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A note on the physical foundation of the theory of multipole-stresses

J. B. ALBLAS (EINDHOVEN)

BALANCE equations for linear momentum, angular momentum and energy are derived for the
model of a body, consisting of a very large number of molecules, each composed of a number
of subparticles. The method for deriving the equations is based on classical statistical mechanics
(ensemble theory). Many aspects of the phenomenological theories of micropolar elasticity
are confirmed. It appears that the inclusion of ever higher derivatives of the strain gradient
in continuum mechanics is set bound to, by the existence of stress fluctuations. It is believed
that a generalization of the molecular theory on quantum-mechanical basis is possible. The
theory may also be applied to the consideration of a continuous body, composed of a large
number of very small grains. The conditions for the possibility of application is ensured if
statistical methods may be used.

Rownania bilansu dla pedu, momentu pedu i energii wyprowadzono dla modelu ciala skla-
dajacego si¢ z bardzo duzej iloéci czastek, z ktdrych kazda zloZona jest z pewnej liczby pod-
czastek. Metoda wyprowadzenia réwnan oparta jest na klasycznej mechanice statystycznej
(teorii zbioréw). Potwierdzono wiele aspektow fenomenologicznych mikropolarnej teorii spre-
zystodci. Okazuje sig, ze uwzglednianie kazdej z wyzszych pochodnych gradientu odksztalce-
nia jest uzaleznione od istnienia fluktuacji naprezed. Przyjmuje sig, Ze uog6lnienie teorii mo-
lekularnej na bazie mechaniki kwantowej jest mozliwe. Przedstawiona teoria moze byé réwniez
zastosowana do badania osrodka ciaglego zlozonego z duzej liczby bardzo matych ziaren.
Powodzznie zastosowania bedzie zapewnione, je§li skorzysta sig z metod statystycznych.

VpapHeHua GanaHca [JIA HMIIYJIbCA, MOMEHTA MMITY/IbCA M SHEPIMM BBIBEIEHBI ANA MOIENIH
TeJla, COCTOALLErO M3 OUeHb GOJBIIOro KONMYECTBA YACTHLU, KaXKAasd H3 KOTOPHIX COCTOMT M3
HEKOTOPOI'0 KOJIMUYECTBa HmoayacTui. MeToq BEIBOAa ypaBHEHHIl ONMPAETCA Ha KJIACCHUYECKOH
CTAaTHCTHYECKOH MexaHuKe (Teopua mHoKecTB). [TogTBepKAeHO MHOTO (heHOMEHOIOTHYECKHX
acTIeKTOB MHKPOINOJAPHOH Teopuu ynpyrocT. OKasbIBaeTCa, UTO y4eT KKAOH M3 BBICIIMX
TIPOM3BOAHBLIX TpagueHTa Ae(OpPMAalMH 3aBHCHT OT CYILECTBOBaHMA HANpsIKeHW — ayk-
Tyaumii. Bepurca, uro oGoblleHHe MOJIEKYIAPHONH TEOPHH HA OCHOBE KBAHTOBOH MEXaHHKH
BO3MOXKHO. HacTosmmas TeopHA MOXKeT OBITH TOXKe IPHMEHEHa K HCCIEJOBaHMIO CIUIOLIHON
Cpefbl, COCTOALLECH M3 GOJBIIOr0 KOMHYECTBA OYEHb MAJILIX 3epeH. YClexX npHmMeHeHuA Oymer
obecrieyeH, eclM HCIONB3YETCA CTATHCTHUYECKHE METObI.

1. Introduction

In this paper we consider the derivation of the equations of multipolar continuum mechanics
from the principles of classical statistical mechanics. In particular, we shall derive the
equations of continuity, of linear and angular momentum and of energy. The model
under discussion is a body, consisting of a very large number of molecules. Each of the
molecules, which are mutually identical, is composed of a number of subparticles, i.e. the
molecules have internal degrees of freedom. For simplicity we shall not specify the kind
of particles e.g. charges, dipoles, electric or magnetic multipoles, but we assume the
existence of an interaction potential energy of a very general form.

It appears that many aspects of the phenomenological theories of micropolar elasticity
are confirmed. However, many other features of theories, that have been developed during
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the last decades, are not verified. For the model under discussion the following important
conclusions are arrived at:

a) Multipole-stresses and multipole-moments do exist and expressions are given for
these quantities.

b) The motion of any individual molecule can be separated into translational, rota-
tional and deformational parts. From the translations and rotations, the local regular
motions may be found by statistical means. Although a corresponding separation for
any external micro-deformation might formally be possible, physical theory indicates
that such a separation is of little significance. A natural bound is set by the existence of
stress-fluctuations.

c¢) Therefore, for the contributions of the molecules to the linear and angular mo-
mentum, they are considered as rigid bodies.

d) Because of c), the forces and moments between arbitrary pairs of multipoles only
work in, or are taken with respect to the centres of masses.

e) Thus, while the subparticles are mutually interacting, the origin of multipole-
stresses cannot be ascribed to the multipole-distributions inside the individual molecules.

f) The real origin of these stresses and moments is of a statistical nature. In ensemble
theory, it is the pair distribution function, which gives rise to contributions by molecules,
situated at different places, to those stresses and moments. Effectively they form the
multipoles.

g) As a conclusion of f) also multipole-stresses occur between molecules without
internal degrees of freedom (point-masses).

h) We will in this paper also introduce multipole-body-forces and moments, but they
are believed to be small with respect to the corresponding stresses. This is a consequence
of the fact that the external field will be more smooth than the internal field.

i) In the existing phenomenological theories, heat supplies and heat fluxes are intro-
duced, but they are considered independently from the forces. In this theory the total
local energy can be divided into the work, performed by the body-forces, stresses and
moments in the regular motions, and the heat supply, which is the work performed in the
internal irregular motions. Correspondingly the energy flux may be split into the work
by stresses and moments and the heat flux. It is obvious that the heat flux consists of a
sum of multipole heat fluxes.

While the molecular theory is based on classical mechanics and classical statistical
mechanics, it is believed that a generalisation on quantum-mechanical basis is possible.

It is expected that the deviations between the classical theory and the multipole-stress-
theory, on this molecular basis, are numerically very small. Therefore it is worth while
to look for a model, to which the present theory may be applied, while the deviations
from classical theory are possibly somewhat greater. Such a model is provided by a contin-
uous body, consisting of a large number of very small grains. The condition, that this
theory may be applied, is ensured if, for the description of the properties of the body,
statistical methods can be used, while the forces between the grains can be derived from
a potential function. The “molecules” are now the grains and the subparticles are the
particles in the grains. While the characteristic length parameter for the grains is con-
siderably greater than the corresponding one in the molecular theory, the derivative of
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the pair distribution function is here very small, i.e. the average force on one of the grains
exerted by the others is small.

The first who have derived the equations of hydrodynamics by the methods of statistical
mechanics are IRVING and KiRkwoobp [1]. This work is generalised to the derivation of
the equations of quantum hydrodynamics by IRVING and ZwWANZIG [2]. In [3] both papers
are included, and in [4] a summary of [1] is presented. KELLER and KELLER [5] have given
the first proof that moment-stresses can be found in statistical mechanics. ALBLAS and
Kuipers [6] have extended the theory of KeLLER and KELLER for the case of dipolar
molecules.

It is the purpose of this paper to provide the physical basis for the theory of generalised
media and to obtain formulae, which make possible a numerical estimation of the quan-
tities involved. We shall derive and even generalize the results, obtained by GREEN and
RIvLIN [7], in their first paper on the continuum mechanics of multipole-stresses. Green
and Rivlin’s contributions can be considered to belong to the most general ones in this
theory.

Before entering upon the details of the multipole-stress theory we shall make a few
remarks concerning stress-fluctuations. According to classical statistical mechanics [8],
the following relation exists

_ ap
(1.1) (4p)? "kT(aV)

where p is the pressure, V' the volume, T the absolute temperature, S the entropy and k

Boltzmann’s constant. The deviation from the average value is denoted by 4, thus dp

is the deviation due to fluctuations in the pressure. The bar denotes the average value.
Applying (1.1) to the case of a gas we find

kToc?
av >’
with g the density, ¢, the velocity of sound, calculated from the equilibrium equation

of state, while AV is the volume-element over which the deviation is measured. If we apply
(1.1) to a solid body we find

(1.2) (p)? =

13 @y =1,

where # is the adiabatic compressibility. Without distinguishing this from the isothermal
compressibility, we have

kTE 1 1 1
2 - ~ 2
(1.4) ]/(5;,) ]/3(1 2,') ,/AV _5_10 pr kg/cm?,

for metals at room temperature. From (1.4) it follows that a stress deviation of about

30 kg/cm?, i.e. 19, of an average yield value, occurs in a cube with the edge LY 10-*mm =

4
= 0.025u.
The basic idea is now the following. For a Cosserat-type medium, the state of de-
formation is described by displacement-gradients up to a certain order. Dimensional
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analysis then shows that the medium is characterised by a number of length parameters,
together with more conventional moduli. It is well known that such length parameters
give rise to the existence of boundary layers with comparable size, in which the gradient
of the stress is considerable. It is obvious that each of the length parameters must be
greater than the critical fluctuation parameter. As it must be expected that by increasing
the order of differentiation, the corresponding length parameter decreases, a bound is
set to the order of the equations. Shortly, continuization of discrete systems is only possible,
if the external and internal fields are smooth enough. In that case, higher order derivatives
become practically zero above a certain order.

However, in our theory, we shall expand the functions in infinite series and retain
all orders. This will only be done for simplicity and the physical meaning of the series,
being in fact only finite sums, have to be borne in mind.

2. Kinematics and dynamics of a composite particle

We consider a system of N molecules, each composed of S particles. In a Cartesian
coordinate system, the position of the i-th particle of the k-th molecule is given by R*'.
The position of the centre of mass of the k-th molecule is R*. Then we define r*' by (cf.
Fig. 1)

.1 R* = Rf 414,

4

If the mass of the particle ki is given by m*, we have

@2 mR* = D mHRY,
i

where

@3) m= Y m.

From (2.2) follows
@4 D mkitk = 0.
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If we differentiate (2.1) with respect to the time, denoted by a dot, we have
(2.5) RM = R*4i%,

Now we write

(2.6) * = ot x4+,

where w* is the local angular velocity of the molecule as a rigid body, while v* are the
internal relative velocities. We define w* in the following way. Introducing the local
inertia tensor J; in the form as it takes in the mechanics of rigid bodies, we write

@7 D b x i), = Tk,

and by this equation w} is uniquely determined.
If we now split #*' according to (2.6) we find

2.8) D mkigki vk = 0.
i
Because of (2.4) we further have
29) D kv = 0,
i

The conditions (2.8) and (2.9) express the fact that the deformational (vibrational)
modes of the molecule do not contribute to angular momentum and linear momentum,
respectively. For practical calculations this separation of rotation and vibration is not
convenient (cf. [9]). But for our purpose, it suffices.

For the kinetic energy we have

(2.10) E* = Z%m“(k")* = %m(ﬁ*)%—;—ﬁ,wtwﬂ Z —;-m“(v“‘)'-

We now assume Newton’s law to hold for any particle. Thus we have
(2.11) mERY = FH 4

where F* is the external force and f*' the internal interaction force. If we sum (2.11)
over i we find the equation for the motion of the centre of mass

(2.12) mR¥ = F* 4 f*,
with
(2.13) F= D =D
i i
We also introduce the angular momentum H* by
(2.14) H* = ) mM(RH xR),
i

that can be decomposed into two parts D* and d*, according to
2.15) D* = m(R*xR"),

(2.16) d* = D' mH e x i),
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For d&* we will write
2.17) di = Jhwf,
where d* denotes the a-component of d.
In (2.17) we have applied the summation convention to the component indices B.

This will generally be done. To the numbers k and i, we shall never apply this conven-
tion. Differentiating (2.14) with respect to the time, and using (2.11), we find

(2.18) Y = Di+dt = RExF+ D' x FY 4 REx 54 ) P x £,

3. The distribution functions

One of the most fundamental errors, made in the continuum mechanics of the Cosse-
rat type media, is owing to the fact that molecular quantities are introduced, e.g. the
local spin vector, without using statistics. Therefore we shall base our considerations on
statistical mechanics; we introduce the N-particle distribution function f®% as a function
of the parameters

(3.1) FONS) = FASRL g1l p1S, l.l‘, P11 R 2L L EMS 1),
The probability that the N distinct molecules occupy the volume elements R¥, dR* with

the velocities in the range R*, dR* and the corresponding ranges hold for the internal
positions and velocities is (cf. [3] and [10])

N s
62 £ [ | ar*ar [ [ aeiae*.
k=1 i=1
We also introduce
S
(3.3) f® = [pas [ Jgigee
Jreeld
Especially important are
N
(34) f® = [roo®e, RY, 1) [ | ar*aRY,
k=2
(3.5) n = [fO®R, R, 1)dRY,
(3.6) n = [fO®R, R, R?, R, 1)dRIGR?.

It is possible to consider the f®’s as probability functions, all normalized to 1. For
practical purposes it is better to consider the f*’s as number densities and to normalize
Y and n, to N, f® and n, to N(N—1) etc. (cf. [3, 4, 10]).

The function /™ satisfies Liouville’s equation. By integration we derive

2
on, L. i
ot +’.‘_1.- aRF 2¥) =0,

(3.7
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with

(3.8) W f FORE, RY, RY R 1) RRYRY

n,

The average value A(R,?) of a microscopic quantity a(R, R R¥ ¢) is defined and
denoted by

(39) AR, 1) = <a; > = [af dp,

where ¢ is an abbreviation for the fluxion space element. There are simple calculation
rules for the derivation of {a;f). If the quantities a are sums of functions, which depend
on the variables pertinent to one or to two molecules only, many of the integrations may
be performed and the resulting average values simplify considerably (cf. [11]).

4. Basic definitions

We define:
a) the density p

@.1) o=( ;’matn*—n);f),

where d(R*—R) is Dirac’s Delta-function.
(4.1) may be written as

4.2) o=m f SORK R, ¥, 7, 1) - S(R*—R)dR*R'dr"'di" = mn,(R, 1);

b) the local momentum pv

@3) ov = ( X mR*S(R*~R); £ ),
k
for which we may write
(4.4) ov = m [RFOR, R, 1)dR’;
c) the local internal angular momentum
4.5) oLy = Jopwy = { O me x i), 8®R* ~R); £ ),
ki

that becomes
(4.6) Jopwp = [ Thyoobn R, ", ¥, 1)dr"di’";
d) the local angular velocity w

<§w*am*—k);f>

4. =

(+7) © AC
from which we derive

“8) J@-wYn,®, ", i, nd"di” = 0.

3 Arch. Mech. Stos. nr 3/76
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From (4.6) and (4.7) we derive
j[:ﬂwsnl (R, l‘", l'.n, I)dl'"dl.'"
fwznl(Rv l'”, i'”, t)dr”di'"

4.9) I =

where I%; is introduced as

(4.10) J& = mI.
We further define
e) the local total angular momentum pH

@.11) oH = ( D) R x m'R¥) 8 (R*~R); 1),
k.
f) the local external angular momentum gD
“.12) oD = ( D (R xmR%) s R*~R); /).
k

We shall also make use of the following energy definitions:
g) the local kinetic energy

@13) oF = { X om Ry o® ~R); £);
h) the local kinetic part of the intemal energy

@1 eUuv=( E{zmm*—v)'* Tty 0t (@h—wp |SR = R); f ),
i) the local potential part of the internal energy

@19 U = { Sutts®-R); 1),

where #*' denotes the interaction energy of the k-th and /-th molecules.

5. Conservation of mass

From (4.1) and (4.4) follows
144

Gy S = kamwam* R); f>— > 2 2RSSR -R); 1) = = (eve

from which we denve
(5.2) 0+0%,q =0,
the well-known equation of mass conservation.

6. The body-forces and moments

The a-component of the body-force, working in an element at R is

©.1) K, = <§F§‘6(R*~R); 75
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We assume that the external field is a very smooth field. In that case we may write

oo

(6.2) F¥ = FRY) = FRE414) = Znil(r" - VF®RY).
n=0 :
With (6.2), (6.1) becomes
oo_‘ l .
63) K, = ;0 T Feny e R (R),
where g**t-~-»(R) has been defined as
(6.9) g oR) = [ o4, ... 0 (R, p, 1)dp,

where p denotes the internal parameter r'’.
For the total moment of the body-forces we find correspondingly

65 M= ®RYxF5R~R); f)
ki
= (Y RE) IR -R); £) +{ (xR -R); 1),
o k.t

With (6.2) this becomes

1
©66) M. = ey RKyt ey D)~ Fray a8,

n=0

We introduce the moment m, by
6.7) My = My—eup5, R K,.
The work performed by the body-forces is given by

©68) (D R*-FHO®-R); f) = ( DR F6®R*~R); f)
ki k

+( Yot (K x9SR ~R); £ ) +( 3 v FHOR-R); £ ).
ki ki
We introduce the heat supply-function per unit time r® by
(6.9) r® = ( 3V FSRE-R); f ).
k.

With (6.2) we may write for the other parts of the work performed

oo

1
610) D - {Fany BB+ Ol Py 0,870} = 0Kt 00,

n=0
The total work performed by the body-forces may be written in the form
(6.11) r® 4 K, 0, +myw,.

The expression (6.11) is consistent with the model of a rigid body with small devia-
tions. It appears that this model gives rise to contributions in the internal energy, which

3*
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contain products of stress- and displacement-gradients of all orders. Therefore it seems
appropriate to extend the model for the calculation of the work performed by the body-
forces to the model of a deformable molecule. To this end we assume a smooth velocity
field and we expand the local translation-energy as follows

©6.12) VRY): FRM) = (- V)" (v(RY - FRY),

n=0

and correspondingly the energy of rotation. We find for the work in this model

Sh
(6.13)  Kva+maw,+ ZF {F. v(u-ﬂ)}.ax...u. ghes---a

n=0

oo 1 .
+ Zﬁ{Fa(ﬂtﬂ-ﬂ] " wcﬂ)}-cl---ﬁ. gﬁﬂlm i

n=0
In (6.13) w,s has been defined by
(6.14) Wap = —WyCyap.
We note that (6.13) is frame-indifferent. The total work by the body forces may also be
written in the form

(6.]5) K,?),+m,m,+F¢30(a,ﬂ,+f’¢5vv(,.,,?+ Ve +!¢3?{ﬂ[¢_’3]—‘wug}_y+ ver s
The coefficients in (6.15) are combinations of those in (6.13).

7. The linear momentum

We differentiate (4.3) with respect to the time and obtain
1) 3(9"") (Zmn*a(n* R;f)+( > S‘mR“Rﬁ(V,‘é(R“ ~R)i /).
With (2.11) and (2.13) this becomes
ay A& _( D Eo® Ry £)+( Srto®-Ry: 1)

8, (2 mREROR-R); £ ).

We write this in the form

a3y X&) _ g (Y Gt o®-m; 1)
U

2 _—
== 6_&<;Im(ﬁ“_ﬂ“) (Rg"‘f)‘e) 6(R"—R), f> — (Qvﬂﬂﬁ).ﬂ!

after having used (6.1) and having made the assumption that the internal force f may
be derived from an internal potential #*, according to

(7.4) o= — MVt
Li
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The internal potential depends on the location of the molecules & and /. For the deriva-
tion of (7.3) we further used (4.3).
Introducing the kinetic stress tensor #&, according to

(1.5) 1 = = X m(RE—0,) (R—05) R*-R); 1),

k
we may write (7.3), with the aid of (5.1), as follows
(7.6) 00 = Ko+ 155+ Top g,
expressing the balance of linear momentum, with T,; the stress tensor, defined by
.7 Tups = = 3, (Vut), R ~R); 1.

i

Because

(7.8) DV = = DVt
i ¥

we may write (7.7) as

1
1.9) Ts = = { D V) SR~ R) = S®'—R)}; £).
i
We expand 6(R'—R) in a series, according to

(7.10)  O(R'—R) = §(R'—R*+R*~R) = S(R*~R+R¥) = Z;‘,-(R“ - V)"8(R*—R),

n=0
with
(7.11) R = R'—R*
We shall prove that
(1.12) D Vit = Vi
i
thus (7.9) may be written as
(7.13) Tapp = D Coyio fronpr
n=1

where t,3 . 5 has been defined by

I (=D
(7.14) bt = ( n,’_ (X (ua),RY. ... RE SR —R); £ ).

K kJd

From (7.13) it follows that we have

oo
(7.15) Top = Z Laps...n Baebnt lap:

n=2
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We now enter upon the form of #*'. For a very general case, the case of multipole
interactions (cf. [11]), we can derive the expression

(7.16) 22 NRALCE V;)" 1

i,j mn=0
where
(7.17) R = |R¥| = |R'-R¥.

From (7.16) we can see that

2 r1 E 1 d 2 L
(718} V;;u"’ = Wuﬂ = —3;,"7““ = Vkﬂu.
i i i

We note that it is often advantageous to expand the stress tensor T,; according to

(719) T“g =l + Ztalﬁﬂl---#u'ﬁx---ﬂ-'

In that case t.,...5, have to be redefined by

1 (___ l)n+l
(7.20) Lappy. b = & T (Vi) RE'RE: ... RELO(R*—~R); f ).
t 2 (n+1)! <§ Py >
In terms of the pair distribution function, (7.20) becomes
1
(7.21) tanet = 5 g i) Ve, 0.7 P 0n0s, - e,

-n,(R, R+p, r'!, r2)dpdr!tdr?!.
Because of symmetry we see that

(7.22) Lagp,..5, =0 for n=1,3,5,...

8. The angular momentum

It follows directly from the definitions (4.11), (4.12) and (4.5) that the following rela-
tion exists

(8.1) oH, = gD, +plgwg.

By differentiating (4.11) with respect to the time, we obtain

62) TR = (S PR B £) = ( SR Tt (@) 1)

4 nkiy D .
i ( g(n“ x m* RH), RES(R*~R); £ ),
iJj

where we have used (2.12) and (2.13).
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The first term on the right-hand side of (8.2) is, according to (6.5), equal to M,, for
the second term we write

8.3) 5 ( O RV, PR - R) - SRR 1),
i
while the third term is written as

d 1 ki kipkly (mk S
(8.4) ~@Hao s~ <g‘ (RY x " RH), (RS —0) SR* ~R); [ ).
The expression (8.3) is based on the fact that we have
®.5) 2 R x Vit + IRV x Vyut) = 0,
7 7

an equation that holds because the sum of the moments of the internal forces with respect
to the fixed origin is equal to zero.
We take the several terms together and find

66 oH.= M= L (3R x Vi, [SR ~R) - SR -R); f)
k0
2 3 X V), [SR~R) -~ SR~ R £ )
k1

i.]

[ D@ xmityi-op s@-R0i1Y),

- {( kZ: (™ x m*E4), (RE —vp) S(R*—R); f>}.a .
uf

Introducing into this equation the expression (7.10), rearranging the terms and using
(7.14), we obtain

oo
] 1
@7 oHe = Moteu, D) (Rotys,...).5,...0,+ Map.p + easy Rati8ls + miBp,

ne=1

with the definitions

(8.8) Myp= — %(%‘(r“ x ViguM), {8(R*~R)— S(R'=R)}; f )
and

(8.9) md) = — <Z(r"‘ x mM k) (R —v,) S(RX—R); f >
As a consequence of (2.7) wek;nd

(8.10) ml = 0.

For M, ; we have

@.11) Maps = D Map,...pupriis

n=l
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with
1 (=) i ;
@.12) Mty = 5~ (g,’(r" X Vi) REL .. RES(RE=R); f ).
i
We now consider gf),. Similarly as we have obtained the equation for oH,, we get
(8.13) 0Dy = RXK),+ap, Ry 15+ a5, Rg Tys.5.

This equation could directly be found from (7.6) by multiplying it with the vector R.
It does not give any new information. With (8.1), (8.7), (8.13) and (6.7) we find

(8.14) 0(Tepwp) = ma+ Mg+ €ap, trypy +€apy Z(’H‘ Dy, b0y 0

There is a relationship between meg, . g,, defined in (8.12) and #.4, . g,, according to (7.14).
The potential energy «*' may be expressed as

(8.15) ukl= H(R", RH, RU)’
but also as
(8.16) u¥ = u(R¥, ¥, r').

Because (8.16) has to be frame-indifferent we have

@17 Rﬂan*‘ +2 “orsl +2 e U =

This equation may also be obtained from (8.5) if we make use of

du du
(B-45) TRE = G
Introducing (8.17) and (8.18) into (8.12) we find

% . ":)“ f e"s"[rﬂi(v*iu“)rf' l"éj v Hk‘)r]

% 0g, ... 0p,n2(R, R+p, 11, .. x*S)dpdr'! ... dr*®

(8.19) m,ﬂlu_g' =

1 (=1)"
T T ( n! _eﬁﬂ?J s(Vurt), 05, --- 0p,12(R, R+p)dp = '_(""'l)e"“"f"”‘ e

From (8.19) and (7.22) it follows that
(8.20) Map,..5,=0 for n=1,3,5,...
With (8.19) we may simplify (8.14). It turns out to become

(8.21) Qfasw; = My— Map s+ €apyt1yp1-

We still can write (8.21) in another form, eliminating M,;. This form is

(=]
T 1
(322 0lop wp = Mg+ eapy Trypy+ 7 Z €apy(N— 1) I1yp38, ...80081 B
n=1

The Eqs. (8.14), (8.21) and (8.22) express the balance of internal angular momentum.
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9. The energy

From the definitions (4.13), (4.14) and (4.5) we obtain

1 1
©.1) oE = gU“"+—2—9ﬂ’+—

) QI afWaWg.

It may easily be proved that
(9.2) i,gw,wﬂ =0,

from which follows

©.3) Lpwewp = Tpapeg.

l_
2
By differentiating (4.13) we find

(9.4) oE = ——(Zm"‘(R*')’(R" 2,) 0(R*—R); [ >

+r0 4 K0, maog— () (R Vi) R ~R); 1),
o
where the result (6.11) has been applied.
Next, we differentiate (4.15) with respect to the time. This yields

93) U = 5 3 (R4 V) (SR~ R) + S@R - R)}; £ )
kd
iJ
Jg 1 ki pk k 3
_a_&5<k§."u (RE—2,) (R*—R); f ).
Introducing

(9.6) U= UR4U®
and taking (9.4) and (9.5) together, we find

(9?) Q(U"‘vaﬂ:"'laﬂwﬁwa) = fc ]vﬂ)a"‘ (’.‘: r“""Kav:"'mawu
F"——(Z(R’“ Vi) (SR~ R)— SR'~R)}: 1 ),

'J'
where the heat fluxes

©8) = + 5 St P (Re-0) 0® - R); 1)

and

9.9 g = 42 3 (R0 SR R); £)
k.l
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are introduced. The last term on the right-hand side of (9.7) is developed according to
010 =3 X (R Vi) s® ~R)- SR~ R} 1)

k1

i

_< Z(R* V) {S(R*—R)— 6(R' —R)}; f>

N

‘E<2 Wb (P x Vo) {(SR*~R) — S(R'~R)}; /)
k1

32 04 V) (SR ~R) - SR -R)}: ).
k.l
Lj

The first term on the right-hand side of (9.10) is equal to

(©.11) —%<§(ﬁ*—v)- Vi SR~ R)— SR ~R)}; f )+ Top,p%,

because of (7.9). Thc: second term in (9.10) will be rewritten in the form

012 —5( Dt =) @ x V) (R ~R) ~ SRR} 1) + Mg

as a consequenct; of (8.8). We introduce the heat production r® per unit time as

©.13) r® = ——-(2(?‘“ Ve {SR*~R) - SR ~R)}; /),
.f r
and expand the factors in (9.11) and (9.12) according to (7.10). We obtain

9.14) —%(ZI(I.Q"—V)-V,,u"‘{é(R*—R)-ﬁ(R'—R)};f>

2(_1)" i 3% (Z‘(R —v) VyuRYL ... RES(RE-R); f )

o '
+ Z (Vatap,...p).51...80

n=1

where the prime denotes that the term v, 2,5,.. 5, 5,...5, Must be omitted. Correspondingly we
find for the first term in (9.12)

019 5 2 (@'~ 0) (X V) (SR ~R)— SR - R)}: )

22 CF (S @) @ x V)RS, .. R AR R 1)
. n k0
iJj

o0
+2 (@aMMap,...).8,.0.80"
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The first term on the right-hand side of (9.14) is a heat flux term, just like the cor-
responding term in (9.15). We define

(0.16) ¢ = —%g%!‘l{(g(ﬁhﬂ- Vi« REL ... RESQRER); £ M g,...0,
and

9.17) _ 1)"

l oo
p3) — _
QK‘G i 2 E

[( V‘(m @) @ x Ve )RY, ... RESRE~RY; )],

We now take the Egs. (9.7), (9.10), (9.11), (9.12), (9.14) and (9.15) together and
simplify the result with the aid of (7.6) and (8.14). We obtain

(9.18) QU = r—Qea+ 188 Va5 + tap)Via.py + tap1 {Vta,p1 — Wap}

+ Z (n+ 1) {V.pyt@rpy...00}.61.. -8 F Z (n+ 1) {[Vfe.py— ©apl tiapss, .0, }.5,...500

n=1 n=1
the balance equation of internal energy, with the definitions
(9.19) r=r®4 e
(9.20) 0. = g+ gPV 4 gD 4 g@9,

Note that the heat flux is composed of an infinite number of multipole heat fluxes.
The Eq. (9.18), which has been derived by means of the methods of statistical mechanics,

is a slight generalization of the energy equation, postulated by GReeN and RivLIN (cf. [7]).
We now introduce the entropy according to the Clausius-Duhem inequality

9.21) f [9T.§—r+Q,_. Q‘ ]dV 0,

vV

where the integration has been taken over an arbitrary part of the body with volume V.
In (9.21) S is the entropy per unit mass and 7 the absolute temperature. Eliminating
r—Q,,. from (9.21) and the integrated equation (9.18) and introducing Helmholtz free

energy v by
(9.22) vy=U-TS,
we obtain

oo
§ . 1
9.23) f [9'}’ +05T— 15 Via,py — apy Via.py = tapy {Vpa.py— Vap} ‘Z (n+1)

Vv n=1

QT o
V@ latty...ba) By b= 2 1+ D {[repr—0apl ety . 80} 510+ ]“'V <0.
n=1
A method to derive from the inequality (9.23) a set of constitutive equations is well known.
In this paper we shall not enter upon it. The discussion of (9.18) and (9.23) is similar
to the corresponding one in reference [7].
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10. The constitutive equations

The molecular theory not only enables us to derive the balance equations, with this
theory we may also find the constitutive equations. In this chapter we shall give some
expressions for a few stresses, in terms of the displacement and rotation gradients. We
shall limit the discussion to the linear case, and we shall also confine ourselves to the
lowest order terms.

We start with the formula (7.21) for 1,4

101)  ty= 5 [ (Fodeopma® Rebp,x', ., 5, dpde™, ., ™.
The material derivative of (10.1) is

(10.2) leg = % f (Vo U)e0phtodpdr'™ ... dr?S.

For n,, the following equation approximately holds (cf. [6])

on, d(n,vl 6nv¢
103 5+ (3;;) (3 ) Za"e“” ,r‘+23 —ajeapy 0ty =0,

where R} and v, refer to the a-components of position and velocity of the first particle,
while a corresponding definition holds for R? and »2. The Eq. (10.3) is a generalization,
but also a simplification of the exact Eq. (3.7).

We first transform the function n,(R!, R?, r'!, ..., r?5, ¢) into the function n,(R, R+
+p, ', ..., %5, 1), according to
(10.9) R =R! p = R2-R!
We obtain
31!2 a 2 a Ny a
(105) a—+ﬂ2 ,g'f' aR 39 z+n n; =¢+ 39

an,
+Z or} ueaﬂvwﬂrr V ar”e,ww,r,j =0.
J’
Writing
(10.6) Uy = U5 U3 = Va(R+P) = va+s 505,

and approximating to the first two terms and lower derivatives, we have

. on 2 1 dn . 2 1 on .
(10.7) n,; = _%Iﬂﬂ.! _3—92930""8 — ﬁeghwﬁr; — ﬁe“,wﬂrﬁ’.
x i [ 4 J (-]
Now the function n, has to be frame-indifferent for fixed R, e.g. it satisfies

on Bn any. 2

With (10.8), (10.7) becomes

g an on
(10.9) My = — 21,0, ———0p)Va.p) = =01 {Vta.p1— Dep } -
2 2 %0 25)V@.p) S0 E’n{ .81 ﬂ}
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Introducing (10.9) into (10.2) and integrating over r'!, ..., r?5, we find

. 1 on, on,
(10.10) 1,5 = Ef(vgu)agﬂ‘ 21, Uk k T Ql}ﬂ(k.i)"gé[_*gl][v[k.tl wk,]}dp
This expression may be written as

, 1 ou  on, du on
(10.11) 5 = "chg%’k.k—jﬂck.n 89 0% — ET ondp— 2(”[& n— u)f‘ggggﬁ'.?udp-

If on the stress-free state a small displacement-field v4z and a small rotation field wAt
are superposed we have, with

(10.12) Aty = 1,541, u=vAt, ¢ =wdt,
where At is the small time during which the loading takes place,

1 du on,
(10.13)  Adt,5 = ) To. 05— Toa QndP“j[uu n— %]fag Op 75— 39 2 ondp.

The integrals are the coefficients of elasticity.
We now consider the stress f(4p,5,.5,» being the main term of the moment-stress tensor.
We have

1 du on,
(10.14)  Atgapip,p,, = — Tz'“(k»ﬁﬂzfmgﬂlt’h enzmendp

—l—[u _— f&u on, d
12 Wik ™ Pual.p, —3&‘ Qﬂleﬂleﬂz—agu 2nap,

in the stress free state, if n, does not depend on R. Explicit expressions may be found,
if we introduce into (10.13) and (10.14) formulae for u and for n,.

11. Conclusions

One of the most important questions refers to the order of magnitude of the moment-
stress tensor, compared with the stress-tensor. In order to answer this question, we need
data concerning the pair distribution function n,. The quantitative theory of this function
for fluids is extremely complicated (cf. [4]), but it is rather easy to give some rough esti-
mations. If we introduce for a fluid the function g(p), according to

(11.1) ny = 0%g(p),
it is obvious that we have
(11.2) g0) =0, g(w)=

Anywhere between 0 and co the g-function of a fluid is very steep and therefore we ap-
proximate qualitatively

(11.3) ( jﬁ' ) = const 8(jp—al).
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Comparing the integrals

%E’ag—:: eidp with faa—;es E’ﬁ;\?ﬂzz—:i— eidp,
we see that the ratio is 0(a?).

For a crystalline body, the situation is quite different. Here n, is a periodic function
and g may be approximated by a series of step functions. The derivative of g with respect
to g consists of positive and negative d-functions. Altogether it appears that in the molec-
ular theory, both of fluids and crystalline bodies, the ratio of the dominant integrals
will be very small. Note that a is of the order of a molecular dimension. Thus the effects
can be expected to be negligible.

However, for a body consisting of a large number of grains, the corresponding para-
meter a becomes of the order of the grain dimension. A lower bound for this dimension
is given in the introduction. We note that the grains must not be too large, because then
the statistical theory cannot be applied and, what is more important, the mutual forces
between the grains are not derivable from a potential function. The conclusion is again
that the ratio of the integrals will be small.

If the body consists of large grains, we have to deal with the theory of inhomogeneous
elasticity.
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