R/A which
appear to be of order unity for all R/A. To calculate M, we start from the relation

(4.34) PSy™+D(r, V), = P(v- V—L)~PTPéy™g,
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which we write as
(4.35) P(v: V—L)Poy™+ Vg, = PTPéy™g,
and then substitute Eq. (4.27) for dy™ on the right-hand side. One can show that

- 4
(4.36) PTPoy™p, = — (

59 a” + i a‘z"’) (@, 1) (r-2)6(r—R) o

(___a(n;+ 7 (u)) B, (2—(z 1)) 8(r— R)go-

It is then possible to solve Eq. (4.35), to write the solution for dy®+* also in the form
of Eq. (4.27), and to obtain M by relating a{"*" to a{™. The factors « and g are determined
by the structure of the boundary layer and their exact values are not known.

From Egs. (4.25), (4.27) and (4.32), it follows that Pdyg, is

(4.37) Poygo = ) [(1-Ml3'a{ w5,

L
where 1 is the 2 x 2 unit matrix. As can be seen from Eq. (4.33) for M, the summation
of Péy™ leading to Eq. (4.37) is a summation of a power series in R//. In the hydro-
dynamic limit, R// is a large quantity, and in order to apply the summation to the hydro-
dynamic limit, we regard to Eq. (4.37) as the analytic continuation of the result obtained
by summing the terms in Eq. (4.27) inside their radius of convergence.

The results obtained from Eq. (4.37) in the limit R/l > 1 agree completely with those
obtained by means of the normal solution. To leading order (now in //R) the constants
o and B drop out, indicating that to leading order only the reflection mechanism of the
particles by the sphere is important, but not the structure of the boundary layer. In fact
the same result is obtained if 7 is replaced by the first term in Eqs. (4.23), (4.24), PTP.
This shows that the dynamical events which are responsible for Stokes’ Law are those
in which the gas particles make long excursions into the fluid between collisions with
the sphere.

The force on the sphere can be shown to be given by

(4.38) F=—-n f drf dvmv'f‘[ﬁmv * Voo + Pdygy]

and the evaluation of the force to leading order in //R leads to Stokes’ Law, F = 6znRV.
In a similar way the case of specular reflection and the intermediate case of a linear
combination of specular and diffuse reflection lead to the results for F given by Eqgs. (3.4),
and (3.7), respectively.

If we attempt to apply the preceeding analysis to compute the force per unit length
on a cylinder, f, for both large and small K, serious difficulties arise almost at once. If we
assume that, like the force on a sphere, f is linear in V, and then try to expand f, for
large K, as a power series in K~!, using an expression similar to Eq. (4.11) for the
sphere, we find that the first correction to the free molecular flow force, f,, is divergent,
as are all higher terms in the expansion of f in powers of K~! [11]. This divergence
forces us to return to the analog of Egs. (4.10), (4.11) for the cylinder

(439 f= —Ilmn-— drfdvm\f{Tc,.ﬁ Ten(v* V=L) T+ ...} fmv- Voo

7 Arch. Mech. Stos. nr 3/76



350 J.R. DorFMAN, H. VAN BEUEREN AND C.F. McCLURE

where L is the length of the cylinder and T, is the collision operator for molecule-cylinder
collisions. Unlike the case of the sphere, the second term and all higher terms in the ex-
pansion are divergent even at large Knudsen numbers. These divergences come from
the contribution of the hydrodynamic part of the (v: V—L)~! operator and are due to
collision processes where the particles travel several mean free paths between collisions;
they are similar to the divergences that appear in the “renormalized” theory of transport
coefficients for a hypothetical two-dimensional gas. Unlike the divergence in the K~!
expansion, the divergences in Eq. (4.39) cannot be removed by further summation of
the terms in the expansion. Instead, the difficulty can be traced to the assumption that
the distribution function and the force are linear in V. This difficulty can be overcome
by linearizing the distribution function about the asymptotically correct distribution
function ngy(v, V) given by

32 gm
m —EM vy
npo(v, V) =n ('%;) e 2

and retaining higher terms in V. For the case of high Knudsen numbers, this linearization
leads to an expansion for f as [9a]

(4.40) Slfo = 14K 1[b, +b;logM]+ ...

where M is the Mach number V/c, and non-linear terms in V appear. To treat the case
where K < 1, one can use the normal solution method outlined in Sect. 3, but the Ossen
corrections must be used to solve the resulting hydrodynamic equations; or one can use
an iteration procedure similar to that outlined here. In the latter procedure one sums
a geometric series in powers of [(R/l)log(¥/c)]. The resulting expression for f, valid
for K <1, is

(4.41) f=- don¥ —
T—C—]og ?Re
where C is Euler’s constant and the Reynolds number Re is
(4.42) i e
Mo

Thus we see that for a cylinder f ~ FlogV at large K, and to make the transition to
small Knudsen numbers, one must sum a series in powers of (log¥) which leads to f ~
~ V/logV for small K and V.

5. Conclusion

We have discussed the force on a sphere and on a cylinder placed in a gas stream.
We considered the case where the Mach number is small and studied the force as a func-
tion of the Knudsen number. We generalized the Chapman-Enskog normal solution to
the case where a macroscopic object is present, and we also solved the Boltzmann equa-
tion by iteration. The latter method was shown to be capable of giving the force on the
object at both high and low Knudsen numbers. We may therefore conclude that the
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force on the object is due to the same dynamical events in both limits. However, in the
rarefied gas regime the dominant term is the free molecular flow term, while in the hydro-
dynamic regime the force on the object depends on the fact that the particles make many
collisions with the object, and between these collisions they make long excursions into
the fluid, traveling many mean free paths.

It is interesting to notice that qualitatively, the force on a sphere is of the form

a(K) R*V

B 1+B(K)R/I’

where «(K), A(K) are functions of the Knudsen number but are of order unity for all
values of K. The free molecular flow results and Stokes’ Law can be obtained from this
formula in the case when R/ — 0 and oo, respectively. To compute F in the intermediate
region one would need to determine «(K), f(K) for all K and these quantities are in turn
determined by the structure of the boundary layers around the sphere. To determine
o, B we would need a complete solution of the Boltzmann equation, which is very dif-
ficult to find, in general. However, Cercignani and co-workers have developed a varia-
tional method which appears to give very good approximations to o and B8 [5].

In the case of the force on a cylinder we have seen that the linear relation F = V
breaks down at both small and large Knudsen numbers. This breakdown of the linear
laws of hydrodynamics seems to be a general feature of fluid systems with basically two-
dimensional geometry. It would be very interesting to know if the divergence difficulties
which appear in the theory of transport processes in two-dimensional fluids [20] could
be solved as well by the introduction of non-linear relations between the hydrodynamic
fluxes and the related driving forces.

Acknowledgments

We would like to thank Drs. E.G.D. CoHEN, 1. de SCHEPPER, M. DORFMAN, J. V. SEN-
GERS, Y. H. KaAN and Dr. D. LieBERWORTH for many stimulating conversations. This
research was supported by the National Science Foundation, Grant No. GP38965, and
by the Independent Research Program of the Naval Surface Weapons Center.

References

1. Cf. C. CercCIGNANI, Mathematical Methods in Kinetic Theory, Plenum Press, New York 1969; and
M. K. KOGAN, Rarefied Gas Dynamics, Plenum Press, New York 1969.

2. For a review, see papers by C. CERCIGNANI and by H. GRAD, in Transport Theory, SIAM-AMS Proc.
Vol. I, R. BELLMAN, G. BIRkHOFF and I. ABU-SHUMAYS, eds., American Mathematical Society, Pro-
vidence 1969; and papers by G. E. UHLENBECK, H. GRAD and C. CERCIGNANI in Eighth International
Symposium on Rarefied Gas Dynamics, K. KARAMCHETI, ed., Academic Press, New York 1974,

3. Cf. S. CHaPMAN and T. A. CowLING, The Mathematical Theory of Non Uniform Gases, 3rd ed., Cam-
bridge 1970.

4. For a discussion of this point, s2z C. CERCIGNANI in Transport Theory op. cit.

7+



352 J.R. DorFMAN, H. VAN BEDEREN AND C.F. McCLURE

5. C. CercigNanI and C. D. PaGani, Phys. Fluids 11, 1395, 1968; C. CercigNANI, C. D. PaGant and
P. Bassanini, Phys. Fluids, 11, 1399, 1968; C. CerciGNanI and C. D. PAGANI, in Rarefied Gas Dyna-
mics, Suppl. 4, C.L. BrRUNIN, ed., Academic Press, New York 1967.

6. G. ScHARF, Phys. Fluids, 13, 848, 1970, sze also J. A. McLenNAN and S. C. CHiu, Phys. Fluids, 17,
1146, 1974.

7. L.D. Lanpau and E. M. LissHiTZ, Fluid Mechanics, Addison Wesley Publ. Co., Reading, Mass.
1959,

8. Y.P. Pao and D. R. WiLLis, Phys. Fluids, 12, 534, 1969.

9. (a) J. R. Dorrman, W. A. KupPErMaN, J. V. SEnGERs and C. F. McCLURE, Phys. Fluids, 16, 2347,
1973; (b) For a discussion of some related topics sze Y. PoMEAU and A. GErvors, Phys. Fluids, 17,
2292, 1974, and Y. PoMeau, Phys. Fluids, 18, 277, 1975.

10. For a,, sze V. C. Liu, S. C. PANG and H. JEw, Phys. Fluids, 8, 788, 1965; D. R. WiLLIs, Phys. Fluids,
9, 2522, 1966; and Y. L. WANG, Ph. D. Thesis, Dept. of Physics and Astronomy, Univ. of Maryland,
1974. For a, and a,, see Y. H. KAN, Ph. D. Thesis, Dept. of Physics and Astronomy, Univ. of Mary-
land 1975.

11. C. F. McCLURE, Ph. D. Thesis, Dept. of Physics and Astronomy, Univ. of Maryland 1972.

12. H. van BeuereN, J. R. DorFMAN and C. F. McCLURE [in preparation].

13. M. H. ErnsT, J. R. DorFMAN, W. HoeGY and J. M. J. van LEEuweN, Physica, 45, 129, 1969.

14, We neglect hzre the radius of the gas molecules in comparison with R.

15. Here we use the result that TW(r)f = ?f.' To derive this result, one has to consider 6(r—R6) as being
taken as r approaches RG from outside the sphere, which is required by the dynamics of the collision.

16. E. H. KeENNARD, Kinetic Theory of Gases, McGraw Hill Publ. Co., New York 1938. The relation
between the slip coefficient ; used here, and the slip coefficient f; used by Basser [A. B. BASSET,
Hydrodynamics, Vol. II, Dover, New York 1961] is

Bs = 2nm{[(Bmaj2)t2 L)

17. That is, the number of conditions imposed on the hydrodynamic variables exceceds the number of
parameters that have to be specified.

18. We also assume that ¥ vanishes for r < R, so that W(r)¥ = ¥. B

19. In constructing the T operator one must be careful to avoid expressions like TPW(r)h(r, v), w}jich
are not well defined since products of é(r—R) appear. As a result, the correct expression for T is
slightly different from that given here. For details see Ref. 12.

20. For a discussion of these difficulties, cf. J. R. DorFMaN in Fundamental Problems in Statistical Me-
chanics, Vol. III, E. G. D. CoHeN, ed. North-Holland Publ. Co., Amsterdam 1975.

INSTITUTE FOR FLUID DYNAMICS AND APPLIED MATHEMATICS

and

DEPARTMENT OF PHYSICS AND ASTRONOMY
UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND 20742,

and

NAVAL SURFACE WEAPONS CENTER
WHITE OAK, MARYLAND 20910, U.S.A.





