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Simulation of material behaviour of alloys with shape memory 

M. ACHENBACH and I. MULLER (BERLIN) 

THE PAPER presents a model that is capable of simulating the complex load-deformation
temperature behaviour of memory alloys. The structure of the model is such that it reflects 
the known microscopic properties of the metallic lattice of such alloys. In particular,' the 
basic element of the model is capable of assuming different configurations that duplicate the 
austenitic lattice structure and its martensitic twins. The phase transformations occurring in 
memory alloys are mathematically described here by evolution equations for the phase fract
ions, and the temperature of the model is governed: by the energy equation. The interfacial 
energy between martensitic and austenitic lattice layers is taken into account in the calculat
ion of the transition probabilities that determine the evolution of the phase fractions. This 
effect tends to stabilize the austenitic phase in the high temperature range and at small loads. 

Przedstawiony w pracy model jest w stanie symulowac zlozone zalei:nosci ,obci(lzenie-odksztal
cenie-temperatura" zachodZ(lce w stopach z pami~'l· Struktura modelu odzwierciedla znane 
wlasnosci mikroskopowe takich stop6w. W szczeg6lnosci, podstawowy element modelu jest 
zdolny przyjmowac r6i:ne konfiguracje nasladuj(lc struktur~ sieci austenitycznej i jej marten
zytycznych blizniak6w. Przemiany fazowe wyst~puj(lce w stopach z pami~ci'l opisane S<l tu 
matematycznie przez r6wnania ewolucji faz, a temperatura modelu opisana jest przez r6wnanie 
energii. Energi~ powierzchni rozdzialu mi~dzy warstwami martenzytycznymi i austenitycznymi 
uwzgl~dniono przy obliczaniu prawdopodobieilstwa przemian fazowych okre8laj(lcych ewolucj~ 
faz. Zjawisko to wywiera dzialanie stabilizuj(lce na faz~ austenityczn(l w zakresie wysokich 
temperatur i malych obci(li:eil. 

llpegCTaBJieHHaH B pa6oTe MOAeJib B COCTOflHlUI lfM.HTHpoBaTb CJIO»<Hhle 3aBHCHMOCTH ,Ha
rpy3Ka-,ll;ecl>opMa~HH-TeMIIepaTYPa", HMeJO~He MeCTo B crrnasax c rraMHTbJO. CTpYI<TYPa 
Mo,ll;eJIH oTo6pamaeT H3BeCTHhie MHKpocKorrw.JecKHe csoikTBa TaKHx CIIJiaBoB. B 1.1acnwcrn, 
OCHOBHOH :meMeHT MO,ll;eJIH CIIOC06eH IIpHHHMaTb pa3Hhle KOHcPHrypa~HH, IIO,ll;pa:>KaH CTp}'l<
Typy aycTeHHTHOH peiiieTKH H ee MapTeHCHTHhiX ,ll;BOHHHKOB. <Pa30Bhie rrpespa~eHHH, Bhi
CTyiiaJO~He B CIIJiaBax C IIaMHTbJO, OIIHCaHhl 3,ll;eCb MaTeMaTHl.JeCKH ypaBHeHHHMH 3BOJllO~HH 
cl>a3, a TeMrrepaTypa Mo,ll;eJIH orrHcaHa ypasHeHHeM 3HeprHH. 3HeprHH rrosepXHoCTH pa3,ll;ena, 
Mem,ll;y MapTeHCHTHhiMH H aycreHHTHhiMH cnoHMH, y1.1TeHa rrpu pacl.leTe sepoHTHOCTH cl>a3oBhiX 
rrpespa~eHHii, orrpe,ll;emno~HX 3BOJIJO~HJO cl>a3. 3To HBJieHHe coseprnaeT cra6HJIH3Hpyro~ee 
,ll;eHCTBHe Ha ayCTeHHTHYJO cl>a3y B HHTepsane BhiCOKHX TeMrrepaTYp H MaJihiX Harpy30K. 

1. Typical load-deformation-temperature behaviour 

1.1. Load-deformation curves 

MEMORY alloys are characterized by a strong dependence of the load-deformation curves 
on temperature. Figure 1 shows schematic plots of such curves for increasing temperatures 
from T1 through T4 • 

At low temperatures there is an initial elastic curve through the origin, and there is 
a yield limit. The behaviour is much like that of a plastic body except that there exists 
a second elastic line along which the body can be loaded elastically far beyond the yield 
limit. Upon unloading there is a residual deformation. In Figs. Ia and 1 b we see typical 
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FIG. 1. Schematic load deformation curves for memory alloys. 

hysteresis loops around the origin that reflect this behaviour. An increase of temperature 
decreases the width of the hysteresis. 

At high temperatures there are two hysteresis loops in the first and third quadrant of 
the load-deformation diagram. There is still an initial elastic line, a yield limit and a second 
elastic line but, unlike at low temperatures, there is also a recovery limit at which large 
deformations are recovered upon a small decrease of the load. This phenomenon is called 
pseudoelasticity because, although there is a hysteresis, there is no residual deformation. 
Figs. lc and ld show this behaviour, and we can see that both the yield limit and the recov
ery limit tend to grow with increasing temperature while the hysteresis becomes smaller. 

Typically the temperature between T1 and T4 is 30 K around room temperature and the 
maximum recoverable deformation is about 6%. 

The memory of the material is implied by the diagram of Fig. 1 : Suppose the body has 
been left at low temperature with a residual deformation where the right elastic branch 
intersects the D-axis. Upon heating to the temperature T3 , the body will creep back to the 
origin because D = 0 is its only possible deformation as long as no load is applied. The 
corresponding change of deformation is called the "recoverable memory deformation" , 

Information about theory and experiment in memory alloys can be obtained from the 
proceedings [1] and [2] of meetings on shape memory and martensitic transformations. 

1.2. Combined dynamical and thermal loading 

The curves of Fig. 1 show the result of quasi-static experiments with one parameter 
fixed, namely the temperature. A more complex picture appears when load and temperature 
change simultaneously. An instructive example of this type is provided by the standard 
test program of H. EHRENSTEIN [3] for the determmation of the elastic deformation "recov
erable memory" part of the deformation. In this program a triangular tensile load of 
constant amplitude and 0.05 Hz is applied to the specimen which is subject to a tempera
ture cycle by external heating and subsequent cooling. Figure 2 shows in its upper part the 
applied load as a function of time and the single line curve in the lower part represents the 
temperature during the test. The resulting deformation is given by the zig-zag curve in the 
lower part of the figure. We observe that at low temperature the deformation of the specimen 
oscillates along the load around a large mean value. As the temperature increases, the 
deformation decreases drastically and ends up oscillating around a low mean value. As 
the temperature returns to its former value, the deformation increases again. 
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FIG. 2. Standard test program for the determination of elastic and recoverable plastic deformations. 

1.3. Phase transformations 

The physical reason for yield and recovery in a memory alloy is an austenitic-marten
sitic phase transformation and the twin formation in the martensitic phase. The martensite 
is stable at low temperatures and on the elastic curves of Figs. 1a and 1b we have equal 
proportions of martensitic twins while on the left and right elastic curve one or the other 
twin prevails. Austenite will form in bodies under small loads at high temperature. In 
Figs. 1c and 1d, for instance, the initial elastic curves refer to an austenitic body. Even at 
high temperature, however, the body can be forced to become martensitic by a large enough 
1 oad and therefore the lateral elastic curves in Figs. 1 c and 1 d refer to a martensitic body. 
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Accordingly we may interpret the large deformations of Fig. 2 pertaining to low tern
. peratures as deformations of a martensitic body with one twin only. The sharp decrease 
of deformation upon heating is due to the formation of austenite. 

2. The model 

2.1. Basic element 

As the basic element of the model we envisage a small part of the metallic lattice which 
we call a lattice particle. Such a particle is shown in Fig. 3 in three equilibrium configura
tions denoted by M ± and A. The partide A shows the highly symmetric austenitic phase 

-·· M_ A M 

FIG. 3. Lattice particles and their potential energy. 

while particles M ± represent the martensitic phase. Obviously we may think of M ± as 
sheared versions of A. 

Intermediate shear lengths L1 are also possible and Fig. 3 shows the postulated form 
of the corresponding potential energy. The central minimum corresponds to the metastable 
equilibrium of the particle A and the lateral minima correspond to the stable martensitic 
equilibria. In between the minima we have energetic barriers. 

If a lattice particle is subject to a shear load P, the potential energy of the load must 
be taken into account. That energy is a linear function of the shear length and therefore 
the potential energy of the particle is deformed by the addition of the line - P L1 as shown 

4>-P/j 
1 

FIG. 4. Potential energy of a lattice particle under a shear load P. 

http://rcin.org.pl



SIMULATION OF MATERIAL BEHAVIOUR OF ALLOYS WITH SHAPE MEMORY 577 

in Fig. 4 for two different loads. Obviously the depths of the potential wells and the height 
of the barriers are affected by the load. 

2.2. The body as a whole 

To form a model for the body as a whole we arrange the lattice particles in layers and 
stack the layers as shown in Fig. 5a where a body is formed by alternating layers of M + 

and M_. 

t 

a b c d e 

FIG. 5. Model for the body built from martensitic and austenitic layers. 

The other bodies in Fig. 5 are supposed to give a qualitative idea of the modes of defor
mation that the model can simulate. Thus Fig. 5b shows the body under a small tensile 
load what makes the M + layers flatter and the M _ layers steeper. Both shear deformations 
contribute their vertical components L1i to the total deformation which thus becomes 

(2.1) 

where the sum extends over all layers. Removal of the loads makes all particles return 
to their old positions and therefore deformations under small loads are elastic. 

When the applied load grows beyond a certain limit, the M _ particles will be so steep 
as to become unstable and they will flip into the M + position. The accompanying large 
shear length will be carried into the total deformation D which increases drastically as 
shown in Fig. 5c. Removal of the load now will bring all particles into their equilibrium 
M + positions so that the residual deformation of Fig. 5d remains. 

When the so-deformed martensitic body is heated, the layers will assume the regular 
austenitic structure and therefore the body will appear as fn Fig. 5e. A subsequent cooling 
will convert the particles back into M + and M _ and, in general, it will produce equal 
numbers of both twins so that we are back to the configuration of Fig. 5a. 

Thus we see how the various modes of deformation are simulated by the model: elastic 
deformation is due to a shearing of lattice particles, yield occurs during flippling and 
residual deformation results upon unloading after flipping. The recovery is achieved by 
the rearrangement of particles in the high temperature phase. 
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.2.3. Polycrystalline body 

The above-described model has been considerably refined so as to apply to polycry
·stalline bodies in plane strain situations. That refinement is the subject of a recent paper [4] 
to which the interested reader is referred for details. In this paper the measure D for defor
mation, see Sect. 2.1, is replaced by a proper deformation gradient and the rotation of 
lattice particles during the deformation is taken into account. 

The numerical results presented below have all been gained for this more complex 
model even though a single crystal structure and a uniaxial load was assumed. However, 
.for greater clarity in the explanation we proceed to describe the simple model of Sect. 2.2 . 

. 3. Rate laws for phase fractions and temperature 

..3.1. Qualitative description of the effects of temperature 

Temperature makes the lattice particles fluctuate in their potential wells so that the 
faster ones may occasionally overcome the energetic barriers. Figure 6 shows the situation 
:Suggestively by representing the various lattice particles as dots in th~ neighbourhood of 

FIG. 6. Distribution of lattice particles among the potential wells. 

1he minima of the potential energy curve. The height of the pools of particles indicates 
·the mean energy of fluctuation. 

The fraction of particles in the different minima are denoted by x± and x 0 and they 
will be referred to as phase frac~ons of the martensitic twins and of austenite, respectively. 

In the situation of Fig. 6 one does not specify the shear lengths of individual particles. 
Rather one determines the fraction xA dLJ of particles with shear lengths between L1 and 

.LJ + dL1. According to the rules of statistical mechanics, that fraction is proportional to 
.the Boltzmann factor formed with the appropriate potential energy 

4J(A,P) 

X,1diJ = c+O-e --w-dLJ. 
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The factor of proportionality C may be different in the three potential wells, hence the 
indices + 0-. They will generally be different at low temperature when no thermal equi
librium prevails between the phases. In that case c+o- will essentially be determined by 
the phase fractions x+o-. 

From Eq. (2.1) it is obvious that the distribution of particles among the wells will 
determine the deformation D. Thus if all particles are in the right potential well, the body 
will be Jong as shown in Figs. 5c and 5d, while it will be in the short configuration 5a if 
the lateral minima have equal numbers of particles. 

3.2. Rate laws for phase fractions 

3.2.1. Without consideration of interfacial energies. As indicated before, there will generally be 
a transition of some particles across the energetic barriers and this will lead to a change 
of the phase fractions. A simple mathematical model for this kind of transition is 
furnished by the rate laws. 

-0 O-
X -x-p +x0p, 

-0 0- 0+ +0 

(3.1) x0 = +x-p -x0p -x0p +x+p, 

.X+= 

According to Eq. (3.1) 1 the rate of change of x- has two parts, a loss and a gain. The loss 
is due to particles that jump out of the M _ phase into the neighbouring A phase and their 
number is considered proportional to x-, the fraction of particles M _. The gain consists 
of particles that jump from A to M _ and accordingly ,it is proportional to x 0

• The res-
-o o-

pective factors of proportionality are the transition probabilities p and p , whose form 
will be discussed presently. Equations (3.1)2 , 3 are similarly constructed except- that 
Eq. (3.1)2 has more terms since the central minimum can exchange particles with both 

0+ 
adjacent minima. The transition probabilities for the jumps between A and M + are p 

+0 
and p . 

-0 
The transition probability p (say) is assumed to be proportional to the probability 

(3.2) 
e 

mL _ <1>(.1; P) 

J e kT dL1 
-co 

of a M _ particle to be on top of the left barrier whose abscissa is L1 = mL. To obtain the 
-0 

transition probability p from Eq. (3.2) we multiply by v' (kT)f(2nm), which is the mean 
speed of the fluctuating particles. Similar arguments refer to the other transitions and 
we obtain 
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f!>(mL; P) f!>(mL; P) 

-o I kT kT 

P =V 2nm 
e 

mL f!>(LI; P) 

J e 
-~ 

dL1 

; - = -. j 2:Tm __ e---,--,k~T--=---JI '"' mR - f!>(Lf; P) 

J e kT dL1 
-00 mL 

(3.3) 
f!>(mR ; P) 

.+ _ vkT kT 
e 

p - 2nm mR f!>(LI; P) 

J e 
--w-

dL1 
mL 

3.2.2. With consideration of interfacial energies. The above calculation of the transition prob
abilities has not taken into account the change of interfacial energy that will generally 
go along with a change of phase fractions. However, it is intuitively clear that the for
mation of an interface will require energy and, in particular, this will be so for an austenitic
-martensitic interface because of the different lattice structure. We proceed to introduce 
a correction of the tninsi,tion probabilities that takes this effect into account. 

We shall assume that the transition probabilities are of the form 

ij 
.. .. LI'P 

(3.4) 
I] I] -w 
p =pe ' 

ij ij 

where p stands for any one of the probabilities (3.3) and L1 'P is the change of the inter-
facial free energy in the transition of a lattice particle from phase i to phase j. 

The free energy associated to K interfaces between austenite and martensite (1) is equal 
to 

(3.5) (N°) (N-No) 
'P = KE-kTln K/2 K/2 , 

where E is the energy of one interface. N° and N- N° are the numbers of austenitic and 
martensitic layers, respectively. The second term in Eq. (3.5) represents the configurational 
entropy of the interfaces. 

Unfortunately there is no unique relation between the number K of interfaces and the 
phase fractions x± 0

• Indeed, for given values of x± 0 we can obviously have many different 
interfaces. However, we may argue that the expectation value of K is the one which makes 
'P a minimum. By Eq. (3.5) this gives (2) 

(3.6) 

(
1

) Interfaces between martensitic twins are not considered in the calculation of the free energy. 
(2) The Stirling formula has been used in the derivation of Eq. (3.6). 
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The corresponding minimal value of 'P will be used in Eq. (3.4), viz., 

(3.7) 'Pmin = Km 1.E-NkT[ x0 1nx0 + (l-x0}ln(l-x0
}- (x0

- ~~· )tn(x0
- ~~·) 

_ 2 Kmin In Kmtn _ ( 1-Xo- Kmin )ln(l-xo- Kmtn )] 
2N 2N 2N 2N' 

-0 
The calculation of Ll IJf (say) proceeds as follows. We have 

± 0 ( 1 ) Ll 'P = 'P min X
0 + N -'P min (xo), 

(3.8) Jo'P = o'Pmin _!__ 
ox0 N' 

±0 
and, accordingly, the transition probability P reads 

(3.9) 

0± ±0 0± 
P results from Eq. (3.9) by replacing p by p and by changing the -sign in the expo-
nent into a +sign. 

3.3. Rate law for temperature 

The proposed rate law for temperature is nothing else but the balance of energy applied 
to the body in thermal contact with its environment and in the process of a phase change. 
We write 

(3.10) 

where C is heat capacity, ex is the coefficient of heat transfer from the body to the environ
ment whose temperature is TE. The quantities H± in Eq. (3.10) are the latent heats for the 
phase transitions from M ± to A. If v is the number of lattice particles, we have 

(3.11) 

where Lf± 0 denote the positions of the minimum of <P(Lf; P). 

3.4. Deformation 

In the case of thermally fluctuating particles the deformation cannot be calculated 
from Eq. (2.1) since the shear lengths of individual particles are unknown. The equivalent 
to Eq. (2.1) in the present case is the formula 
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mL l!>f<f;P) mR IP(<f;P) 00 lf>(<f;P) 

J L1e 
-------u-

dL1 J L1e 
-~ 

dL1 J L1e -~dL1 

(3.12) 
y2D _ -oo +xo mL +x+ mR --,r- =X 

\ mL ll>(<f;P) 111R ll>(<f;PJ 00 11>(.1; P) 

J e 
-~ 

dL1 J e 
-~ 

dLI J e 
-----;:r-

dLI 
-oo mL mR 

Thus D appears as the sum of three terms of which each one represents the product of 
the num.ber of particles in a phase and the expectation value of L1 in that phase. The )12 
in Eq. (3.12) results from the arrangement of layers at an angle of 45° to the direction of 
the load. 

4. Numerical exploitation of the model 

4.1. Scope 

ij 

The energy balance (3.10) and the rate laws for the phase factors (3.1), with p is 
ij 

replaced by P according to Eq. (3.9) and permit the solution of the following problem: 
Determine D(t) for given functions TE(t) and P(t). 

The solution proceeds by stepwise integration of Eqs. (3.10) and (3.1) which gives 
us the temperature of the body T(t) and the phase fractions x± 0 (t). These functions and 
P(t) are introduced into Eq. (3.12) to give D(t). 

4.2. Load deformation curves in tension and compression under isothermal conditions 

The program described above is first carried out for constant values of TE and a tension 
and compression cycle P(t). The results of four such calculations are presented in the 
four sets of diagrams of Fig. 7. The· applied load is the same one in all sets; it is represented 
by the P(t) curves. Each set, however, refers to .. a different constant temperature TE whose 
value is represented by the straight line in the (T, I)-diagram. 

There result different functions for the phase factors x±0 (t) corresponding to the 
different temperatures TE, and the temperature T(t) of the model is represented by the 
kinky curves in the (T, t) -diagrams. The resulting deformation is shown in the (D, t) 
-diagrams. 

It is particularly instructive to eliminate time between the two functions P(t) and 
D(t) to come up with a plot P vs. D which is also shown in Fig. 7. These load deformation 
curves must be compared to the schematic pictures of Fig. 1 and we observe good quali
tative agreement. 

Several features of the curves of Fig. 7 merit a comment: 
First of all we see that at low temperatures the hysteresis loops contain the origin 

and that all aspects of the schematic pictures of Fig. 1 are present: initial elastic deforma
tion, yield, second elastic line and residual deformation; the yield limit decreases with 
increasing temperature. At high temperatures we see the initial and the second elastic 
curve as well as yield and recovery just as experimentally observed. As temperature in
creases, the hysteresis becomes smaller and gets farther away from the origin. 
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FIG. 7. Deformation D(t) under a load P(t) at different temperatures (t). 

583 

Also, as expected, the deformation goes along with the changes in the phase factors; 
large positive and negative deformations are always linked to the prevalence of M + and 
M _ respectively. Small deformations can either be the result of a large fraction x 0 or else 
the result of like proportions x+ and x-. The former case will be realized at high tempera
tures and the latter at low temperatures. 
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Unlike the external temperature Te, the actual temperature T of the body is not con
-stant. In fact, T deviates from TE whenever a rapid phase change occurs. This is due to 
:the fact that the latent heat of the transformation is too big to be carried away immedi
:ately into the environment. Tt is interesting to observe that the body can not only be heated 
. .above TE by a phase change but also cooled below TE . This latter case will be most no
ticeable when austenite is formed from one of the martensitic twins while the body is still 
loaded. 

The asymmetric character of the (P, D)-diagram in the tensile and compressive regions 
·would not arise in the simple model that has been described in Chapter 2. However, as 
was mentioned before (see Sect. 2.3), all calculations have been performed by the use of 
-the more refined model presented in [4] where such an asymmetry arises naturally because 
.of the rotation of lattice layers in the deformation. 

4.3. Combined dynamical and thermal loading 

In order to show the quality of the model we choose a dynamical and thermal loading 
that is akin to those of the standard test program that was discussed in Sect. 1.2: An 
alternating tensile load of constant amplitude is applied and the temperature is first raised 
.and then lowered. This "input" is shown in the first two diagrams of Fig. 8. The following 

p 

-t 

~o lL-------------~~--------------~-------------- · c
-~ -Di' It 

I . .. . ~ ... ~ .. I I I 

0 20 JO 60 80 iOO ~20 140 160 180 200 220 240 260 280 300 
1 [ r·lE 

:;. 10 s 

FIG. 8. Simulation of the standard test program and its outcome. 

1:wo diagrams represent the resulting phase factors. We can clearl)' observe how, with 
.growing temperature, the initial martensitic state is changed into an austenitic one and -
.as temperature returns to small values- how martensite is formed. 

The last diagram of Fig. 8 shows the deformation as it oscillates along with the load. 
At first, when the temperature is small, we have a large deformation. Upon heating the 
body contracts, always oscillating and it returns to the original value of deformation 
·when the temperature falls again. 
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The parameters of the model have been chosen so as to match the D(t) plot as similar 
as possible to the corresponding curve in Fig. 2. That this is possible speaks for the ver .. 
satility of the model. 
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