
Raport Badawczy

Research Report
RB/57/2001

Genetic - fuzzy approach
to the boolean satisfiability

problem

Witold Pedrycz, Giancarlo Succi,

Ofer Shai

Instytut Badań Systemowych
Polska Akademia Nauk

Systems Research Institute
Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badań Systemowych

ul. Newelska 6

01-447 Warszawa

tel. : (+48) (22) 8373578

fax: (+48) (22) 8372772

Pracę zgłosił: prof dr hab.J.Kacprzyk

Warszawa 2001

Genetic - Fuzzy Approach to the Boolean Satisfiability Problem

1•2 Witold Pedrycz, Fellow, IEEE, 1Giancarlo Succi, 1Ofer Shai

1Department of Electrical and Computer Engineering
University of Alberta

Edmonton, Canada T6G 2G7
and

2Systems Research Institute, Polish Academy of Sciences
Warsaw, Poland

Abstract This study concems with the Boolean satisfiability (SAT) problem and its
solution in the setting of a hybrid computational intelligence environment of genetic and
fuzzy computing. In this framework, fuzzy sets realize an embedding principle meaning
that original two-valued (Boolean) functions under investigation are extended to their
continuous counterparts resulting in the form of fuzzy (multivalued) functions. In the
sequel, the satisfiability problem is reformulated for the fuzzy functions and solved using
a genetic algorithm (GA). lt is shown thai a GA, especially its recursive version, is an
efficient tool for handling multivariable SAT problems. Thorough experiments revealed
that the recursive version of the GA can solve SAT problems with more than 1,000
variables.

Keywords embedding principle, fuzzy sets, fuzzy functions, Boolean functions,
triangular norms, hybrid approach, computat!onal intelligence

1. Introduction

The satisfiability problem (SAT) [4][6] [12] concems a determination if a given Boolean
function (j) of n variables is satisfied, meaning thai there exists a combination of its
arguments for which this function attains a logical one (we say il is satisfied). In other
words, we are interested in determining logic (truth) values of the variables x1, x2, ... , x.
for which.l(x1, xz, ... , Xn) achieves one, namely,.l(x1, x2, ... , x.) =I. While the problem
seems obvious, a solution is not trivial. Even for a modest number of variables, a brnie
force enumeration fails as we are faced with a profound combinatorial explosion. For a
Boolean function of n variables, a straightforward enumeration requires an investigation
of 2" combinations of the inputs (Boolean variables). This number increases very
quickly. To quantify this, Jet us assume thai a single evaluation of the Boolean function
takes lµs (=10-6s). For only n = 50 il would take 35 years to complete an exhaustive
(brute-force) enumeration of all combinations and find a solution. The SAT problem is a
classic example of a NP-complete problem [9] meaning thai there is no known algorithm
thai solves it in polynomial time [12]. Pul differently: a worst-case running time of a SAT
solver grows exponentially with the number ofvariables. SAT is a fundamental problem
in logic and computing theory. li has numerous applications to automated reasoning,
databases, computer-aided design, and computer architectures [4][6][11], to name a few.
The use of SAT to automatic test generation of pattems to test digital systems is an
attractive application.

Owing to the immense size of the search space in the SAT problem, evolutionary
computing arises as a viable and attractive option. The objective of this study is to
formulate the SAT problem in the evolutionary setting and carry out comprehensive
experimental studies. The approach relies on the embedding principle: we generalize the
Boolean problem to its continuous fuzzy (multivalued) version, find a solution to it, and
convert (decode) it to the Boolean format. The concept of this transformation
(embedding) was introduced initially in [I OJ. This study follows by elaborating on the
algorithrn, presenting results of comprehensive experimentation, and discussing
improvements to a generic genetic algorithm (GA) necessary in the case of high
dimensional SAT problems.

We confine discussion to the basie binary model of GA. The materiał is organized inio 7
sections. First, we formulate the SAT problem in the GA environment by introducing an
embedding principle that shows how a binary problem can be embedded into a
continuous environment of fuzzy (multivalued) functions generated in the setting of
fuzzy sets. Then we discuss details conceming the experimental environment (Section 3)
including genetic optimization and a way of generating Boolean functions. In Section 4,
we discuss experimental results, the efficiency of GA in solving the SAT problem and
contras! this approach with random search and brute-force complete enumeration method.
Moreover, we discuss an issue of scalability of the problem and experimentally identify
some limits as to the number of Boolean variables. Afterwards, a recursive version of the
genetic SAT solver is discussed in Section 5. It is shown how this recursive approach

2

helps to handle a high-dimensional problem. Conclusions are contained in Section 6.
References are included in Section 7.

2. The SAT in an Evolutionary Environment

When formulating the SAT problem in the framework of evolutionary computing, we
need to revisit the main algorithmic components of a GA and define them in a proper way
according to the specifics of the problem at hand. Starting from the fitness function, we
immediately encounter a significant conceptual and technical problem. As we are
dealing with the Boolean functions, an immediate form of the fitness function that comes
to mind would be the Boolean function itself. This definition, however, does not help at
all. The combination of the variables producing the value of the Boolean function equal
to I is just a solution to the problem. The zero value of the Boolean function means that
these specific inputs are not a solution. All nonsolutions are the same from the standpoint
of the fitness function. Evidently, as being indistinguishable they are not helpful for any
genetic optimization. The drawback in the definition of the fitness function is implied
inherently by the nature of the Boolean problem. The choice of the fitness function is
quite challenging, as indicated in [2] . For instance, in [9] the Boolean variables are
changed inio floating-point numbers; in this way one tries to consider the solution to the
SAT problem to correspond to a set of global minimum points of the induced objective
function. None of these approaches have addressed an issue of retaining the logic
character of the original problem.

The approach taken here it is to make the problem continuous so that each element in the
search space could come with a different value of the fitness function. Moreover, to
make the binary (Boolean) problem continuous and stili maintain its logic character
brings us into the world of fuzzy sets and fuzzy functions. Fuzzy sets support the
embedding principle: instead of the original problem, we cast it into the format of the
corresponding fuzzy function, solve the problem in this new framework, and bring back
(transform) the solution to the original binary environment. This principle is illustrated in
Figure 1.

GA optimization

F: [O, I)" ->[O, I J

f. {O, l}"->{O, I} f. {O, I}" ->{O, I}

Figure I. From binary logic to fuzzy logic: the essence of the embedding principle. The
original binary world { O, I } • is made continuous [O, I]", genetic optimization is carried out
there and the derived solution is converted back (decoded) to the Boolean format. Note
that the binary world confines to the vertices of the unit hypercube whereas the world of

the fuzzy functions involves any interior point of the unit hypercube

The fuzzy set extension of the problem subsumes the binary version. In other words, if
F(x1, x2, ... x.) is a continuous (generalized) version of the induced Boolean problem
(where Xk is in the unit interval), it immediately collapses to the original binary version
once we con fine ourselves to Xk e { O, 1 } , namely

F(x,, X 2 , ... , x. >1x,e[O,I[= f(x,, x, , ... , x.)1 , ,e{O,I)

The fundamental fuzzy set operators such as triangular norms [IO] help generale a fuzzy
function/(its generalization) by allowingxk to take any value in [0,1] and use any !-norm
as a logic and and view any s-norms as a realization of the or operation. This makes the
fuzzy function logically consistent with the binary version of the problem (Boolean
function). For instance, ifthe original Boolean function reads as

then its generalization to the continuous world arises as

with t and s denoting a certain t- and s-norm, respectively. The choice of the triangular
norms may affect the performance of the GA. For the Boolean case, all t- and s-norms
become equivalent (and this is a consequence of the boundary properties of these
operators, namely atO = O, atl =a, asO =a, asl=I for any truth value a coming the unit
interval). In the world of fuzzy logic, the same function realized via different I- and s-

4

norms may differ quite substantially and exhibit different levels of computational
efficiency. The "classic" examples oftriangular norms and co-norms are the minimum(/
norm) and maximum (s-norm) functions. They are easy to compute. Nevertheless they
exhibit a lack of "interaction" that may become an evident drawback when navigating
through the search space. Another quite common option of the logic connectives are the
product (I-norm), atb =ab and probabilistic sum (asb= a+b- ab). This particular pair of
the t - and s-norm is a model of altemative connectives in Boolean logic encountered in
Boolean logic, cf. [11] (originally they were introduced by G. Boole himself in his
famous The Laws ofThought (1854) in the following form x ORy = x + y(l-x) = x + y-xy
xAND y=xy)

Fitness can be defined as equal to the value of the fuzzy function assumed for some given
values of the arguments. As opposed to Boolean functions, fuzzy functions are satisfied
to a certain degree. These satisfaction Jevels help discriminate between various elements
in the search space and guide the evolutionary optimization process.

Once the optimization has been completed, the solution in the continuous space (space of
fuzzy functions) has to be converted back (decoded) to the Boolean space. A simple
threshold operation is a sound option

if Xt is less than 0.5 then convert Xt to O otherwise convert Xt to I

Intuitively, the closer the truth value of Xt to O or I, the more confident we could be about
the thresholding rule. If Xt gets closer to 0.5 (eventually being equal to 0.5), the more
hesitation arises as to its conversion to O or I and an overall credibility of such processes.
Further on, we show that this intuitive observation rnay be helpful in the development of
a recursive architecture of the genetic SAT optimization.

3. The experimental setting

3. 1. Evolutionary optimization

The evolutionary optimization is realized in the form of a standard GA as commonly
encountered in the literature, [1][3][5] [8]. The format of the problem implies a form of
the genotype. As we are concemed with fuzzy functions and fuzzy (multivalued)
variables, each variable is coded in a binary format. Each variable is coded in 32 bits
representing a real value in the the range [O, I].

Once a population is generated, the individuals (chromosomes) are sorted according to
their fitness. A procedure is then used to select two individuals to mate. The procedure
for selecting the two individuals gives preference to higher fitness individuals. Two
random numbers, in a range larger than the number of actual individuals in the
population, are chosen and mapped into two individuals from the actual population. The
mapping is done in a way that creates a funnel effect, where individuals with higher
fitness have higher priority. A parameter goveming the range of the two original numbers
affects the width of the funnel, and controls the diversity in choosing the individuals: a

very strong funnel immensely discourages low-fitness individuals from mating and
passing on to the next generation. The single-point crossover itself traverses each pair of
solutions and crosses each variable in the first solution with the corresponding variable in
the second one.

Each offspring, in tum, is subject to mutation with some probability (mutation
probability). Once the individual is chosen, it is traversed, and again, each variable
undergoes a single-entry mutation (i.e., for each 32-bit string-variable, a single bit is
flipped).

The best individual in a population is then decoded to the binary format; if it satisfies the
Boolean function, the process is complete, otherwise we proceed with the next
generation. The fitness function evaluates the fuzzy value and the Boolean value of each
individual together. The fitness value actually given to the individual is its fuzzy value,
unless its Boolean value is I, in which case I is assigned. Since all the other individuals
have fitness va lues in {O, I), a solution automatically becomes the best individual. In the
following generation, a few of the best individuals in a current population appear in the
next population (elitist strategy). Throughout the series of experiments, we use some
generał parameters such as

population size
number of generations. There is the maximum number of generations the GA will
run for but it stops once a solution is found
number of clones for each generation. These are the elitist individuals.
crossover parameter
probability of mutation

Subsequently, some experimentation was carried out to explore the affect of these
parameters on the performance of the algorithm. Other than very generał trends,
however, no specific impact was observed by changing one parameter. The generał
trends were exploited to determine the best parameters' values; those were used in later
experiments.

3.2. Generation of Boolean functions

In most experiments, a Boolean function was realized as a single minterm (thai is a
product of all variables, coming either in direct or complemented form). In generał,
Boolean functions were realized in their minterm representation. Severa(strings were
generated randomly, each representing a minterm of the function. The strings were
composed of I 's and 0's where each O represented a complemented variable, and a I
represented a non-complemented variable. Then the minterms were combined together
through an OR operation. The use of these Boolean functions was time consuming.
Since each individual's fitness was dependent on all minterms in the function, a five
minterm function took roughly five times longer to evaluate than a single minterm
function, and the respective GA behaves correspondingly. At the same time, any single
minterm function forms the most challenging environment (as only one combination out
of total of 2" leads to the satisfaction of the function). Having this in mind, we decided to

6

expeńment with single minterm Boolean functions. These Boolean functions would look
rather simplistic to a human observer yet they are the most challenging from the
optimization point of view. Obviously, assigning I to the noncomplemented variables
and O to the complemented ones would provide the desired solution. This, however, is not
evident to the program, since it went about solving it using a genetic algorithm rather
than by direct observation as a human would. Using this simple representation for the
function provided for a double advantage: the program's run time evaluation was fast,
and verifying that the result the program provided was a matter of comparing two strings
ofnumbers.

4. Experimental studies

We completed a series of detailed experiments. The performance of GA is reported in
terms of the performance of the GA and detailed results (both for the fuzzy functions as
well as Boolean functions). Our interes! is also to explore the use of different realizations
of the triangular norms. They behave in the same way for the binary case yet they may
have significant impact on the performance of the genetic optimization. It is also of
interes! to investigate how well the GA approach scales up, that is, how well it performs
when the size of the problem (number ofvariables) increases.

4.1. Experimental settings and results

The starting point is a rather small, oneminterm Boolean function with n = 20 variables.
The parameters of the experiment are listed in Table I.

Pooulation size 200
Maximum number of generations 200
Number of clones 8
Crossover rate 0.4
Probabilitv of mutation O.I

Table I. A list of parameters of the GA experiment: 20-variable Boolean function

Figure 2 and 3 summarize the performance of the GA in terms of the fitness function
(both the best individual as well as an average for the entire population). The plot is a
result of 20 experiments. In generał, we found a high reproducibility of the overall
behavior of the optimization scheme. Two pairs of triangular norms are investigated: (a)
probabilistic sum (s-norm) defined as asb = a + b -ab and product (I-norm), alb =ab, and
(b) maximum (s-norm), max(a,b) and minimum (I-norm), min(a,b), a, b E [0,1].

7

fitness

0.12

O.IO

0.08

0.06

0.04

0.02

0.00
o 10 20 30 40 50

generation

--best
indi\idual

· • • · average

Figure 2. Fitness function in successive generations (triangular norms: probabilistic sum
and product)

fitness

0.6

0.5

0.4

~ ,.,...,.,....,J"'-./'ł../v'\rv1,...,..; • .,..--..-.,....,,..., ..
r. -

--best
individual

- - - -average

0.3

0.2

!)
./

:
I

0.1
, .

o
o

I .

20 40 60 80 100 120 140

generation

Figure 3. Fitness function in successive generations (triangular norrns: maximum and
minimum)

The comparison of the effectiveness of different t-norms and s-norrns based exclusively
on Figure 2 and 3 does not reveal a complete picture. In the first set of the triangular
norms, the solution was achieved after 41 generations. In the second scenario, the SAT
was accomplished after 125 generations. Figure 4 provides a better insight into the
nature of the solution (GA produces a solution in the unit hypercube that has to be then
decoded into a Boolean format) and the way we arrive at the solution during the
optimization.

1•1 Generation
truth value

0.5

o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

varlable

(a)

9

20th Generation
truth value

0.5

o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

varlable

(b)

41 st Generalon
truth value

0.5

o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

varlable

(c)

truth value
Optima! Solution

0.5

o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

varlable

(d)

IO

Figure 4. Snapshots of the GA solution in the [0,1] truth space for some selected
generations: (a) 1st generation, (b) 25th generation (c) 48th generation (at which the SAT

problem was solved) and (d) the single-minterm Boolean function used in the
experiment; the triangular norms selected as probabilistic sum and product. The

parameters are as described in table 1.

Figure 4 reveals an interesting patiem illustrating how a Boolean solution has been
reached. At the beginning (in the first generation), there are a number of fuzzy variables
assuming truth values around 0.5 . In subsequent generations, the solution starts to
emerge gradually: while in the 20th generation, we stili encounter a number of
"undecided" variables, they lend to vanish as clearly visible in Figure 4 (c) where the
solution has been reached in the 41 st generation.

1 "1 Generation
truth value

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

varlable

(a)

60th Generation
truth value

0.5

o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

varlable

(b)

li

125th Generation
trulh value

0.5

o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

varlable

(c)

Optlmal Solution
truth value

0.5

o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

varlable

(d)

Figure 5. Snapshots of the GA solution in the [O, I] truth space for some selected
generations: (a) 1st generation, (b) 50th generation (c) 116th generation (at which the SAT

problem was solved) and (d) the single-minterm Boolean function used in the
experiment; the triangular norms selected as minimum and maximum. The parameters

are as described in Table 1.

Figure 5, in conjunction with Figure 3, shows the progression of the GA toward finding
the solution for the minimum and maximum norms and reveals the reason for the poorer
performance by those norms. Due to the non-interactive nature of these norms, the
fitness value is determined solely by the variable that is farthest from its optima) value.
This slows down the convergence of the other variables. In fact, where using the
probabilistic sum and product norms, the fitness value was not an indication of how close
the algorithm was to finding a solution, here the solution is found as soon as the fitness
exceeds 0.5, since that indicates that all variables have crossed their respective
thresholds.

12

.,

4.2. Run-time analysis

The timing aspect of the SAT problem paints a very convincing picture. Here we contras!
between three options of the SAT problem solving, thai is (a) brute-force enumeration,
(b) random search, and (c) the GA approach. The comparison is completed for the same
hardware environment used in the previous experimentation that is Pentium III 450,
128Mb RAM, 8.0 GB hard disk (standard, no high-end dedicated hardware). The
programming environment was C++, compiled using GNU g++ under Linux.

The results of optimization are summarized as follows:

• Brute-force (exhaustive) enumeration As underlined before, the method is viable for
a very small number of Boolean variables and scales up very poorly due to the NP
nature of the problem. For 20 variables, it takes about 3 seconds to complete the
search. 25 variables require the search time in the range of 3 minutes and 30 variables
look about 75 minutes to sweep through the search space.

• Randomly generating individuals and hoping to hit the solution alleviates the need to
search through the entire search space. Each population size was given 20 chances to
randomly generale individuals, such thai the number of individuals generated is equal
to the GA search space for the equivalent population size. For 20 variables, the
random search was able to find solution 10% of the time (here we mean thai I 0% of
experiments initiated randomly and run for this size of the problem was successful).
This percentage goes down to 5% for 25 variables. The random search was not
successful for higher numbers of variables.

• The genetic algorithm scales up quite nicely resulting in the search time of I sec for
30 variables, 75 secs for 100 variables, about 35 minutes for 150 variables and about
2 hours in the case of less than 200 variables. In all cases the solution was found. One
should stress, however, that the this successful scaling effect was observed until to
this number and then the method started to fail (which triggered our interes! in a
recursive format of the algorithrn). Figure 6 summarizes run-time as a function of the
number ofvariables used in the problem.

time (sec)

10000

1000

100

10

y = 0.3054eO.OS8•x

R2 = 0.9876

1.i-----=,-~----~------------
0 20 40 60 80 100 120 140 160 180

of varlables

13

Figure 6. Run-time vs. the number ofvariables in the function

From the above analysis, it becomes apparent that the GA is a computationally viable and
attractive option. In addition to the time complexity analysis, it is of interes! to analyze
how well the GA did with regard to the search space. The search space is enormous for
higher values of n. The genetic search was successful after searching only a fraction of
the entire space. We may define a space exploration rate that is a ratio of the number of
all elements investigated by the GA and the total number of elements in the search space.
The lower the ratio, the more efficient the GA is. The number of elements visited through
the GA search is determined based on the size of the population used in the experiment
and the number of the generations. As shown in Table 2, this ratio is exlremely low.

Number of
Boolean 20 50 80 110 140
variables n
Space

6.13*10-11% 4.407*10"17% 1.07*10"25% 2.35*10"34% exploration 1.32%
rate

Table 2. Space exploration rate for different sizes of the SAT problem

4.3. Boolean function with many minterms

The previous experiments were concemed with single minterm Boolean functions (let us
again stress here that this type of function is not an impediment but forms the most
challenging environment for the SAT). Note thai with the increase of the number of
minterms, the chances of solving the problem go up. In this sense, the experiments
discussed in Section 4.1 were the most demanding). Nevertheless from the experimental
point of view it is of interes! to look inio the performance of the GA approach for
Boolean functions with many minterms. In the current experiment, we shows the increase
in time as the number of variables grow. There are 0.3 • variables minterms (i.e., for 20
variables, 6 minterms, for 50 variables, 15 minterms, etc.). Figure 7 shows the time
required to salve the SAT problem when dealing with the variable size of the problem.

14

I •

time (sec)
10000

1000

100

10

o

y = 4.817eo.o681x

··7
50 100 150

varlables

Figure 7. Run-time versus the number ofBoolean variables

In Figure 8 we visualize how the fitness function changes over optimization. In this
particular case we have selected a 100 variable function with 29 min terms, thai look time
very close to the average. Contrasting this relationship with the previous findings, we
note that it is quite close in a way in which the fitness function changes throughout
generations.

FltneH r----------------------------,

0.12

0.08

0.04

0.00

• o

• o
• o

•••••••••••••••••••••••••• eeeoo

100 200 300

o A.ver1ge

400 Generation

15

Figure 8. Fitness function (average in population and best individual) in successive
generations; see description in text

5. Repairs of solutions: a recursive SAT version

In this section, we discuss a problem the algorithm encounters at around the 190 variable
mark. As has been shown, as the number of variables increased, so did the run time of
the algorithm and the number of generations and the number of generations the algorithm
had to iterate through to find the solution. Figure 9 shows the fuzzy values of the
obtained solution for the SAT.

50 Varlables, gjd Generation
truth value
1=--------~ - ---------~ ~ ~

variable

(a)

80 Varlables, 445th Generation
truth value

JfflBHIBJJ
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

varia ble

(b)

16

130 Varlables, 1277th Generation
truth value

-:llmJUlmHI
1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129

varia ble

(c)

160 Varlables, 4681°1 Generation
truth value

1 IO 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145

varia ble

(d)

200 Varlables, 10000th Generation
truth value

1 -.-....--..--.-.,.--

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193

varia ble

(e)

17

Figure 9. Successive values for best solution at the end of the algorithm for (a) 50, (b)
80, (c) 130, (d) 160, and (e) 200 variables. All parameters, with the exception of
population size and number of maximum generations, are as shown in Table I.

As can be seen in Figure 9(e), the GA collapses at around I 90 variables, and certain
variables converge towards 0.5, while all the other values are essentially O or I. (In some
cases, the variable, though expressed in double precision format, had the value I, O, or
0.5.) A reaction to this was to introduce a more vigorous mutation, and less selective
crossover parameter (that will allow for the most versatility). This, however, had no
affect other than to accentuate the convergence of the variables toward one of the 3
values (O, I, or 0.5). Another thought was that perhaps the random number generator was
somewhat deficient1• However, a more vigorous random generating function did not
solve the problem either. We therefore had to come up with a fixing mechanism.

5.1 First try: brute force method

Since at 200 variables, there were always 6-10 variables thai did not converge, this is a
small enough number to search using enumeration. A small problem was encountered in
implementing this exhaustive search since it is not known at programming time how
many variables would need to be fixed. This was solved using a binary representation: if
there are m variables to fix, simply count to 2m and the binary representation would
indicate what value each variable should assume for this evaluation of the function .
The brute force method yielded the desired results in obtaining the finał solution from
one that looks like the one shown in Figure 9(e). After so many generations, the
algorithm is stopped and each variable in the best individual is exarnined (it is assumed
that the best individual at this point is closest to the actual desired solution). The cutoff
points were arbitrarily decided to be at O. I and 0.9, at which point the variable is assumed
to be O or I respectively. All other variables then go through the exhaustive search for
the solution. Obviously, we might encounter a variable with a value of 0.93 thai needs to
assume a O for the solution, in which case the solution will never be achieved since it
would get fixed at I. However, experimentation showed thai this does not happen, and
this method works. Also, one can note thai since any combination of values satisfying the
Boolean function would be as good as the next (for a function with more than one
minterm), there is no trap of a "loca!" optimum.

5.2 Second try: recursion

By the time the GA is trying to satisfy a 250 variable function, there are over 40 variables
to fix, and so another method had to be used to resolve these variables. As was shown in
Section 4, the brute force method is not very effective for solving more than 20-25
variables, and we were faced with far more than that, and expecting the number to grow

1 The random function generator used was the C standard library rand() function. At first, the lower bits
were used (with the modulus operator). Since all such funclions are only pseudo-random, it is
recommended to use the upper bits, which provides for longer cycles.

18

•

quite fast as the number of total variables in the function increased. li seemed thai the
number of variables that need to be resolved warranted their own GA, and so we looked
to recursion.

The GA has now moved into a function instead of being the main body of the program,
to which the Boolean function and a list of the indices of the variables thai need fixing
are passed. The GA then generates the appropriate population size and tries to satisfy the
function. If it does not succeed, the unresolved variables are passed into the next level
and the GA executes again. The end-point for the recursion is, of course, when the
function has been satisfied, or there are fewer than 1 O variables to resolve, at which point
the problem is small enough for an enumerated search. A parameter ''p" links the size of
the population with the size of the problem, namely population size = maximum number
of generations = p• no of variables.

time (sec)

20000

16000

12000

6000

4000

100 200 300 400 500 600 700 800 900

of varia bies

Figure IO. Graph oftotal run-time vs. number ofvariables in the function for the
recursive GA

The recursive version of the algorithm proved to be both effective and efficient. The use
of recursion allowed us to explore an even smaller search space than before and
consequentially, the GA look less time. A comparison between Figure 10 and Figure 6
yields some rather interesting observations, the most obvious of which is the fact thai the
recursive GA function grows much slower than the regular one. Il is also intriguing to
note thai the regular GA's run-time grows exponentially, while the recursive GA's run
time grows as a power of the number ofvariables. We have yet to find the upper limit of
the recursive GA, but we do know (via experiments) it can handle the SAT for 1200
variable Boolean functions.

Total Number Number ofUnconverged Population Number of
Total Time

ofVariables Variables (in first level) Size Generations

800 269 3200 3200 3:50:25

19

500 127 I 2000 2000 0:57:07
300 70 I 1200 1200 0:15:58
100 7 I 400 400 0:00:37

Table 3. Performance of the recursive version of GA for different number ofvariables in
the SAT problem

The levels of recursion the algorithm has to go through grows as the number of variables
increase, as is to be expected. Table 3 illustrates the number of variables that have to be
fixed for various sizes of the SAT. Considering the 800 variable SAT, one would treat
the next level of the recursion as a 269 variables SAT, and solve the problem in this way.
As can be seen from the table, an 800 variable function would require 2-3 levels of
recursion to achieve the finał solution. Figure 11. In generał, the following observation
holds: by increasing the size of the population, we tend to reduce the number ofvariables
that need to be repaired at the second phase of the genetic optimization but increase the
run time for each phase.

no. of
variables to

be 1'repaired"

300

200

100

o

o

•

o

o o

"
.,

o " o o .,

o " ~

• .,
o

o
.,

" o .,
o

"
o l![

p=2
~ o o

o " li l::,. p=4 .,
o • ~ T p=6

!
~

100 300 500 700 no. of variables

Figurel I. Number ofvariables to be "repaired" at the second stage of the recursive GA
as a function oftotal number of the Boolean variables in the problem (the parameter p

links the size of the population with the size of the problem, namely
pop_size = p* no_variables)

20

•

6. Conclusions

The proposed embedding principle makes the original SAT problem continuous white
fully retaining its logical nature. The original problem represented in the new search
space was then solved using a standard version of the genetic algorithm. The study
provides with yet another convincing example of a successful interaction between
technologies of evolutionary computing and fuzzy sets underlining the importance of the
main hybrid pursuit of computational intelligence [9]. GAs, especially the recursive
version proved very eflicient for handling multivariable SAT problems. lt exhibits better
run-time characteristics than its one-level counterpart. The thorough experiments
revealed that the recursive GA can solve SAT problems with more !han I ,OOO variables.

Acknowledgments

The support from the Natural Sciences and Engineering Research Council of Canada
(NSERC) and ASERC (Alberta Software Engineering Research Consortium) is gratefully
acknowledged.

7. References

I. T. Ba ck, U. Hammel, H.P. Schwefel, Evolutionary computation: comments on the
bistory ad current state, IEEE Trans. on Evolutionary Computation, vol. I :I, 1997, 3-17.
2. K. A. De Jong, W.M. Spears, Using genetic algorithms to solve NP-complete
problems, In: Proc. of the 3rd Int. Con/ on Genetic Algorithms, Morgan Kaufmann Publ.,
San Mateo, 1989, pp. 124-132.
3. D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence, IEEE Press, Piscataway, NJ, 1995.
4. M.R. Garey, D.S. Johnson, Computers and Intractabi/ity: A Guide to the Theory of NP
- Completeness, W.H. Freeman, San Francisco, 1979.
5. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, Reading, 1989.
6. J. Hartmanis, On computational complexity and the nature of computer science,
Comm. ACM, 37, 1994, 37-43.
7. P. Mazumder, E.M. Rudnick, Genetic Algorithms for VLSI Design, Layout & Test
Automation, Prentice Hall, Upper Saddle River, NJ, 1999.
8. Z. Michalewicz, Genetic Algorithms + Structures = Evolution Programs, 3rd edition,
Springer Verlag, Heidelberg, 1996.
9. P. Pardalis, On the passage from local to global in optimization, In: J.R. Birge, K.G.
Murthy (eds.), Mathematica/ Programming, The Univ. of Michigan Press, 1994.
10. W. Pedrycz, Computational Intelligence: An Introduction. CRC Press, Boca Raton,
FI, 1997.
11. W.G. Schneeweiss, Boolean Functions with Engineering Applications and Computer
Programs, Springer Verlag, Berlin, 1989.
12. K. Wagner, G. Wechsung, Computational Complexity, D. Reidel, Dordrecht, 1986.

21

22

•

•

,,

