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Modeling of turbulence by ensembles of vortices 
with inviscid interaction(*) 

Yu. N. GRIGORIEV, V. B. LEVINSKI and IN. N. YANENKO I 
(NOVOSIBIRSK) 

IN THE PAPER the accuracy of some vortex models of the turbulence theory are discussed. It is 
shown that the numerical modeling of turbulent spectra based on the dynamics of point (discrete) 
vortex systems requires the introduction of the intrinsic structure of vortices. For the statisti­
cally equilibrium blobs model of coherent structures in turbulent shear layer, the correctness 
with respect to the principle of informational entropy nondecreasing was established. The linear 
stability of model vortex blobs was proved. By generalization of this model, rotational MHO 
flows with coaxial turbulent shear layers were studied. The results are in a good agreement 
with the experimental data. 

W pracy przedyskutowano dokladnosc pewnych modeli wirowych w teorii turbulencji. Poka­
zano, i:e modelowanie numeryczne widm turbulencji oparte na dynamice punktowych (dyskret­
nych) uklad6w wir6w wymaga wprowadzenia struktury wewn~trznej tych wir6w. W przypadku 
statystycznie r6wnowagowych modeli ~herzykowych struktur w burzliwej warstwie scinanej 
stwierdzono poprawnosc wzgl~dem zasady niemalej~cej entropii. Wykazano liniow~ statecznosc 
modelowych ~herzyk6w wirowych. Uog6lnienie tej metody pozwolilo na przeaRalizowanie 
wirowych przeplyw6w MHO z wsp61osiowymi warstwami przeplyw6w 5cinaj~cych. Otrzymane 
wyniki wykazuj~ dobr~ zgodnosc z danymi doswiadczalnymi. 

B pa6oTe HCCJie.ll)'IOTCSI BOIIpOCbi KOppei<THOCTH HeKOTOpbiX BHXpeBbiX MO,lteneif TeOpHH 
TYP6yneHmocru. lloKa3aHo, ttTo npH ttHCJieHHoM MO.ztenupooaHHH cneKTpOB TYP6yneHTHoCTH 
Ha OCHOBe ,ltHHaMHKH CHCTeM TOttetiHbiX (AHCKpenibiX) BHXpeH HeOOXOAHMO BBO,ltHTb BHYTpeH­
HIOIO CTI'YKTYPY BHXpeii. )lM MO,ltenH KOrepeHnibiX CTpYKTYP B TYp6yneHTHOM CJIOe CABHra, 
ucnon&3YIOLUeii CTaTHCTHtieCKH paBHOBeCHbie [BHXpeBbie] , Ta6neTKH", ,:CTaHoBneHa ee Kop­
peKHOCT& B OniOWeHHH npHHUHna Hey6hiBaHH1r HH<f>OpMaUHOHHOH 3HTpOnHH. )loKa3aH8 
nuHeHHast ycroiittuoocr& MOAen&HhiX ouxpeBbiX crp "KTyp. Ha oCHooe o6o6meHHR 3Toit 
MOAenu uccneAoBaHbi opawaiOwuecst Mr,Il-TetteHHst c KOaKCHan&HbiMH T ·p6yneHmbiMH 
CABHrcobiMH cnoHMH. llonyqeHHbie npu 3TOM pe3yn&TaTbi xopowo cornacyiOTCst c 3Kcnepu­
MeHTan&HbiMH ,ltaHHbiMH. 

1. Introduction 

UP-TO-DATE IDEAS about the mechanisms of developed hydrodynamic turbulence show 
that many processes in turbulent flows can be considered within the framework of a con­
ception of inviscid interaction of regions with concentrated vorticity. 

Thus conditions are created for modeling the effects of a developed turbulence by means 
of point (discrete) vortex ensembles in an ideal fluid. For the first time the possibility of 
this approach was indicated in the works [1, 2]. At present a large number of works is 
known where the vortex ensembles with Hamiltonian dynamics are used to construct 
statistical turbulence models. Some of these results are given in a review [3]. Numerous 

(*) Paper given at XVI Symposium on Advanced Problems and Methods in Fluid Mechanics, Spala. 
4-10 September, 1983. 
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papers are devoted to applications of discrete vortex systems for numerical modeling of 
turbulence and vortex flows at large Reynolds numbers [4]. It can be noted that vortex 
models possess a certain universality and have a wide range of uses: from small scale 
(subgrid) turbulence simulation up to the studies of large vortex structures. Their indubi­
table merit is that they are immediately directed at describing vortex distributions and 
evolution which, in modern theories and experiments on turbulence, acquire a growing 
significance. Also it is essential that being relatively simple, these models truly reflect 
the principle of nonlinear effects of vortex dynamics. 

The present work deals with the problems connected with certain applications of vortex 
models to the turbulence theory problems. The peculiarity of the application of discrete 
vortices dynamic systems to the numerical modeling of isotropic turbulence spectra is 
dealt with in Sect. 2. The properties of the model of plane coherent vortex structures using 
statistically equilibrium distributions of vortices are investigated in Sect. 3. The results 
of the modeling of coherent structures in annular shear layers and in rotating MHD flows 
obtained by this model generalization are presented in Sect. 4. 

To model two-dimensional turbulence effects a system of straightline vortex filaments 
with the same circulation " was used as an original one. The dynamics of the system in 
the ideal noncompressible fluid without the boundaries and the external velocity field is 
described [5] in a canonical form: 

(1.1) 

N 

H N = - 2 In I r,- r11 , i, j = 1 , ... , N. 
i<j 

The system (1.1) has 4 integrals of motion: 

(1.2) HN = const, 

N 

R = N- 1 2 r1 = const, 
I= I 

N 

L 2 = N- 1 l, (r1-R)2 = const, 
f=l 

connected with the conservation of energy, momentum and angular momentum, respect­
ively. 

In a three-dimensional case the point vortices model with dipole-dipole interaction [6] 
was considered. The dynamics of the system is described in terms of Lamb momenta 
of vortices {p1, ... ,pN} and their radius-vectors {r1, ... , rN} canonically conjugated 
with respect to a Hamiltonian: 

N N 

HN = 2; T(lp,l)+ 2 fl>u 
(1.3) 1=1 i<j 

T(IPI) = Alpl 11\ 

Here the integrals of motion are the Hamiltonian HN as well as a summarized momentum 
and a summarized angular momentum: 

(1.4) 
N 

Po= 2p, 
i-1 

N 

M 0 = 2r1 xp1 • 

I ::ol 
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2. Modeling of isotropic turbulent spectra by dynamics of point vortices systems 

The possibility to reproduce energy cascade processes is one of the principle require­
ments to any universal model of a developed turbulence. In particular, it would look 
natural that point vortices systems that are the limit at r--+ 0 of small eddy formations, 
must contain corresponding effects in the region of high wavenumbers. 

When modeling an energy spectrum, the spectral density function of turbulent energy 
E(k) is to be calculated according to the results of the numerical integration of the system 
(t.l) or (1.3). In the spatial case according to the definition 

oo oo 2n n 

f dkE(k) = ~ ( J dk [J dq; f dOsinOISl(k, t)l 2 
]) . 

0 0 0 0 

Here 

Sl(k, t) = (27t)- 3 J dre-tkrw(r, t) 

is a Fourier transformation of the vorticity field of a point vortices system. 

N 

w(r, t) = - 2 P11 x V,8{r- r 11). 

11=1 

The angular brackets mean averaging with regards to angular variables and time when 
integrating Eq. (1.3). By angular averaging one can derive the following expression for 
energy spectrum modeling: 

N N 

E(k) =I~{ ~ 2 ~ 3( . ) -[sin <X coset_ sin <X] 
\ 48ns L.J p,. + .L.J P11 Pm <X + <X2 <X 3 

..__11=1 n<m 

(2.1) 

_ IPniiPmlcosO"cosOm [3cos<X + (t-~) sin <X]\\ 
lrn- rml 2 <X 2 <X 2 

(X f/t' 

where IX= klr,.-rml, 0,, Om are angles between momentums and the radius-vector r,.-rm 
and the angular brackets mean now only the temporal averaging. 

In the case of a rectilinear vortices filaments system (1.1) an analogous expression was 
obtained earlier in [7]. It looks as follows: 

N 

(2.2) I "2[- \.-, )' E(k) = , --k N+2? J 0 (klrJ-rnl) It• 
}<II 

J0 (x) is the Bessel function. 
The characteristic feature of Eqs. (2.1) and (2.2) is the presence of underlined terms 

which determine the asymptotics at k --+ oo and are connected with the self-influence of 
vortices (with their infinite self-energy). It is quite obvious that it is impossible to obtain 
the necessary asymptotics of the spectral energy density on the basis of these relations 
(E(k) ,...... k- 513). Moreover, it is seen from Eq. (2.2) that neglecting the first term because 
of its nonphysical nature doesn't give the necessary result since J0 (x) "' O(x- 112) at x--+ oo. 
If we turn to the enstrophy cascade modeling where the asymptotics looks as follow 

(2.3) 
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the deviation will be still greater. The same thing takes place in the case of the formula 
(2.1). The observed shortcoming of point vortex models can be explained in the following 
way. On the basis of the representation theorem [8] for introducing the stochastic fields 
by random measure integrals, the random vorticity field in the second case can be presented 
[9] as follows: 

(2.4) 

ro0 (r) is a sure (nonrandom) function, e(dr) is a random measure. 
The meaning of this representation is that a random vortex field can be represented 

statistically indistinguishable (in the sense of coincidence of any average value) by a sum 
of translates of a fixed vortex multiplied by random coefficients. From Eq. (2.4) it follows: 

N 

ro(r) ~}; ro0(r- r1)e(dr1). 

i .... 

It is obvious that Eq. (2.4) gives a theoretical probabilistic basis for modeling the random 
vortex distribution by means of discrete vortices of a fixed intrinsic structure. 

If e(dr) is a Wiener measure, then from Eq. (2.4) and the Parseval equality 

(ro(x)ro(x+r)) = J dke-ikrj.Q0 (k)l 2 • 

In particular, for an isotropic function w0 (r) = w0 (lrl) the enstrophy is represented as fol­
lows: 

(lrol 2
) = J dkkj.Q0 (k)l 2 = J dkk2E(k), 

from this the corresponding spectrum is 

(2.5) 

Thus the energy spectrum is completely defined by a spectrum of a fixed sure function 
by the translates of which the random vortex field is represented. An analogous conclusion 
can be arrived at in a spatial case as well, while considering the componentwise representa­
tions of a random vortex field similar to Eq. (2.4). In purely point models the translates 
of the ~-function are dealt with, which, according to what was mentioned above, leads 
to a distortion of spectra. From this it follows that discrete models with a definite intrinsic 
vortices structure are to be used for an adequate numerical modeling of spectra. In particu­
lar, to obtain a correct asymptotics of Eq. (2.3) circular vortices of ro0 (lrl) ~ lrl- 1 

structure used in [10] can be taken. · 
Since numerical modeling is necessarily of an approximated character, there exist 

many ways to determine the vortices structure for which satisfactory results can be obtained. 
In this connection it can be shown that the use of algorithms of a "VORTEX" type [11] 
enables one to obtain acceptable results directly for point models [12]. This does not 
contradict the conclusion reached above. In these algorithms, particularly in a plane case, 
on each time step a grid vortex function is evaluated instead of a direct integration of 
systems (1.11). Then, by discrete Fourier transformation (OFT), the stream function is 
restored, and according to this function the spectrum is calculated. OFT operates with 
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the functions of the limited spectrum k < kmu ,..., 1 fh, h is a step of a spatial grid. This 
limitation implies, as a matter of fact, an implicit transition to circular vortices systems 
with an effective radius r = h. At that 

wo(lrl) = lc, 

0, 
lrl ~ h, 

lrl > h, 

Since hk ,..., 0(1), then from Eq. (2.5) E(k),..., k- 3 • This is what was required. 

3. On one model of coherent vortex structnres in tnrbulent shear layers 

The systems of large vortex formations which are called now coherent structures (CS) 
were discovered for the first time in experiments [13] in turbulent shear layers. The esti­
mates transacted have shown that these regions of relatively ordered vortex motion mainly 
contribute to turbulent characteristics and, in particular, to Reynolds stresses. This gave 
an impact for intensive investigation of CS in free turbulent flows and first of all, in plane 
shear layers, wakes and jets. It was discovered that CSs appear as a result of the Kelvin­
Helmholtz instability development on the mean velocity profile with an inflection point. 
Their evolution moves mainly by pairwise mergings of small eddies and leads to vorticity 
distributions in CS, universal for the given flow. They possess a considerable symmetry 
and do not depend on a Reynolds number. However, there are practically no data on the 
intrinsic structure of CSs. This is why different hypotheses have to be introduced in theoret­
ical and numerical CS models. 

As a simplified CS model in a shear layer, an inviscid evolution of a rectilinear vortex 
bJobs row was considered in [14]. In the model the structures were supposed to be formed 
in the limit of an infinite number of pairwise mergings: when vortex pairing, the conser­
vation laws of vorticity energy and angular momentum are satisfied. For the following 
mergence, the conservation laws are put down as 

(3.1) 

(3.2) 

(3.3) 

NmEm+ U,. = Nm+l Em+l + Um+1' 

Mm = Mm+I· 

Here Nm is a number of CS in a row on m step, Fm is a velocity circulation of a model 
vortex, M m is a full angular momentum, Em is the internal energy of a separate vortex, 
Um is an interaction energy of Nm vortices. At pairwise merging Nm = 2Nm+ 1 , Fm+ 1 = 2Fm. 

For the closure of a model it was supposed that after the next merging in each newly 
formed intermediate structure a statistically equilibrium vortex distribution from a one­
-parameter A-family described in [15] is established. In this case a dimensionless distri­
bution ( d.f.) of the vortex satisfies a nonlinear equation which looks as 

(3.4) 

where the following scaling of variables is used (see Eq. (1.2) 

lJ = (r-R)/L, F(JJ) = F(JJ)L2
, '1} = IJJI, 

10* 
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F(YJ) is a d.f. of vorticity, cis a constant providing the normalizing condition of a vortex 
circulation 

(3.5) f dYJF( l)) = 1. 

The conservation laws that correspond to Eq. (1.2) in these variables can be presented 
as follows: 

(3.6) 
E(A) = -(47t)-1 J J dl)1dl)2ln1]12 F(YJ1)F(l)2) = const, 

f dl)YJF(YJ) = 0, j dYJ1)2F(YJ) = 1. 

The ;. parameter in Eq. (3.4) is a dimensionless reciprocal temperature of distribution 
defined as: 

(3.7) 

where 

(3.8) 
S = - J drF(r)lnF(r) = S(J.)+lnL2

, 

S(A) = - j dl)F(l))lnF(l)) . 

The range of means of the A parameters is ( -1, oo ). For the distribution (3.4) there 
take place [15] the following character dependences of the reciprocal temperature A and 
entropy S(A) on the dimensionless energy E(A). In the limit A.-+ oo distribution corresponds 
to the Rankine's vortex, at A = 0 the distribution (3.4) is a Gaussian function. At A -+ - 1 
the energy of distributions (see Fig. 1) sharply increases and the latter become more and 
more peaked. 

a S(A) i b 

\ 

£{'?!) 

FIG. 1. 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

[(;\l 

If we denote a root-mean square CS radius as Lm, a distance between CS neighbouring 
centrums as Dm, and put down an integral energy as 

E,. = F~[E,.(A"')-(4n)- 1lnLm], 
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then from the conservation laws (3.1) there follows [14, 16] 

(3.9) 2£(,\m+t) = E(A.m)+(47t)- 1 ln ; LL!~1 , 
m m 

(3.10) 2 2 1 2 
Lm+l = Lm+ 4Dm• 

Considering these relations as recurrent, from Eqs. (3.9) and (3.10) at m--+ oo one can 
derive the expressions for the maximum value of the intermittency coefficient I'm = 

= Dm/2Lm. In particular, Eq. (3.9) yields [16] 

(3.11) Yoo = nexp[ -4nE(A00)], 

whereas from Eq. (3.10) 

(3.12) Yoo = )13. 
The formulae (3.11) and (3.12) yield a satisfactory agreement with experimental data 
[17] in the limits of their errors. The schematic model [14, 16] reflects correctly the physical 
effects observed in the experiments: the evolution by pairwise merging with energy transfer 
from small eddies to larger ones; the supposed in viscid character of the interaction mech­
anism, the universal nature and symmetry of CS. All this stimulated our investigations 
connected with the physical noncontradictority of the given model and its application to 
other flows. 

3.1 

It is easy to show that statistically equilibrium distributions (3.4) provide the conditional 
extremum (maximum) of the entropy (3.8) at the given integrals (3.5) and (3.6). 

When the external field is absent, a row of blobs with F(A.) distributions can be con­
sidered as a closed statistical system, the informational entropy of which must increase 
(not decrease). But there exist facts which make it nonobvious. In the process of transition 
to the self-similar regime, the energy of separate structures increases monotonously. Accord­
ing to the estimates [14, 16], at a certain step the vorticity distributions in eddies pass 
over to the negative temperature domain where the growth of energy is accompanied by 
the decreasing of entropy S(A.) of separate structures (see Fig. 1, b). The merging process 
itself outwardly looks as a certain regularization. It gives an idea that during such a process 
the entropy as a measure of "chaos" must decrease. 

The most critical situation with respect to the sign of the entropy changing is the case 
of a strong coupled row where, when merging, the vortices practically move without 
any deviation from the median. At that, apart from the energy conservation law (3.9), 

the angular momentum conservation law (3.10) is also satisfied. Because of the universal 
character of the formula (3.8), the entropy of a vortex blobs row on them step is represented 
as 

(3.13) 

where J<m>(n) is a dimensionless function of a vortex distribution in a system of blobs 
on the whole, L 2 characterizes its full angular momentum. From definition of the model 
it follows that 
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2Nm 

]<"'>(r) = 2~ }; p<m>(r)z(r,}, 
"' I= 1 

JX"'>(r) is an equilibrium d.f. on the m step in a separate vortex, z(r1) is a characteristic 
function of the domain occupied by the i-vortex. Taking this into account and changing 
the dimensionless variables in Eq. (3.13}, one can obtain 

S,. == - J d1JF<"'>(1J)1nF<"'>(lJ)+ln2N,.L~ = S(lm)+ ln2N,.L~ - . 

From this 

(3.14) 

While merging, the intermittency parameter monotonously increases and at m -+ oo 
y,. -+ Yoo (see Eq. (3.12)). In this limit the structures pass over to large negative tempera­
ture domain [14, 16] llml -+ llool ~ 1, and their energy tends to a limit value of E(Aoo)• 
In this region the asymptotical relation for the entropy 

(3.15) S(Am) = 1 +lnn-8nE(Am) 

is valid [15] (see the dotted line in Fig. 1b). Equations (3.14), (3.15) and (3.10) yield 

limLIS,. = lim In 
2
1 (1 + 

4
1 ,~) = ln2, 

m--ooo m-+oo 

that is, asymptotically the evolution in the row proceeds along with the growth of the 
entropy, and the given model is correct with respect to the nondecreasing information 
entropy law in closed statistical systems. 

3.2e> 
An essential property of CS is their stability with respect to a small scale turbulence 

background and their collective interaction. 
In this connection the vorticity distributions used for the modeling of CS and, in 

particular, the distributions (3.4) must possess a certain reserve of a hydrodynamic stability. 
Therefore the stability of statistically equilibrium vortex distributions with respect to 
two-dimensional inviscid disturbances was studied. 

The stream function of disturbances was considered in the form 

1J'('YJ, ex, t) = Retp{'Y})exp[i(mcx-wt)]. 

The linearization of Euler equations of an incompressible fluid with respect to a plane 
nondisturbed flow with vortex distribution (3.4)-(3.6) yields the following equation for 
the amplitude disturbance function: 

(3.16) 

( 1) These results have been obtained jointly with A. G. Melnikov. 

http://rcin.org.pl



MODELING OF TURBULENCE BY ENSEMBLES OF VORTICES WITH INVISCID INTERACTION 

Here ~ = wfm, 

As boundary conditions we had 

(3.11) 

'1 

V(17) = ~ J dssF(s). 
1} 0 

tp(O) = 0, 

287 

The flow will be stable in a linear approximation at Im ~ ~ 0. The problem (3.16), (3.17) 
is analogous to the Rayleigh spectral problem [18] under the axial symmetry of the flow. 

From Eq. (3.16), using ordinary transformations for spectral problems, one can obtain 

(3.18) dW I l! F~ 12 
d1J = m~ IV-~)12 IV' ' 

where W(1J) is the real function in the form of 

W( 1J) = _!__ 1J ( dtp tp* _ dtp* 'I'). 
2 d1J d1J 

The asterisk denotes the complexly conjugated value. From the boundary conditions 
(3.17) it follows: 

W(O) = 0, W(17)--. 0. 
f'J-+00 

Thereat the integration of Eq. (3.18) )'ields 
00 

Im~ J d1J IV~~~I 2 1'1'1 2 
= 0. 

0 

The latter will be true if the derivative of the vortex profile changes the sign in the flow 
region. Otherwise Im~ = 0 and the flow is neutrally stable. The differentiation of Eq. 
(3.4) and the transformation of the right-hand side of the integral yields 

'l 

F~(rJ) = F(rJ) [-2rJ(I +A)+ s;A f dssF(s)]. 

Since the function F(1J) is nonnegative, then for -1 < ). < 0 F~ ~ 0. Thus the negative 
temperature vortex distributions used in the given model are linearly stable with respect 
to two-dimensional inviscid disturbances. For positive ). the stability with respect to such 
disturbances was obtained only for asymptotics as ). --. 0 and ). --. oo. 

4. The vortex model of coherent structures in free rotating annular shear layers and 
MHD-ftows 

In this section the model [14] is generalized for application to the study of CS in circular 
shear layers and MHO-flows with coaxial streamlines and axial magnetic field. In such 
a flow after developing the Kelvin-Helmholtz instability the coaxial CS rows are formed. 
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Thereat the number of CS depends on the regime parameters. CS behaviour in axial 
symmetrical shear layer is of interest in problems of zonal atmosphere circulation and 
their laboratory model. MHO-flows of such a type (the Lenhert flows [19-21]) have also 
certain applications. 

4.1 

Peculiarities of scheme [14] application to the flows of this type can be considered 
on the basis of a circular vortex blobs row. 

As an initial flow where Kelvin-Helmholtz instability is developed, one can consider 
an axial symmetrical discontinuity jump of the azimuthal velocity on the radius R0 corres­
ponding to the vortex distribution 

w(r) = F0 ~(r-R0), 

F0 is a circulation. Thereat a total flow energy in the initial state can be represented as 

(4.1) e0 = - }7t J J dr1 dr2w(r1 )w(r2)lnlr1 -r2l = - ~! lnRo. 

As an intermediate state of number m entering the conservation laws (3.1)-(3.3) N, vortex 
blobs of equal circulation r, located uniformly on the circumference of radius R, is 
considered. The energy of blobs interaction in a circular row can be put down as 

r.2 N,n"'-• ( ~<n ) r.2 N:2 r.2 Rm 
(4.2) U, = - 4; N,.ln k ... t 2R,.sin N, = - ;n "'lnR,.+ 4; N,.ln N,. 

It was assumed that the blob appearing after a pairwise merging is set out in the centre 
of the chord tightening the centres of merging blobs. In this case the row radius of the 
intermediate state is expressed as 

(4.3) R,. = R.,_, cos N:_, = Rosin :: .. /[ 2"sin 2:N .. ]. 
Taking Eq. (4.2) into account there follow from Eqs. (3.1)-(3.3) the relations correspond­
ing to Eqs. (3.9)-(3.10): 

(4.4) 

(4.5) 

2E(A,+1) = E().,)+ 4~ N.,_,ln \' +;,.In [ L..~iL, (~· )l 
R~+ 1 +L,;+ 1 = R~+L~. 

From this, considering Eq. (4.3), at m -+ oo there follows the expression for the intermittency 
coefficient in the annular CS row: 

nR«~ (sinn/N«~ )N«~ 
(4.6) I'«~ = N«~L«~ = nexp [ -4nE(A.«~)] -n/N«~ , 

(4.7) 

It is obvious from Eqs. ( 4.6) and ( 4. 7) that in this case the axial geometry influence is 
considerable at comparatively small N«~ < 10. At N00 -+ oo these formulae pass over 
to Eqs. (3.11) and (3.12). The asymptotical limit is practically achieved at N«~ tow 15~ 
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For the Lenhert type flows two coaxial rows of CS were considered as a zero approxima­
tion. As an initial flow two concentric azimuthal velocity discontinuity jumps were con­
sidered. But the formulae obtained lacked a link with the magnetic field, and on their 
basis it has been impossible to obtain correlating relations for the experimental data 
[20, 21]. 

4.2 

It is rather easy to achieve necessary improvement of the model if we confine ourselves 
to a strong magnetic field approximation. 

To be more concrete, the experiments [20, 21] are considered below. Under these 
conditions [21] the following picture of the flow is to be seen in the regime before the 
development of instability (see Fig. 2). In a rotating layer above the electrodes with mean 

FIG. 2. 

radii T0 , R0 , a plane potential flow is formed limited by shear layers centered with respect 
to the radii To, R0 • At that the azimuthal velocity profile can be represented, like [22], 
as follows: 

{

K/2T0 (1 +C/>(xfd)), x = T-T0 , 

V0 = K/T, r 0 +d < r < R0 -d, 
K/2r0 ((l-C/>(xfd)) X= r-R0 • 

(4.8) 

Here <5 = 2hjyHah is an effective semiwidth of a shear layer, determined by the layer 

height h in the axial direction and by the Hartman number Ha. = Bh V:, K is a certain 

dimensional constant, C/>(x) is a probability integral, B is a magnetic induction, G is an 
electrical conductivity, p, is a dynamic viscosity coefficient. 

Generally speaking, one needs not consider intermediate states of a row as it was done 
above. It was supposed that conservation laws of energy and vorticity of each sign are 
satisfied for the whole sequence of stationary (bifurcational) states dependent on the value 
B, including the regime before the loss of stability. In addition it was assumed that the 
instability having been developed, the total vorticity of the given sign is uniformly distribu­
ted among the vortices of the corresponding row. 
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For steady regimes at Ha11 > 103, when the number of blobs in rows is relatively large 
[20], the ideas of symmetry permit to apply the conservation laws for the vortex component 
of each sign separately. Below the relations obtained for the outer shear layer are given. 
The vorticity energy of the outer shear layer (vortex row) is the sum of the internal energy 
and the energy in the velocity field induced by the inner shear layer row. The conservation 
law looks as follows: 

(4.9) 

To obtain the expressions in explicit form, the left hand side integrals (4.9) were calcu­
lated with an accuracy up to the terms of the first order with respect to the parameter 
~/R0 • The self energy of the outer layer e0 in the approximation required equals to 

(4.10) e0 = - (N'4~",» ( lnRo+ Jt'~n ~~)· 
The term V0 equals 

(4.11) 

In the formulae (4.10) and (4.11) the dimension factor N«JFoo allowing for the conserva­
tion of a total vorticity in the layer was separated. The terms proportional to In R0 corres­
pond to the passage from the shear layer of the finite thickness to the tangential discon­
tinuity jump of the azimuthal velocity (see Eq. ( 4.1) ). In the final state of the row consisting 
of N «J vortices equally located on the circumference of the radius Rex) it can be put down 
as: 

(4.12) 

where, as formerly, Boo is the energy of a separate vortex, U00 is the total energy of their 
interaction. The latter equals to (see Eq. (4.2)). 

(4.13) 

In this case the energy of interaction between inner and outer vortex rows is 

(4.14) V oo = (2n)- 1(N oor 00)
2lnRCXJ. 

Substitution of the expressions (4.10)-(4.14) into Eq. (4.9) yields 

(4.15) exp(}i2n/A.)A.(R00 /R0)Noo+ 1 = 2nexp( -4nE00 ). 

Here the value J = lu1 -u2 1/loufoxlmax is taken as a scaling length; u1 , u2 are asymptotical 
velocity values on the boundaries of the shear layer. For the chosen profile (4.8) b = <5 V n. 
The value A. = 2nR0 /(N00 6) has the meaning of the nondimensional wavelength of the 
Kelvin-Helmholtz mode (compare with the definition in Eq. (4.6)), the development 
of which leads to a stationary state with N00 vortices in the outer row. The dimensionless 
·energy of a separate vortex £ 00 is determined by the expression 

~ = F~(E00 -(4n)-IInJ). 
On the basis of the MHD-flow analysis in a separate CS, it was shown that ECX) is indepen­
dent of the regime parameters, in particular, of the magnetic field value B, and is universal; 
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this corresponds to the ideas about the nature of CS in a plane case [17]. Proving this 
exceeds the frameworks of the present paper. 

Using Eq. (4.15), one can evaluate the energy of large scale turbulent fluctuations, 
the intermittency coefficient, the number of CS in the row depending on the magnetic 
field value, etc. In particular, if we assume that in accordance with the data [21] R0 ~ Reo, 
because of the universal character of Eco, Eq. ( 4.15) yields 

(4.16) N00/~B = const. 

Table 1 
-- --

B,T 0.37 0.555 0.74 1.11 1.43 1.51 
/, Hertz 0.45 0.58 0.73 0.85 0.95 1.00 
f/fmu 0.45 0.58 0.73 0.85 0.95 1.00 

YB/Bmu 0.495 0.60 0.705 0.855 0.94 1.00 

The Table 1 presents the comparison of this conclusion and the experimental data [21]. 
Here, instead of the relation of the vortices numbers, the frequency relations proportional 
to it directly measured in experiments are taken. The greatest deviation does not exceed 
10% and lies in the region of comparatively small values of B where the asymptotical 
approximation used grows worse. 

Comparing the results of Sects. 4.1 and 4.2, one can see that the account of the 
finite thickness of a shear layer can lead to qualitatively different results than when modeling 
it by a tangential velocity discontinuity jump. In particular, such an approach to CSs 
in an ordinary shear layer will probably require another class of statistically equilibrium 
distributions [23, 24] constructed on the Fermi type statistics. 

When selecting the results, the authors aimed at emphasizing the important role of the 
intrinsic structures of vortices while modeling different aspects of turbulence. 
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