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A note on the physical foundation of the theory of multipole-stresses 

J. B. ALBLAS (EINDHOVEN) 

BALANCE equations for linear momentum, angular momentum and energy are derived for the 
model of a body, consisting of a very large number of molecules, each composed of a number 
of subparticles. The method for deriving the equations is based on classical statistical mechanics 
(ensemble theory). Many aspects of the phenomenological theories of micropolar elasticity 
are confirmed. It appears that the inclusion of ever higher derivatives of the strain gradient 
in continuum mechanics is set bound to, by the existence of stress fluctuations. It is believed 
that a generalization of the molecular theory on quantum-mechanic1l basis is possible. The 
theory may also be applied to the consideration of a continuous body, composed of a large 
number of very small grains. The conditions for the possibility of application is ensured if 
statistical methods may be used. 

R6wnania bilansu dla p~u, momentu p~du i energii wyprowadzono dla modelu ciala skla­
daj(!cego si~ z bardzo duZ.ej ilosci CZClStek, z kt6rych kazda zloi:ona jest z pewnej liczby pod­
CZC!Stek. Metoda wyprowadzenia r6wnan oparta jest na klasycznej mechanice statystycznej 
(teorii zbior6w). Potwierdzono wiele aspekt6w fenomenologicznych mikropolarnej teorii spr~­
zystosci. Okazuje si~, :le uwzgl~dnianie kazdej z wy:Zszych pochodnych gradientu odksztalce­
nia jest uzaleznione od istnienia fluktuacji napr~zen. Przyjmuje si~, :le uog6lnienie teorii mo­
lekularnej na bazie mechaniki kwantowej jest mozliwe. Przedstawiona teoria moze bye r6wniei: 
zastosowana do badania osrodka ci(!glego zloronego z duzej liczby bardzo malych ziaren. 
Powodzenie zastosowania b~dzie zapewnione, jesli skorzysta si~ z metod statystycznych. 

Ypaaaemm 6aJiaaca gm1 HMIIYJI&ca, MOMeHTa HMIIyJibca H 3HeprHH BbiBegeabi gJIH MogeJIH 
TeJia, COCTOH~ero H3 OliCHb 60JibWOro I<OJJHliCCTBa llaCTifi.l, J<a>Kga.R H3 I<OTOpbiX COCTOHT H3 
HeJ<oToporo I<OJIHllecraa nogqaCTHI.(. MeTo~ BbiBoga ypaaaeHHH: onHpaeTcH aa J<JiaccHlleCJ<oH: 
CTaTHCTHlleCJ<OH MeXaHHJ<e (TeOpHH MHO>KeCTB). Tio~TBep>K~eHO MHOrO <PeHOMeHOJIOrHlleCJ<HX 
acneJ<TOB MHI<pOllOJIHpHOH TeopHH ynpyrOCTH. 0J<a3biBaeTCH, liTO yqeT l<a>KgOH H3 BbiCWHX 
npOH3BO~biX rpagHeHTa ~e<PopMaQHH 3aBHCHT OT ~eCTBOBaHHH HaiipH>KeHHH - <!>JIYI<­
TyaQHH. BepHTCH, liTO o6o6~eHHe MOJieJ<yJIHpHOH TeOpHH Ha OCHOBe I<BaHTOBOH MeXaHHI<H 
B03MO>KHo. Hacro~aH TeopHH MO>KeT 6biTL Tome npHMeaeaa 1< HCCJie~oBaHHIO cnnoiUHoA 
cpe~bi, cocroH~eH: H3 6oJibworo I<oJIHllecraa oqeHb MaJibiX 3epea. Ycnex npHMeHeHHH 6y~eT 
o6ecnelleH, eCJIH HCllOJib3YeTCH CTaTHCTHliCCJ<He MeTOgbi. 

1. Introduction 

IN this paper we consider the derivation of the equations of multipolar continuum mechanics 
from the principles of classical statistical mechanics. In particular, we shall derive the 
equations of continuity, of linear and angular momentum and of energy. The model 
under discussion is a body, consisting of a very large number of molecules. Each of the 
molecules, which are mutually identical, is composed of a number of subparticles, i.e. the 
molecules have internal degrees of freedom. For simplicity we shall not specify the kind 
of particles e.g. charges, dipoles, electric or magnetic multipoles, but we assume the 
existence of an interaction potential energy of a very general form. 

It appears that many aspects of the phenomenological theories of micropolar elasticity 
are confirmed. However, many other features of theories, that have been developed during 
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the last decades, are not verified. For the model under discussion the following important 
conclusions are arrived at: 

a) Multipole-stresses and multipole-moments do exist and expressions are given for 
these quantities. 

b) The motion of any individual molecule can be separated into translational, rota­
tional and deformational parts. From the translations and rotations, the local regular 
motions may be found by statistical means. Although a corresponding separation for 
any external micro-deformation might formally be possible, physical theory indicates 
that such a separation is of little significance. A natural bound is set by the existence of 
stress-fluctuations. 

c) Therefore, for the contributions of the molecules to the linear and angular mo­
mentum, they are considered as rigid bodies. 

d) Because of c), the forces and moments between arbitrary pairs of multipoles only 
work in, or are taken with respect to the centres of masses. 

e) Thus, while the subparticles are mutually interacting, the origin of multipole­
stresses cannot be ascribed to the multipole-distributions inside the individual molecules. 

f) The real origin of these stresses and moments is of a statistical nature. In ensemble 
theory, it is the pair distribution function, which gives rise to contributions by molecules, 
situated at different places, to those stresses and moments. Effectively they form the 
multipoles. 

g) As a conclusion of f) also multipole-stresses occur between molecules without 
internal degrees of freedom (point-masses). 

h) We will in this paper also introduce multipole-body-forces and moments, but they 
are believed to be small with respect to the corresponding stresses. This is a consequence 
of the fact that the external field will be more smooth than the internal field. 

i) In the existing phenomenological theories, heat supplies and heat fluxes are intro­
duced, but they are considered independently from the forces. In this theory the total 
local energy can be divided into the work, performed by the body-forces, stresses and 
moments in the regular motions, and the heat supply, which is the work performed in the 
internal irregular motions. Correspondingly the energy flux may be split into the work 
by stresses and moments and the heat flux. It is obvious that the heat flux consists of a 
sum of multipole heat fluxes. 

While the molecular theory is based on classical mechanics and classical statistical 
mechanics, it is believed that a generalisation on quantum-mechanical basis is possible. 

It is expected that the deviations between the classical theory and the multipole-stress­
theory, on this molecular basis, are numerically very small. Therefore it is worth while 
to look for a model, to which the present theory may be applied, while the deviations 
from classical theory are possibly somewhat greater. Such a model is provided by a contin­
uous body, consisting of a large number of very small grains. The condition, that this 
theory may be applied, is ensured if, for the description of the properties of the body, 
statistical methods can be used, while the forces between the grains can be derived from 
a potential function. The "molecules" are now the grains and the subparticles are the 
particles in the grains. While the characteristic length parameter for the grains is con­
siderably greater than the corresponding one in the molecular theory, the derivative of 
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the pair distribution function is here very small, i.e. the average force on one of the grains 
exerted by the others is small. 

The first who have derived the equations of hydrodynamics by the methods of statistical 
mechanics are IRVING and KIRKWOOD [1]. This work is generalised to the derivation of 
the equations of quantum hydrodynamics by IRVING and ZWANZIG [2]. In [3] both papers 
are included, and in [4] a summary of [1] is presented. KELLER and KELLER [5] have given 
the first proof that moment-stresses can be found in statistical mechanics. ALBLAS and 
KuiPERS [6] have extended the theory of KELLER and KELLER for the case of dipolar 

molecules. 
It is the purpose of this paper to provide the physical basis for the theory of generalised 

media and to obtain formulae, which make possible a numerical estimation of the quan­
tities involved. We shall derive and even generalize the results, obtained by GREEN and 
RIVLIN [7], in their first paper on the continuum mechanics of multipole-stresses. Green 
and Rivlin's contributions can be considered to belong to the most general ones in this 
theory. 

Before entering upon the details of the multipole-stress theory we shall make a few 
remarks concerning stress-fluctuations. According to classical statistical mechanics [8], 
the following relation exists 

(1.1) (~p)2 = -kr( ~~L· 
where p is the pressure, V the volume, T the absolute temperature, S the entropy and k 
Boltzmann's constant. The deviation from the average value is denoted by 6, thus 6p 
is the deviation due to fluctuations in the pressure. The bar denotes the average value. 

Applying (1.1) to the case of a gas we find 

(1.2) (6p)2 = k~~~' 
with e the density, c0 the velocity of sound, calculated from the equilibrium equation 
of state, while L1 V is the volume-element over which the deviation is measured. If we apply 
(1.1) to a solid body we find 

(1.3) (6 )2 = kTu 
'P L1V' 

where u is the adiabatic compressibility. Without distinguishing this from the isothermal 
compressibility, we have 

(1.4) .. ;<i: )2 _ -. 1 kTE 1 ,..., 1 0_6 1 k 1 2 

V up - Jl 3(I-2v)yL1V "'51 tJ12 gem, 

for metals at room temperature. From (1.4) it follows that a stress deviation of about 

30 kgfcm2
, i.e. 1% of an average yield value, occurs in a cube with the edge ! · I0- 4 mm = 

= 0.025,u. 
The basic idea is now the following. For a Cosserat-type medium, the state of de­

formation is described by displacement-gradients up to a certain order. Dimensional 
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analysis then shows that the medium is characterised by a number of length parameters, 
together with more conventional moduli. It is well known that such length parameters 
give rise to the existence of boundary layers with comparable size, in which the gradient 
of the stress is considerable. It is obvious that each of the length parameters must be 
greater than the critical fluctuation parameter. As it must be expected that by increasing 
the order of differentiation, the corresponding length parameter decreases, a bound is 
set to the order of the equations. Shortly, continuization of discrete systems is only possible, 
if the external and internal fields are smooth enough. In that case, higher order derivatives 
become practically zero above a certain order. 

However, in our theory, we shall expand the functions in infinite series and retain 
all orders. This will only be done for simplicity and the physical meaning of the series, 
being in fact only finite sums, have to be borne in mind. 

2. Kinematics and dynamics of a composite particle 

We consider a system of N molecules, each composed of S particles. In a Cartesian 
coordinate system, the position of the i-th particle of the k-th molecule is given by Rki. 
The position of the centre of mass of the k-th molecule is Rk. Then we define r"i by (cf. 
Fig. 1) 

(2.1) Rki = Rk+rki. 

z 

y 

X 

FIG. 1. 

If the mass of the particle ki is given by mki, we have 

(2.2) 

where 

(2.3) 

From (2.2) follows 

(2.4) 

mRk .= ,l;mkiRki, 
i 
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If we differentiate (2.1) with respect to the time, denoted by a dot, we have 

(2.5) 

Now we write 

(2.6) 

where w" is the local angular velocity of the molecule as a rigid body, while vk' are the 
internal relative velocities. We define CAi in the following way. Introducing the local 
inertia tensor J;p in the form as it takes in the mechanics of rigid bodies, we write 

(2.7) .2; m"1(r"1 
X f"')a = J;pw~, 

i 

and by this equation w~ is uniquely determined. 
If we now split r"' according to (2.6) we find 

(2.8) .2; m"1r" 1 x v"' = 0. 
i 

Because of (2.4) we further have 

(2.9) 

The conditions (2.8) and (2.9) express the fact that the deformational (vibrational) 
modes of the molecule do not contribute to angular momentum and linear momentum, 
respectively. For practical calculations this separation of rotation and vibration is not 
convenient (cf. [9]). But for our purpose, it suffices. 

For the kinetic energy we have 

(2.10) E" = 2; ~ m"
1(R"1

)
2 = ~ m(R")2 + ~ J!pw!w~ + .2; ~ mk

1(v"1
)

2
• 

l l 

We now assume Newton's law to hold for any particle. Thus we have 

(2.11) 

where F11 is the external force and f" 1 the internal interaction force. If we sum (2.11) 
over i we find the equation for the motion of the centre of mass 

(2.12) mR" = F"+f", 
with 

(2.13) F" = .l;F"'; r" = .l;r"'. 
i i 

We also introduce the angular momentum H" by 

(2.14) H" = .2; m"1(R"1 x R"'), 
i 

that can be decomposed into two parts D" and d", according to 

(2.15) D" = m(R" x R"), 

(2.16) d" = .2; m"1(r"1 x f"'). 
i 
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For dk we will write 

(2.17) d! = J;pw;, 
where d! denotes the a-component of dk. 

In (2.17) we have applied the summation convention to the component indices {J. 
This will generally be done. To the numbers k and i, we shall never apply this conven­
tion. Differentiating (2.14) with respect to the time, and using (2.11 ), we find 

(2.18) H! = D!+d! = Rk x FA:+}; r'ci x Fki+Rk x fk+ };~i x (ki. 
i i 

3. The distribution functions 

One of the most fundamental errors, made in the continuum mechanics of the Cosse­
rat type media, is owing to the fact that molecular quantities are introduced, e.g. the 
local spin vector, without using statistics. Therefore we shall base our considerations on 
statistical mechanics; we introduce the N-particle distribution function J<NS> as a function 
of the parameters 

(3.1) / (NS) -J<NS)(Rl 11 lS R. 1 •It R2 21 • NS ) ~ ,r , .. . ,r, ,r , ... , ,r , ... ,r ,t. 

The probability that the N distinct molecules occupy the volume elements RA:, dRk with 
the velocities in the range Rk, aRk and the corresponding ranges hold for the internal 
positions and velocities is (cf. [3] and [I 0]) 

(3.2) 

We also introduce 

(3.3) 

Especially important are 

(3.4) 

(3.5) 

(3.6) 

N S 

J<NS> n dRkdRk n d~idiki. 
k=l i=l 

s 
j<N) = f j<NS) n d~idiki. 

i=l 

N 

J<O = J J<N>(Rk, R\ t) n dRkdRk, 
k = 2 

n1 = f J(l>(Rt, Rt, t)dRt, 

n2 = J [<2>(R1
, R.t, R2

, R2
, t)dR1dR2 • 

It is possible to consider the J<k>'s as probability functions, all normalized to 1. For 
practical purposes it is better to consider the J<k>'s as number densities and to normalize 

J<O and n1 to N, J<2 > and n2 to N(N -1) etc. (cf. [3, 4, 10]). 
The function f<NS> satisfies Liouville's equation. By integration we derive 

(3.7) 

2 

on2 \.-, a -k 
at + L oRk (n2 V ) = 0' 

k=l 
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with 

(3.8) 

The average value A(R, t) of a microscopic quantity a(R, Rki, R1i, t) is defined and 
denoted by 

(3.9) A(R, t) = (a;/) .= f af<N>drp, 

where rp is an abbreviation for the fluxion space element. There are simple calculation 
rules for the derivation of (a;f). If the quantities a are sums of functions, which depend 
on the variables pertinent to one or to two molecules only, many of the integrations may 
be performed and the resulting average values simplify considerably (cf. [11]). 

4. Basic definitions 

We define: 
a) the density (! 

(4.1) (! = (2m~(R1 -R);f), 
k 

where ~(Rk-R) is Dirac's Delta-function. 
(4.1) may be written as 

(4.2) (!=m f f 0 >(Rk, R', r", r", t). ~(R1 -R)dR1dR'dr"dr" = mnl(R, t); 

b) the local momentum (!V 

(4.3) (!V= (2mJik~(Rl-R);f), 
k 

for which we may write 

(4.4) ev = m J R'f<l)(R, R', t)dR'; 

c) the local internal angular momentum 

( 4.5) ela.pWp = la.pWp ~ ( 2 mk~~~ x fl')a.~(Rt- R); f), 
k,i 

that becomes 

(4.6) la.pwp = J J:pw~n 1 (R, r", f", t)dr"dr"; 

d) the local angular velocity w 

(.L; wk~(Rk-R); /) 
(4.7) w = --------~-----

nl (R, t) 
k 

from which we derive 

(4.8) J (w- wk)n1 (R, r", f", t)dr"di" = 0. 

3 Arch. Mech. Stos. nr 3/76 
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From (4.6) and (4.7) we derive 

(4.9) 

where I!p is introduced as 

(4.10) 

We further define 

J k - Jk ap-ma{J· 

e) the local total angular momentum eH 

(4.11) eH= (_27(Rkixmktik')~(Rk-R);f), 
k,l 

f) the local external angular momentum eD 

(4.12) eD = (_27(RkxmRk)~(Rk-R);f). 
k 

We shall also make use of the following energy definitions: 
g) the local kinetic energy 

(4.13) eE = (2 ~ mt1(Rk1)2~(Rk-R); f); 
k,l 

h) the local kinetic part of the internal energy 

(4.14) eu<k> = (2{ ~ m(Rt-v)2 + ~ J!pw!(w~-w11)}~(R1 -R); !), 
k 

i) the local potential part of the internal energy 

(4.15) eU<P> = ~ (_27u11~(Rt-R); f), 
k,l 

where uk
1 denotes the interaction energy of the k-th and /-th molecules. 

5. Conservation of mass 

From (4.1) and (4.4) follows 

J. B. ALBLAS 

(5.1) ~; = (_f'~~•>vR~<l(R'-R);f) =-a~ (_f'mR!<l(R'-R);t) = -(ev.) .• , 

from which we derive 

(5.2) e+eva,« = 0, 

the well-known equation of mass conservation. 

6. The body-forces and moments 

The a-component of the body-force, working in an element at R is 

(6.1) Ka = (2 F!i~(Rk-R);f). 
k,l 
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We assume that the external field is a very smooth field. In that case we may write 

00 

(6.2) Fki = F(Rkt) = F(Rk+t';) = ~ -+(t''. Vk)nF(Rk). L.J n. 
n=O 

With (6.2), (6.1) becomes 

(6.3) 

where gaa1 '""(R) has been defined as 

(6.4) ga1 ... an(R) = f f2a
1 

... f2«,.n 1 (R, p, t)dp, 

where p denotes the internal parameter r 11
• 

For the total moment of the body-forces we find correspondingly 

(6.5) M= (2<Rk1 xFk1)<5(Rk-R);f) 
k,i 

= <2 (Rk X Fki)<5(Rk-R); t) + <2 (t'i X Fki)<5(Rk-R); f). 
k,i k,i 

With (6.2) this becomes 
00 

(6.6) M«= e«p,RpK,+e«fly ~ -+F,,«1 ... « .. gfl«t ... « ... L.J n. 
n=O 

We introduce the moment m« by 

(6.7) 

The work performed by the body-forces is given by 

(6.8) (2:ftkt. Fk'<5(Rk-R); !) = (2:Rk. Fk'<5(Rk-R); !) 
k,i k 

+ (2 wk. (rki x Fki) <5(Rk-R); f)+ (2vk'. Fk'~(Rk-R); f). 
k,i k,i 

We introduce the heat supply-function per unit time r<k> by 

(6.9) r<k> = (2vk'. Fki~(Rk-R); f). 
k,i 

With (6.2) we may write for the other parts of the work performed 

00 

(6.10) ~ -+{F«,at ... « .. v«g«t ... a"+waeap,F,,«t···«ngfl«t···«n} = v«K«+w«m«. 
~ n. 
n=O 

The total work performed by the body-forces may be written in the form 

(6.11) 

The expression (6.11) is consistent with the model of a rigid body with small devia­
tions. It appears that this model gives rise to contributions in the internal energy, which 

3* 
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contain products of stress- and displacement-gradients of all orders. Therefore it seems 
appropriate to extend the model for the calculation of the work performed by the body­
forces to the model of a deformable molecule. To this end we assume a smooth velocity 
field and we expand the local translation-energy as follows 

00 

(6.12) v(R"1
) • F(R"1

) = .2 :! (r1'1 
• V~c)n{v(R") · F(R")}, 

n=O 

and correspondingly the energy of rotation. We find for the work in this model 
00 

(6.13) KczVcz +m~.~w~.~ + ~ _!,-{FczV(cz,p)},czl···czngP«l···czn L.J n. 
n=O 

00 

+ ~ _!,-{F~.~(vr«.fJ1- w~.~p)},cz 1 ••• ~.~,.gPcz 1 ••• czn. L.J n. 
n=O 

In (6.13) w~.~p has been defined by 

(6.14) Wczp = -w,eyczfJ· 

We note that (6.13) is frame-indifferent. The total work by the body forces may also be 
written in the form 

(6.15) K~.~vcz+m~.~w~.~+FczpV(cz,p>+F~.~p,v<«·fl>y+ ... +l~.~p,{Vrcz,p]-W«p},,+ .... 
The coefficients in (6.15) are combinations of those in (6.13). 

7. The linear momentum 

We differentiate (4.3) with respect to the time and obtain 

(7.1) o(~;~.~)_ = (Lm.R!b(R"-R);!) + (L mR!R~(V~cb(R"-R))11 ; t). 
k k 

With (2.11) and (2.13) this becomes 

(7.2) ac~;cz) = (LF!1b(R"-R); t)+(Lt!1b(R"-R);f) 
k,i k,i 

a (\"1 ·"·"~" . ) -oR L.J mRczRpu(R -R), f . 
f k 

We write this in the form 

(7.3) o(ev~.~) = K- < )1(V ·u"') b(R"-R)· !) at cz 4 "' cz ' 
k,l 
l,j 

-a~ (Lm<R!-v~.~)(R~-vp)b(R"-R);t) -(evczvp),p, 
p k 

after having used (6.1) and having made the assumption that the internal force f'd may 
be derived from an internal potential u"', according to 

(7.4) f ki - - ~V ·u"' - £-J"'. 
/,j 
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The internal potential depends on the location of the molecules k and /. For the deriva­
tion of (7.3) we further used (4.3). 

Introducing the kinetic stress tensor ~~~>, according to 

(7.5) t!~> = -<I m(R~-va)(R~-vp) b(Rk-R); 1 ), 
k 

we may write (7.3), with the aid of (5.1), as follows 

(7.6) 

expressing the balance of linear momentum, with Tap the stress tensor, defined by 

(7.7) Tap,p = - (2~\V kiuk')a b(Rk- R); f). 
k.l 
i.j 

Because 

(7.8) ,Lvk;uk' = - .J;v,iuk', 
i j 

we may write (7. 7) as 

(7.9) Tap,fJ .= - ~ < _2; (V ki uk1)a { b(Rk- R)- b(R1
- R)}; f). 

k,l 
i,j 

We expand b(R'-R) in a series, according to 
(X) 

(7.10) b(R1-R) = b(R1-Rk+Rk-R) = b(Rk-R+Rk') = 2:, (Rk1 • Vk)nb(Rk-R), 

with 

(7.11) 

We shall prove that 

(7.12) 

thus (7.9) may be written as 

(7.13) 

where tap1 ••• fJ,. has been defined by 

};vkiuk' = Vkuk'; 
i 

n=O 

(7.14) _ 1 ( -l)n < \l(t7 kl) Rk' Rk' .i(Rk R)· 1) fapl ... {J,.- -2 --,- LJ vkU a Pi ... p,u - ' . 
n. k.l 

From (7.13) it follows that we have 

(X) 

(7.15) Tap = .2; fa{Jfh· .. {1,., p2 • .. {1,. + fap · 
n=2 
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We now enter upon the form of uk'· For a very general case, the case of multipole 
interactions (cf. [11]), we can derive the expression 

(7.16) 

where 

(7.17) 

From (7 .16) we can see that 

(7.18} "' kl '\"1 a kl \1 a kl . kl .L.J V kiu = .L.J aRk' u = L.,; ark' u = V ku . 
i j i 

We note that it is often advantageous to expand the stress tensor Ta.p according to 

00 

(7.19) Ta.p = fa.p+}; fa.tJfJt···f1n•f1t···f1n' 
n=l 

In that case ta.pp
1 

••• fJ. have to be redefined by 

(7 20) - I ( -l)n+t < \"l(V kl) Rk'Rk' Rk' ~(Rk R)· f) 
• fa.pf1t···f1·-2-(n+1)! f.t ku a. fJ Pt··· p.u - ' . 

In terms of the pair distribution function, (7.20) becomes 

1 ( -1}n f 
(7.21) fa.pf1t···f1n = 2 (n+ 1)! {Vc:>u(R, p, ru, r21)}a.l?fJ€!tJt ... l!tJ. 

·n2(R, R+ p, r11
, r21}dpdr11dr21 . 

Because of symmetry we see that 

(7.22) ta.pp1 ... p. = 0 for n = 1, 3, 5, .... 

8. The angular momentum 

It follows directly from the definitions (4.11), (4.12) and (4.5) that the following rela­
tion exists 

(8.1) 

By differentiating (4.11) with respect to the time, we obtain 

(8.2) a(~~a.) = < L (Rki X Fk')a. fJ(Rk- R); f) - <}; (Rki X V ki uk')a. fJ(Rk- R); f > 
k,i k,l 

-a~ (};<Rk'xmktRk')a.R~fJ(Rk-R);f), 
{J k,l 

i,j 

where we have used (2.12) and (2.13). 
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The first term on the right-hand side of (8.2) is, according to (6.5), equal to M(, for 
the second term we write 

(8.3) - ~ (l\R"i X vkiu"')cz[~(R"-R)- ~(R'-R)]; !) ' 
k,l 
i,j 

while the third term is written as 

a ( '\1 
1c1 1c1 • ki ·" " ) (8.4) -(eHcxvp),p- oR ~ (R xm R )cz(R11 -vp)~(R -R); f . 

fJ k,i 

The expression (8.3) is based on the fact that we have 

(8.5) l'<R"1 
X V~c;u"')+ 2 (R'i X v,ju"') = 0, 

j ; 

an equation that holds because the sum of the moments of the internal forces with respect 
to the fixed origin is equal to zero. 

We take the several terms together and find 

(8.6) (!Hcz = Mcz- _!_ (2 (R" X V~cu"')cz[~(R"-R)- ~(R'-R)]; f) 
2 k,l 

- ~ (2 (rl1 
X V~c;u"')cz[~(Rt-R)- ~(R1 -R)]; f) 

k,l 
i,j 

- {(2 (Rt x mR")cz(R~-vp) ~(R"-R);f )},fJ 
k 

- {(2 (r"' xm"1fk1)cz(R~-vp)~(R"-R); !)}.11 • 
k,l 

Introducing into this equation the expression (7.10), rearranging the terms and using 
(7.14), we obtain 

00 

(8.7) (!Hcz = Mcz+ecz{Jy 2(Rpfyp1 ... p,.),p1 ... p,.+Mczp,p+eczpyRpt~~~~+m~~~{J' 
n=l 

with the definitions 

(8.8) Mczp,p =- ~ (};<r"1 xV~c1 u"')cz{~(R"-R)-~(R'-R)};f), 
k,l . 
i,j 

and 

(8.9) m~~>=- (2<r"ixm"1i" 1)cz(R~-vp)~(R"-R);f). 
k,i 

As a consequence of (2. 7) we find 

(8.10) 

For Mczp,p we have 

(8.11) 
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with 

(8.12) _ 1 ( -1)" < ~( ki o kt) Rk' Rk' ~(Rk R)· 1) ma.p1 ••• fJ,.- -2 -n-1 - L.J r x Ykiu a. p1 •• • p,.u - , . 
• k,l 

i,j 

J. B. ALBLAS 

We now consider eDa.. Similarly as we have obtained the equation for eH a, we get 

(8.13) eDa = (R X K)a+eap,Rpt~~~t5+eap,Rp T,6,6· 

This equation could directly be found from (7.6) by multiplying it with the vector R. 
It does not give any new information. With (8.1), (8.7), (8.13) and (6.7) we find 

CO 

(8.14) e(lap.wp) = ma+Map,p+eap,tc,pJ+eapy ~ (n+ I)tc,p1p1 •. ,p,.,p
1 
.•• fJ,.· 

n=1 

There is a relationship between map
1 

••• p,., defined in (8.12) and tap
1 

••• p,., according to (7.14). 
The potential energy uk' may be expressed as 

(8.15) 

but also as 

(8.16) uk' = u(Rk1, rki, r1j). 

Because (8.16) has to be frame-indifferent we have 

(8.17) 

This equation may also be obtained from (8.5) if we make use of 

(8.18) 
au au 

Introducing (8.17) and (8.18) into (8.12) we find 

(8 19) - I ( -1)" f [ ki(V kl) o(V ki) ] • map1 ... p,. - -4 ~ eapy rp kiu ,+rp tjU , 

(R R 11 2S)d d 11 d 2S x (!p
1 

... (!p,.n2 , + p, r , ... , r p r . .. r 

1 ( -1)" J' I = - 4----:nr-eap, (!p(Vkluk1),(!p
1 

... (!p,.n2 (R, R+p)dp = - 2(n+ I)eap,t,pp1 ... {J,.· 

From (8.19) and (7.22) it follows that 

(8.20) map
1 
... p,=0 for n=l,3,5, .... 

With (8.19) we may simplify (8.14). It turns out to become 

(8.21) elapw; = ma-Ma11.11 +eap,tc,p1• 

We still can write (8.2I) in another form, eliminating Map· This form is 
CO 

(8.22) eia; w~ = ma+ea.p,Tc,p1+ ~ 2 eap,(n-I)tc,PJfJ1 ... fJ,.,fl 1 ... P,.· 
n=l 

The Eqs. (8.14), (8.21) and (8.22) express the balance of internal angular momentum. 
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9. The energy 

From the definitions (4.13), (4.14) and (4.5) we obtain 

(9.1) 

It may easily be proved that 

(9.2) 

from which follows 

(9.3) 

By differentiating (4.13) we find 

(9.4) ei = -a! (2mki(:ftki)2(R!-vcr)<5(Rk-R);f) 
er k,i 

293 

+r<k>+Kcrvcr+mcrwa.-<2 (Rki · Vkiuk1)<5(Rk-R);/), 
k,l 
i,j 

where the result (6.11) has been applied. 
Next, we differentiate ( 4.15) with respect to the time. This yields 

(9.5) eif<P> = ~ <2(Rki, Vk;uk'){<5(Rk-R)+<5(R1-R)};f) 
k,l 
i,j 

Introducing 

(9.6) 

0 1 < ~ kl • k ) ..Q k )· !) - -
0
R 2" L.J u (R11 -Vcr u(R -R , . 

a. k,l 

u = u<k> + u<P> 

and taking (9 .4) and (9. 5) together, we find 

(9.7) eCU+vcrv«+lcrpwpwcr) = (t!~>vp),11 -q~~~+r<k>+Ka.vcr+m11 w~.~ 

where the heat ftuxes 

-q~~!>- ~ <2(Rki. Vk;uk'){<5(Rk-R)-<5(R'-R)};f), 
k,l 
i,j 

(9.8) q~k> = + ~ (2 m(Rk-v)2(R!-vcr) <5(Rk-R); 1) 
k 

and 

(9.9) q<Pi> .= + ~ (2 uk'c.R:-vcr)<5(Rk-R);f) 
k,l 
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are introduced. The last term on the right-hand side of (9.7) is developed according to 

(9.1 0) - ~-<~ a{'d · V~:,zl''){ ~(R1 -R)- ~(R1 -R)}; f) 
k.l 
i.} 

=- ~ <~(R1 ·VA:u11){~(R1 -R)-~(R1 -R)};f) 
k.l 

-~ <2 w1 
• (rl1 xV~c;u11){~(R1 -R)- ~{R1 -R)}; !) 

k,l 

-~ <2 (vld · V1;u11
){ ~(R1 -R)- ~(R1 -R)}; f). 

k.l 
l,j 

The first term on the right-hand side of (9 .1 0) is equal to 

(9.11) - ~ <2 (R1 -v) · Va:zi'1 {~(R1-R)- ~{R1 -R)};f)+ Tap,pva, 
k.l 

because of (7.9). The second term in (9.10) will be rewritten in the form 

(9.12) - ~ <2(w1-w)· (rl1 xV~c 1 u11){~(R1 -R)-~(R1 -R)};f)+Map,fJW,u 
k,l 

as a consequence of (8.8). We introduce the heat production ,un per unit time as 

(9.13) r<P> =- ~ <2(vl1 ·V11 u11){~(Ric-R)-~(R1 -R)};f), 
k,/ 
;,; 

and expand the factors in (9.11) and (9.12) according to (7.10). We obtain 

(9.14) - ~ <2 (R1c-v) · V1 ulc1 {~(R1 -R)- ~(R1 -R)}; !) 
k.l 

00 

+ .};' (Vatap1 ••• p,.),p1 ••• {J,., 

n=l 

where the prime denotes that the term vatap
1 

••• fJ,.,fJ
1 

••• fJ,. must be omitted. Correspondingly we 
find for the first term in (9.12) 

(9.15) _.!_<.}; (w1 -w) · (rl1 x V11 u11
){ ~(R"-R)- ~(R1 -R)}; f) 

2 k,l 

00 

+ .};' (wamap •... p,),p •.•. fJ,.. 
n=l 
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The first term on the right-hand side of (9.14) is a heat flux term, just like the cor­
responding term in (9.15). We define 

( ) 1 ~ ( -l)n {( '), (Rk ) . t7 kl kl kl .i k . )} (9.16) qa~; = -2 _L,; ~ ~ -V vkU • Rp1 ••• Rp,.u(R -R), f ,p1 ••• p,., 
n= 1 k,l 

and 

(
9
.
17

) q<PJ> := _ _!_ f ( -l)n [( ~ (wk-w) · (rki x V ·Uk1)Rk' Rk'<5(Rk-R)· !)] 
a.a 2.,...; n! L..J k& Pt ... p,. ' ,fJt ... fJ,.· 

n=l k,l 

We now take the Eqs. (9.7), (9.10), (9.11), (9.12), (9.14) and (9.15) together and 
simplify the result with the aid of (7.6) and (8.14). We obtain 

(9.18) (!U = r-Qa,a+t!rva,p+t(a{J)V(a,{J)+trafJ]{Vra,p]-Wap} 

00 00 

+ .E (n+ 1){v(a,fJ>t<afJ>fJ1 ... p,.},p1 ... p,. + .E (n+ 1){[vra.{J]-Wap]trafJJfJ1 ... p,.},p1 ... p,., 
n=l n=l 

the balance equation of internal energy, with the definitions 

(9.19) 

(9.20) 

Note that the heat flux is composed of an infinite number of multipole heat fluxes. 
The Eq. (9.18), which has been derived by means of the methods of statistical mechanics, 

is a slight generalization of the energy equation, postulated by GREEN and RIVLIN (cf. [7]). 
We now introduce the entropy according to the Clausius-Duhem inequality 

(9.21) J[erS-r+Q •.• - Q,:·· }v~ o, 
V 

where the integration has been taken over an arbitrary part of the body with volume V. 
In (9.21) S is the entropy per unit mass and T the absolute temperature. Eliminating 
r-Qa,a from (9.21) and the integrated equation (9.18) and introducing Helmholtz free 
energy "P by 

(9.22) 1p = U-TS, 

we obtain 

(9.23) J[ e.P+eST -t~'v, •. p,- t,.p,v,,,p,- t,.p]{v, •. p]-w.p}-i, (n+ I) 
V n=1 

x { v <•·P> t <•P>P, .. . p,} ,p, ... p,- .i; ( n + I) { [ v,, ,p1- w,p) t,•PIP, .. . p.} ,p, ... p. + Q • J·• J dV .; 0 . 
n=l 

A method to derive from the inequality (9.23) a set of constitutive equations is well known. 
In this paper we shall not enter upon it. The discussion of (9.18) and (9.23) is similar 
to the corresponding one in reference [7]. 

http://rcin.org.pl



296 J. B. ALBLAS 

10. The constitutive equations 

The molecular theory not only enables us to derive the balance equations, with this 
theory we may also find the constitutive equations. In this chapter we shall give some 
expressions for a few stresses, in terms of the displacement and rotation gradients. We 
shall limit the discussion to the linear case, and we shall also confine ourselves to the 
lowest order terms. 

We start with the formula (7.21) for tap 

(10.1) t«P = ~ J (V"u)r~.epn2 (R, R+p, r11
, ... , r25

, t)dpdr11
, ... , dr25. 

The material derivative of (10.1) is 

( 0 2) . - 1 f (V ) . d d 11 d 2S I . t«P - 2 "u r~.!?pn 2 p r ... r . 

For n2 , the following equation approximately holds (cf. [6]) 

an2 o(n2v!) o(n2vD ~ on2 u ~ an2 lj _ 

at+ oR! + oR! + L.J or~i eapyWp ry + L.J or:ie«fJywpry - 0, 
i j 

(10.3) 

where R; and v; refer to the a-components of position and velocity of the first particle, 
while a corresponding definition holds for R; and v;. The Eq. (1 0.3) is a generalization, 
but also a simplification of the exact Eq. (3.7). 

We first transform the function n2 (R1, R2
, r11 , ... , r25

, t) into the function n2 (R, R+ 
+ p, r 11

, ... , r25
, t ), according to 

(10.4) 

We obtain 

(10.5) 

Writing 

(10.6) v! = v«; v! = va(R+p) = v«+vr~.,fJ!?fJ, 

and approximating to the first two terms and lower derivatives, we have 

(10.7) 

Now the function n2 has to be frame-indifferent for fixed R, e.g. it satisfies 

on2 2 on2 1i 2 on2 2j-
-a-efJ]+ -a u 'P1 + a lj,/l] - o. 

!?£« . '[« . '[« 
I ] 

(10.8) 

With (10.8), (10.7) becomes 

(10.9) 
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Introducing (10.9) into (10.2) and integrating over r11
, ..• , r25

, we find 

· 1 J { onz on2 } (10.10) tfi.{J = 2 (V(}u)fJ.(!p -2nzVk,k- O(!(fl. {!i)V(k,l)- O(![lc en[V[k,l]-wA:,] dp. 

This expression may be written as 

· 1 f ou on2 1 f ou on2 (10.11) t«P = -2t«pVk,k- -
2 

V<k.l> ~(!p-~-(!i)dp--2 (v[k,l]-wkl) -
0 

(!p-~-endp. 
U(}fl. U(}(k (}a U(}[k 

If on the stress-free state a small displacement-field vL1t and a small rotation field wL1t 

are superposed we have, with 

(10.12) L1t«P = i«pL1t, u = vL1t, cp .= wL1t, 

where L1 t is the small time during which the loading takes place, 

(10.13) 1 J ou on2 1 J ou on2 
L1tap = --2 u<k.l) -a (!p-~-endp--2 [urk.n-<J'kz] -;;;-(!p-~-endp. 

(!fl. U(}(k U(}fl. U(}[k 

The integrals are the coefficients of elasticity. 
We now consider the stress tr«PlfJ

1
p

2
,p

2
, being the main term of the moment-stress tensor. 

We have 

1 J ou on2 
(10.14) L1t[«fJlPtf32•f32 = - TIU(k,l){Jl O{![fl. (!p]{!fll (!pl O(!(k endp 

1 J ou on2 
-TI[urk.n-<J'kzl.Pl oera epjep.epl oera: endp, 

in the stress free state, if n2 does not depend on R. Explicit expressions may be found, 
if we introduce into (10.13) and (10.14) formulae for u and for n2 • 

11. Conclusions 

One of the most important questions refers to the order of magnitude of the moment­
stress tensor, compared with the stress-tensor. In order to answer this question, we need 
data concerning the pair distribution function n2 • The quantitative theory of this function 
for fluids is extremely complicated (cf. [4]), but it is rather easy to give some rough esti­
mations. If we introduce for a fluid the function g(p ), according to 

(11.1) nz = e2g(p), 

it is obvious that we have 

(11.2) g(O) = 0, g(oo) = 1. 

Anywhere between 0 and oo the g-function of a fluid is very steep and therefore we ap­
proximate qualitatively 

(11.3) ( ~g) = const c5(1p- al). 
ue (} = a 
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Comparing the integrals 

J ou on2 . J ou on2 -e11-- e1dp wtth ~(!p(!f11 (!p2 -!)-etdp, 
Of!« 0(!1c u(!« u(!lc 

we see that the ratio is O(a2
). 

For a crystalline body, the situation is quite different. Here n2 is a periodic function 
and g may be approximated by a series of step functions. The derivative of g with respect 
to (! consists of positive and negative <5-functions. Altogether it appears that in the molec­
ular theory, both of fluids and crystalline bodies, the ratio of the dominant integrals 
will be very small. Note that a is of the order of a molecular dimension. Thus the effects 
can be expected to be negligible. 

However, for a body consisting of a large number of grains, the corresponding para­
meter a becomes of the order of the grain dimension. A lower bound for this dimension 
is given in the introduction. We note that the grains must not be too large, because then 
the statistical theory cannot be applied and, what is more important, the mutual forces 
between the grains are not derivable from a potential function. The conclusion is again 
that the ratio of the integrals will be small. 

If the body consists of large grains, we have to deal with the theory of inhomogeneous 
elasticity. 
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