
lt@I!_;' 1

Raport Badawczy

Research Report
RB/55/2001

fXOR fuzzy logic networks

Witold Pedrycz, Giancarlo Succi

Instytut Badań Systemowych
Polska Akademia Nauk

Systems Research Institute
Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badań Systemowych

ul. Newelska 6

01-447 Warszawa

tel. : (+48) (22) 8373578

fax : (+48) (22) 8372772

Pracę zgłosił : prof dr hab.J.Kacprzyk

Warszawa 2001

fXOR fuzzy logic networks

Witold Pedrycz1•2 and Giancarlo Succi1

1Department of Electrical and Computer Engineering
University of Alberta

Edmonton, Canada T6G 2G7
&

2Systems Research Institute, Polish Academy of Sciences
01-447 Warsaw, Poland

Abstract The study introduces a new class of fuzzy neurons and fuzzy neural networks
exploiting a model of a generalized multivalued exclusive-OR (XOR) operation. The
proposed neural architecture is useful in an algebraic representation (description) offuzzy
functions regarded as mappings between unit hypercubes, say [0,1)0 • [0,lr. Some
underlying properties of the fXOR neurons are discussed and a detailed learning
algorithm is given along with a number of illustrative numeric examples.

Keywords fuzzy functions, optimization, logic networks, learning, fuzzy hardware,
Reed-Muller expansion, algebraic form of fuzzy functions

1. Introduction

The algebraic Muller-Reed expansion of Boolean functions, cf. [9] is regarded as one of
the fundamental approaches in the design of digital systems, especially when dealing
with the VLSI technology. This algebraic representation is also useful in error detection
and error correction models [9][10]. The design ofmultivalued logic circuits has been an
interesting endeavor pursued vigorously in the realm of multivalued logic and fuzzy sets.
Various optimization techniques have been developed both for combinational (static) as
well as dynamie (sequential) systems.

In this study, we are concemed with the generalization of the Reed-Muller algebraic
representation applied to multivalued (fuzzy) functions. To accomplish that, one has to
define fuzzy exclusive-OR functions that are a comerstone of such representation. The
objective of this study is to develop a logic-based architecture of fuzzy neural networks,
called here fXOR networks, that are capable of realizing this type of the mapping. In
contras! to the "standard" way of approximation of fuzzy functions (that is realized via a
generalized sum of minterrns and becomes a generalized Shannon representation model),
this approach leads to a compact representation and features useful learning properties.
In comparison to neural networks [2][3], the class of fuzzy neural networks comes with
interpretation capabilities as its structure could be easily interpreted in the language of
multivalued logic. At the same time, the network can be easily trained as we have a vast
array of plastic connections of the logic neurons.

The materiał ofthis study is arranged into six sections. We introduce a concept ofa fuzzy
XOR neuron (fXOR), study its properties (Section 2), then move to the overall
architecture of the network and discuss a detailed learning algorithm (Section xx4
Numeric experiments are covered in Section 5.

In what follows, we adhere to the standard notation being used in fuzzy sets. In particular,
we use t- and s-norrns as treated as two generał classes of logic connectives (logic
operators). The complement of the variable is denoted by an overbar, thai is x = 1- x .
All variables assume the values in the unit interval.

2. The fXOR fuzzy neuron

The fuzzy XOR neuron (fXOR, for short) is a generalization of the standard exclusive -
OR operation (gate) used in digital (Boolean) systems. More forrnally, an n-input single
output fXOR is govemed by the expression

y = fXOR{x,w)
(I)

2

where x and w are elements in the n-dimensional unit hypercube, thai is x, w e [O,!]".
The underlying logic static transformation is realized through the use of s- and t-norms.
More specifically, we have .

y = txOR(x,w)= Ef)(xiswi) = (x 1sw1) EB (x 2sw 2) EB ... EB (x.sw .)
i=I

(2)
where the generalized exclusive-OR operation given above (EB)is defined by the
following s-t composition

aEBb=(atb)s(atb), a,be [0,1]

The expression of the fXOR neuron in (2) comes with x; and Wi being the coordinates of
the fuzzy sets, i=l, 2, ... ,n and t- and s- describing triangular norms and conorms. The
above convolution of x and the weight vector (vector of the connections) w is just a t-s
composition of two fuzzy sets and as such follows the fundamentals of the calculus of
fuzzy relational equations, cf [I].

By studying the characteristics of the neuron (for n=2), Figure I, we clearly realize thai
for different inputs we achieve higher values of the output. The more similar the inputs,
the !ower the output of the txOR neuron. In the binary (two-valued) case we end up
having the standard characteristics of the XOR function.

t,.J U U 411

Figure I. Characteristics of the fXOR for w1=w2 =O.

The meaning of the connections becomes obvious by studying the properties of the t-s
composition. Visually, by comparing the outputs of the neuron for selected values of the
connections, Figure 2, we leam thai the connections help quantify the relationships
between the input variables and the corresponding output. The higher the value of the
connection, the less intensive (visible) the impact of the corresponding input variable on
the output of the neuron. For w; = I this impact is totally eliminated. On the other hand,
for wi=0, the impact is the most evident.

3

(a)

-~
(b)

!. •. ..
(c)

Figure 2. Characteristics of the fXOR neuron for selected values of the connections; note
the changes in the input-output relationships depending on the values of the connections:

(a) w1=0.3, wz=O.0 (b) w1=0.7 w2=0.0 (c) w1=0.3 w2=0.8

3. The architecture of the network

The proposed fuzzy neural network generalizes the algebraic representation of fuzzy
functions and is in analogy to what occurs in the Reed-Muller expansion of Boolean
functions. Two types of fuzzy neurons are being used: the fXOR neurons already
discussed and the AND neurons. As shown in Figure 3, the network exhibits a single
hidden layer consisting of AND neurons thai is followed by the output layer of the fXOR
neurons. The role of the AND neurons is to build a logical AND aggregation of the input
variables (appearing here in a direct as well as complemented format), thai is x1, Xz,
... ,Xn. As discussed in [4][5][6][7][8], the expression governing this processing reads as

4

z=AND(x;v)
(3)

where v is a vector of the connections (weights) of this neuron. Considering individual
variables, we rewrite (3) as follows

n n

z= T(x;sv;)tT(x;sv •• ;)
iEI i:l

(4)
or using the uniform notation in which we combine all inputs and their complements

(in the sequel we will not be using this detailed notation by simply alluding to the vector
inputs x assuming thai it includes also the complemented variables).

Again, in view of the t-s composition, the role of the connections become evident: the
higher the value of the connection, the less impact becomes reported for the
corresponding variable. If v;= I then the associated variable (x;) does not impact the
output (z) as it has been totally eliminated. Interestingly, when we confine to the {0,1}
world, the AND neuron generalizes a well-known AND gate.

The result of the AND aggregation are then combined through the fXOR operation and
this is realized at the output layer, see again Figure 3, Yi = fXOR(z, w;), i=l,2, .. ,m.

2n hidden m

AND fXOR

Figure 3. A generał topology of the fXOR network

Altogether, the topology of the network can be concisely described as follows (we
assume thai the number of the nodes in the hidden layer is equal to hidden),

z;= AND(x, v;) i=l,2, ... , hidden
Yi = fXOR(z, Wj),j=l, 2, ... ,m

(5)
The connections of the neurons exhibit a clearly defined semantics so thai the resulting
network (once the learning is done) can be easily transformed into a certa in quantified
logic expression.

5

Interestingly, the size of the network could be made quite compact when comparing it to
the standard logic processing, cf. [6][8] that is a logic network with a single hidden layer.
More specifically, the hidden layer consists of AND neurons white the output layer
consists of OR neurons, cf [7]. An example of a simple XOR function being
implemented by the fXOR network and the logic processor is of interes! here. For "n"
variables, the LP architecture requires 2"/2= 2 n-I AND nodes in the hidden layer (thai
becomes obvious as we have to implement all required miniterms). This number grows
up very quickly; e.g., for n=I0 input variables, we require 29 =512 AND neurons in the
hidden layer. In contras!, when dealing with the fXOR architecture, this relationship is
linear (so the number of the neurons is equal to "n").

4. A detalled learning scheme

In this section, we elaborate on the details of the learning scheme. The optimization
(learning) is carried out using a standard gradient-based method. The parameters to be
optimized are the connections of the AND and fXOR neurons. The fundamental
expression governing the learning process is

connections (iter + 1) = connections(iter)- a.V,1100,Q
(6)

where the learning rate (a >O) is used to control the speed of learning. For notational
reasons, the connections are combined together and denoted as connections. One should
view them as a vector of the connections of the AND and fXOR neurons. Alluding to the
connections of the neurons, we write down

w,.(iter+l)=w,.(iter)-a ~ ,s=l,2, ... ,n, t=l,2, . .. ,hidden ow ,.(tter)
(7)

v,.(iter+ 1) = v,. (iter)-a a~ , s=l, 2, .. . , hidden, t=l, 2, . . . , 2n
av li (tter)

(8)
(we consider that the input layer consists of the original inputs as well as their
complements)

The performance index Q assumes the form (note thai we are concerned with the on-line
type of learning)

Q = (target-y)T(target-y) = f (target• - y,)2

k• I

(9)
In the following detailed derivations, we adhere to the detailed notation in the form
shown in Figure 4.

6

AND

x,

Figure 4. The development of the learning scheme in the fXOR network - notation and
detailed layout of the network

Subsequently, we consider an on-line mode of learning (meaning that the updates of the
connections occur after each pair of input-output data, say (x, target)). The detailed
scheme can be derived once we decide upon the form of the triangular norms. In the
following investigations, we treat a t-norm as a product operation while the s-norm is a
probabilistic sum. This allows us to rewrite (7) - (8) in the following manner,

- for the connections of the fXOR neurons forming the output layer

w" (iter +I)= w~ (iter)-a a~ = w 11 (iter) + 2a(target, - y,) iJy'.
dW" (1ter) aw" (1ter)

where
Y, =(z,sw,.)EBG

and
hidden

G = EB (zisw,;)
j•l
J'1

(10)

Introducing the notation a=z,sw„ and proceeding with the calculations of the derivative of
y„ we obtain

ay a a -
-• =--(aEBG)=--(aG s aG)= aw„ aw„ aw„

a - - - -
= --(aG + aG-aaGG) = (l-z,)(G-G)-GG(l-z,)(l-2a) aw„

- for the connections of the AND neurons located in the hidden layer the
calculations of the gradient follow the generał scheme outlined in (8) with the
detailed expression for the connection Vsi assuming the form

7

and

where a =z, s Wk,

Additionally

with

dyk - -
-= (l-w 0)(G-G)-GG(l-w u)(l-2a) az,

~=A(l-x,) av„

n

A=T(X1SV~)
1-1
l,t

(11)

(12)

Tuus the learning of the network is straightforward: we proceed with an initial
configuration of the connections (thai are usually set up to some small random numbers)
and then cycle through the data set (x(k), target(k)),k=l,2, ... ,N using (7) - (8) until a
certain peńormance criterion is met and here it is a sum of squared errors between the
target vectors and the corresponding outputs of the fXOR network

N

Q = I (target(k)-fXOR_network(x(k))\target(k)-fXOR_network(x(k))
k•l

(13)
or we have exceeded a predefined number of learning cycles (where by the cycle we
mean the number ofprocessing phases of the entire training dataset. One should mention
the role of the learning rate as it affects the efficiency of the learning process; it is
prudent to start with low values of the learning rate thus preferring a stable learning to its
speed.

5. Numerical experiments

We start with a number of two-valued logic problems whose intent is to visualize the
performance of the architecture and the associated learning algorithm. Next we discuss
continuous (multivalued) data.

The XOR data set. The learning rate (ex) is set to Ol. We consider the problem ofn = 2,3,
and 4 input variables. Starting from n=2, the peńormance index Q is shown in Figure 5.
Apparently, the learning is fast and stable resulting in a rapid reduction of the values of
the performance index Q

The resulting connections assume the 0-1 values (because we are dealing with the
Boolean data), this finding becomes intuitively appealing.

8

W= [O O] V=[OJJO]
1 O O I

In light of the notation being used, this immediately translates into the Boolean
expression

After some simplification we arrive at the expression

which is nothing but a two-input XOR function.

Figure 5. Performance index Qin successive learning epochs for n=2

The process of learning for n=3 and 4 input variables is shown in Figure 6. Interestingly,
a certain pattern of learning builds up: we note that some jumps (decrease) in the values
of Q occur. This effect gets more profound once the dimensionality of the problem
increases. The connections are stili Boolean and they lead to the explicit formula for the
Boolean function. For instance for n=4, we derive

W=[O OOO]

and

[

1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.000000 1.000000 1
0.000000 1.000000 1.000000 0.000000 1.000000 1.000000 1.000000 1.000000

V=
1.000000 1.000000 1.000000 1.000000 0.000000 1.000000 1.000000 0.000000

1.000000 0.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

9

Q

)CO ilu

(a)

(b)
Figure 6. Values of the performance index in successive learning epochs for n=3 (a) and

n=4 (b)

It is interesting to discuss what happens if we get too many nodes in the hidden layer. For
instance, stili considering the same number of inputs, we go for a higher number of the
nodes in the hidden layer. When considering 7 nodes in the hidden layer and completing
the learning (Q=O.O), the resulting connections are as follows,

W= (1 O O O I O I]

0.236758 0.521474 0.141856 0.095374 0.420670 0.282198 0.401083 0.997504

1.000000 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000 1.000000

1.000000 0.000000 0.000000 1.000000 1.000000 1.000000 1.000000 1.000000

V = 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.000000

0.904109 0.549009 0.504582 1.000000 0.176317 0.256148 1.000000 0.765040

1.000000 1.000000 1.000000 1.000000 0.000000 1.000000 1.000000 1.000000

0.646682 0.115568 0.971349 0.347514 0.097477 0.510434 0.940370 0.620606

Now, il becomes obvious that some of the AND neurons are not used whatsoever as the
connections of the fXOR neuron (indicated in boldface) make the corresponding inputs

10

I

'

completely inactive. Finally, we end up with the same inputs as the ones encountered
before for the smaller network.

It is interesting to see how this network compares to the standard logic processor (LP)
introduced and studied in [4]. We keep the same value of the learning rate as before to
make the comparative analysis coherent. The differences are rnore profound, Figure 7,
when the number of the input variables grows: the learning of the LP becomes less
efficient as opposed to the optimization procedures realized in the fXOR network. For
example, for n = 4 it took LP over 4,000 learning epochs to converge as opposed to 30%
of the number of iterations used for the training of the fXOR network.

Q

12

o.,

o.o

,. .. ., .,
leamfn1epoch

(a)
Q ..
..
u

10

..
o.o

., 100 ,.,
t.anm,c,pod,

(b)

li

1000 2000 3000 .,..
Jcar11iJ1i cpocb

(c)

Figure 7. The values of the performance index Q for the logic processor (LP} in
successive learning epochs for n=2 (a), 3 (b), and 4 (c) input variables

Next, we consider a small single-input single-output synthetic data set, see Table 1.

Jnputs 0.7 0.2 0.5 0.3 O.I 0.6 0.3 0.9 O.I 0.8
O.I I.O 0.8 0.7 0.8 I.O 0.2 0.4 0.7 0.7

output 0.66 0.3 0.7 0.35 0.45 0.5 0.4 0.62 0.34 0.7

The optima! size of the hidden layer is determined experimentally, Figure 8, and is equal
to 4 with the connections assuming the following values

W= (0.995430 0.021711 0.053604 0.881476]

r
l .000000 0.476227 1.000000 0.842960 1
0.860312 0.003482 0.768395 0.194043

V=
0.006257 0.993714 0.871346 0.947147

0.694389 0.999144 0.998759 0.998386

12

.•
o.on .. .•

'·"'

O.OM

..
..... -'-~--~ --~--~-----'­. -Figure 8. Performance index Q versus the size of the hidden layer (cx=0.2, 8,000 learning

epochs)

Considering two of the most dominant AND neurons in the architecture, the
characteristics of the network computed in this way are shown in Figure 9.

(a)

OJ'

Ol

•• ..
., •• Ol ..

(b)

Figure 9. Plots of the fuzzy neural network with the two most essential AND nodes in the
hidden layer (a) JD plot and (b) contour plot

13

6. Concluding comments

We have introduced and discussed a novel architecture of the logic- based model of
neurocomputing generalizing an algebraic mode of computing with fuzzy functions. We
showed the architecture of the network (consisting of AND and fXOR neurons) and
developed a detailed learning algorithm showing how the connections of the neurons are
optimized. The topology of the network is helpful in building compact representations of
the logic expressions for experiniental data.

Acknowledgments
The support from the Natura! Sciences and Engineering Research Council of Canada
(NSERC) and ASERC (Alberta Software Engineering Research Consortium) is gratefully
acknowledged.

7. References

I. A. Di Nola, S. Sessa, W. Pedrycz, E. Sanchez, Fuzzy Relational Equations and Their
App/ications in Knowledge Engineering, Kluwer Academic Press, Dordrecht, 1989.
2. M.H. Hassoun, Fundamentals of Artificial Neural Networks, MIT Press, Cambridge,
MA, 1995.
3. S.Haykin, Neural Networks: a Comprehensive Foundation, Macmillian College Publ,
1994.
4. W. Pedrycz, Neurocomputations in relational systems, IEEE Trans. on Pattern
Analysis and Machine Intelligence, 13, 1991, 289-296.
5. W. Pedrycz, A. Rocha, Knowledge-based neural networks, IEEE Trans. 011 Fuzzy
Systems,!, 1993, 254-266.
6. W. Pedrycz, P. Lam, A.F. Rocha, Distributed fuzzy modelling, IEEE Trans. on
Systems, Man and Cybernetics, 5, 1995, 769 - 780.
7. W. Pedrycz, F. Gomide, An Introduction to Fuzzy Sets; Analysis and Design. MIT
Press, 1998.
8. W.Pedrycz, A.V. Vasilakos, Linguistic models and linguistic modeling, IEEE Trans.
on Systems Man and Cybernetics, 1999, vol. 29, no. 6, 745-757.
9. 1.S. Reed, A class of multiple-error-correcting codes and their decoding scheme, /RE
Trans. Inf Theory, PGIT-4, 1954, 38-49.
IO. W. G. Schneeweiss, Boolean Functions with Engineering Applications and Computer
Programs, Springer-Verlag, Berlin, 1989.

14

i

'

