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Large-angle cone-shaped bodies in supersonic three-dimensional
stream(*)

P.1. CHUSHKIN (MOSCOW)

THE NUMERICAL investigation of three-dimensional flow about large-angle cone-shaped bodies
at an angle of attack in supersonic free stream of gas is carried out. The bodies have a finite
length, a small bluntness at the apex and an angle exceeding the limiting one. The mixed flow
behind the detached shock wave is calculated by the method of integral relations using the
special variables which are consistent with the flow behaviour near the body apex. The influence
of the free stream parameters and the body geometry is studied. Both cones and cone-shaped
concave noses are considered.

Przeprowadzono obliczenia numeryczne dotyczace tréjwymiarowego oplywu szerokokato-
wych cial stozkowych pod katem natarcia w ponaddZwigkowym strumieniu swobodnym gazu.
Ciala maja skoficzona dlugoé¢ i wierzcholki o zatepieniu przekraczajacym warto$¢ graniczna.
Przeplyw za oderwang fala uderzeniowg analizuje si¢ za pomoca zwiazkdw catkowych, stosujac
specjalne zmienne zgodnie z charakterem przeplywu w poblizu wierzcholka. Zbadano wplyw
parametréw strumienia swobodnego i geometrii ciala. Rozwazono zaréwno przypadki stozkéw
jak réowniez wklestych dysz stozkowych.

TIpOBOAATCS YMCIIEHHOE HCCIIEJOBAHME TPEXMEPHOTO 00TeKaHMs KOHYCOBHAHBIX TeJI C GOIbIMM
YIJIOM PAacTBOPA, PACHOJIOMEHHBIX IOJ YIJIOM 4TAKH B CBEPX3BYKOBOM IIOTOKe rasa, Tena
MMEIOT KOHEUHYIO JUIMHY, MaJioe 3aTYIUIeHHe Y BEepPUIMHBI H YTOJ1 PacTBOPa, NpeBhIHAIONHik
npefensHblii. CMemlaHHOe TeueHMe 3a OTOLIEALIeNH YIapHONK BOIHOM PACCUNTHIBAETCA METOJIOM
HHTEI'PATBHLIX COOTHOIIEHHH B CIIENNAIbHBIX TEPEMEHHBIX, YIUTHIBAIONINX NOBEASHUE TEUeHHA
y Beplunbl Tena. Mayueno BIMaHMe mapaMeTpoB HEBO3MYILEHHOTO MOTOKA U T€OMETPHH TeJa.
PaccmoTpeHBI KaK KOHYCBI, TAK ¥ KOHYCOBHUJIHEIE BOTHYTHIE HOCOBBIE UACTH.

1. Introduction

WE CONSIDER cone-shaped bodies having a semi-angle greater than its limiting value and
located in a supersonic free stream of an ideal gas at an angle of attack. In this case, even
if the body apex has a small bluntness, an arising detached shock wave is mainly determined
by the body sides rather than by the bluntness. The mixed subsonic-supersonic rotational
flow about the body, which is essentially three-dimensional in the case under consideration,
can be calculated with the help of numerical methods only. An analogous situation takes
place for an arbitrary pointed body with a sufficiently large apex semi-angle.

Computations of flows about cones with large apex angles and large bluntnesses have
been successfully carried out by a number of authors who used different numerical tech-
niques such as the finite-difference method, the net-characteristics method, the method of
lines. Information on works of this kind can be found in the survey by VOSKRESENSKY
and CHUSHKIN [1].

(*) Paper given at XVI Symposium on Advanced Problems and Methods in Fluid Mechanics, Spata,
4-10 September, 1983.
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But let us take a different case. If a large-angle conical body has a sharp apex or a small
apex bluntness (with a curvature radius smaller than 1% of the body length), serious
computational difficulties occur. The fact is that the tip is a singular point with any stan-
dard coordinates and here derivatives of gasdynamical functions are infinite (even in the
case of zero angle of attack), while near a small bluntness they are limited but very great.
The situation becomes more complicated for three-dimensional flows.

Owing to these difficulties, only few works devoted to computations of three-dimen-
sional flows about pointed nose parts of bodies with detached shock wave have been
published. For this case IvANovA and RADVOGIN [2, 3] adapted the well-known finite-
-difference method proposed by BABENKO and VOSKRESENSKY [4], but these authors con-
fined themselves only to small angles of attack. KOVENYA, TARNAVSKII and YANENKO [5]
developed a technique of splitting up by which a flow about a pointed body at small angle
of attack was calculated as an example, but here the body tip was not strictly treated
and was actually cut off. The laborious unsteady three-dimensional methods were used
in these two papers, and the time-asymptotic solutions were computed.

The simple and reasonable solution of the problem under consideration was calculated
using the method of integral relations proposed by DoropnicyN [6]. Having introduced
some special coordinates which take into account the singularity at the body tip, CHUSH-
KIN [7] for the first time obtained reliable results by this method for symmetric flows
past sharp cones and wedges with semi-angles within the wide interval from the limiting
values to those exceeding 90°. Later the author extended his approach to the case of the
angle of attack and considered wedges [8] and axisymmetrical cones [9] with small
apex bluntnesses and finite lengths.

In the present paper the author wishes to continue this numerical inyestigation of
three-dimensional flows about large-angle conical bodies with a detached shock wave
at a supersonic free stream velocity. Here some new results are reported for bodies with
a smaller bluntness radius and for flow regimes closer to the limiting ones. Besides, the
generalization of the method to the case of bodies with noncircular (elliptical) cross-section
is described.

2. Governing equations and boundary conditions

Let us to consider flows about cone-shaped bodies located at an angle of attack in
a supersonic free stream with the Mach number M,,. The gas is supposed to be inviscid
non-heatconducting and perfect with the constant specific heat ratio ». The body has
a semi-angle w exceeding its limiting value wy;,, a small apex bluntness and a given finite
length limited by the base with the sonic shoulder.

The spherical system of coordinates r, 0, y is initially taken (Fig. 1), in which » = 0
and y = 7 correspond to the leeward and windward planes, respectively. Owing to the
flow symmetry, the region of interest is bounded by the meridional planes p» = 0 and
w = 7. To take into account the behaviour of flow near the body apex, the new orthogonal
curvilinear coordinates &, n are introduced in each fmeridional plane instead of r, 6 by
the following formulae:
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FiG. 1. Coordinate system.

(2.1) & = cr’sinn(0—w), 7= crcosn(f—w),

where n = n/2(m—w), c is a certain scale factor.

At first we confine ourselves to the case of axisymmetrical bodies where @ (and also ¢)
does not depend on the angle p. The equation & = £,(£, > 0) determines the surface of
the cone-shaped body with the semi-angle « and the apex bluntness having the curvature
radius Ry = (1—n)"1(&o/c)!". If &, = O, there is a sharp cone. This family of bodies
includes cones (w < m/2), a flat-faced cylinder (w = 7/2), bodies with cone-shaped con-
cave noses (w > m/2). The line n = 0 (6 = =) corresponds to the body axis continued
into the shock layer.

As the basic sought functions we take three velocity components #, v, w along the
&, 1, p-directions, respectively, the pressure p and the density g. All these functions are
considered to be dimensionless assuming the critical sound velocity a., and the free
stream density g, as the reference quantities,

The governing system of the problem includes the transformed continuity equation,
the - and y-momentum equations. To improve the computational properties of the
solution in the vicinity of the body apex, these equations are multiplied by »"~2. Carrying
over to the right-hand side all the derivatives with respect to ¢, we represent the equations
in such a divergence form

dtu | dtv d(ou*+p) | douv
2.2) ?4-—3—7{_}), %* ) . "
' douw i dovw T
dE am
where

_ 1=1)
e ["2;1 (1— :+i VZ)] . V2= ul40t 4w,

P, Q, T are the known functions of independent and dependent variables and contain
naturally also the derivatives with respect to .
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The Bernoulli equation is used instead of the # -momentum equation

x+1 x—1 _,
P= 3 (1— x+1 ¥ )9'

The equation of entropy conservation (S = p/o*) on a stream surface closes the governing

system.

The system should be integrated in the region of mixed rotational flow between the
body surface &£ = &, and the detached shock wave & = &,(», ¥) which must be determined
as the result of the solution. The normal velocity vanishes on the body (i.e. # = 0) and
besides the entropy is here supposed to have the maximal value, i.e. the stagnation stream
line AB on the windward plane ¢ = & (Fig. 1) passes across that point of the shock wave
where the shock is normal. The following relation is satisfied at this point:

‘;5111 +(n—D(o—O+w+a= %
The gasdynamical functions immediately behind the shock wave are calculated from the
Rankine-Hugoniot relations. At the corner points of the body base (i.e. on the line CD),
the longitudinal velocity component must have the sonic value, that is v = 1.

It should be noted that some terms in Egs. (2.2) and in the boundary conditions have
indeterminacies at the axis n = 0, which may be simply revealed.

arctg

3. Numerical method

The numerical solution of the problem is carried out by means of the method of in-
tegral relations, using the scheme of BeLorserkovski [10, 11] with polynomial approxi-
mations across the shock layer and trigonometrical approximations with respect to the
meridional angle [12]. Equations (2.2) are integrated with respect to & from the body to
the shock wave on a certain meridional plane » = y; = const. For example, the integral
relation for the first of these equations is derived as follows:

&y &1y

;ﬂ—f WdE—TIJ'U]jdEIJ +leulJ: f Pd&,
o

dn

o

where the values of functions on the body and on the shock wave are denoted by the
first index i = 0 and i = 1, respectively, while the second index j corresponds to the
number of the meridional plane.

In the one-strip approximation, all the integrands in the integral relations are approxi-
mated linearly using their values on the body and on the shock wave. Then, in order
to eliminate the independent variable y, the trigonometrical approximations are carried
out. The meridional planes of interpolation ¢ = y, = jz/2 (j= 0,1, 2) are taken and
the following approximate representations

fi= 5 Uiotfi)+ 5 Yo—fadeosy,

w, = w;,sinp

3.1)
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are assumed for all even functions f; and odd functions w;. Therefore the governing system
(2.2) is reduced to the approximating system of ordinary differential equations with respect
to 7.

It should be noted that the interpolation (3.1) for even functions involves not three,
but only two nodal meridional planes ¥ = 0 and ¢ = 7. Such an approach proposed by
KozrovAa and MinAiLos [13] enables to decrease the number of the equations of the
approximating system and to simplify the solution of the boundary value problem. The
required values of even functions on the plane p = n/2 are found with the help of the
interpolation (3.1).

The equations of the approximating system, which the two first equations (2.2) yield,
are taken on the planes y = 0 and y = z. These equations for different values of y are
interconnected only through the derivatives (dw;/dy); = (1—j)w;; in P and Q (the last
formula follows from the accepted interpolation for w ). Actually, the symmetry conditions
give for the other derivatives (df;/dy); = 0 and for the velocity component w;; = 0 (j =
= 0, 2). As a result we obtain four approximating equations for four sought functions —
the shock wave coordinate &,; and the velocity on the body 2o,

2 -
‘;53’=¢1, By T (j=0,2.

dn) 1-vg;

To calculate the velocity component wy,, we shall not construct a corresponding
integral relation but merely write the y -momentum equation on the body surface for
w = 7/2. The application of the trigonometrical interpolations (3.1) reduces it to the
ordinary differential equation

(3.2)

dwg,
dn

Therefore the approximating system is closed. The concrete form of the system is
presented in the work by CHUSHKIN [9]. The system becomes simpler in the case of two-
-dimensional flow about wedge at an angle of attack due to the absence of Eq. (3.3) and
some terms in @; and ¥,. More simplifications take place in the case of a zero angle of
attack.

The approximating system (3.2)-(3.3) contains some terms with revealed indetermin-
acy at 7 = 0. Moreover, the derivatives dv,,/dn become infinite at the corner points
of the body base C and D, where the velocity vo; reaches the sonic value, i.e. ©o; — 1.
As for sharp bodies, the velocity derivative with respect to # at the tip is infinite for « # 0,
butit is finite for & = 0.

One starts the integration of the approximating system from the axis # = 0, where
in fact only three quantities are unknown, for instance &0, @&,0/d1, ©oo, since here the
following evident relations exist:

=0,

3.3)

o B dto  dés,
Voo = —Vo2 = —Wo1, &10= $12s 777— = d .

Three these unknown quantities are determined as a result of the solution of the bound-
ary-value problem satisfying the sonic velocity condition at two corner points of the
body base C and D (9o = v, = 1) and the condition that the stagnation stream line
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AB passes across the normal shock. The stagnation stream line can be traced by inte-
grating the appropriate differential equation. For the zero angle of attack, the stagnation
point is located at the body apex; thus here the last condition is automatically satisfied
and 90 = df;0/dn = 0 at » = 0. If the body length (that is the position of the body
base) is not given, an arbitrary value £, at # = 0 may be chosen. When the systematical
calculations are carried out, the typical run of time required for the solution of the boun-
dary value problem with three unknown parameters is rather short since, for instance, the
sought parameter £, appears to depend on « very weakly.

4. Some results of computations

The developed method is used for the numerical investigation of flows about axisym-
metrical cone-shaped bodies located in a supersonic free stream at an angle of attack.
The bodies have a finite length, a small apex bluntness and a semi-angle w greater than
its limiting value w);,. The parameters are chosen within the following intervals: w =
= 60°—120°, & = 0.001-0.1, M, = 2—o00, a = 0°—25° the specific heat ratio is
% = 1.4. The accuracy of the calculated solutions was estimated by comparison with
other numerical solutions and experiments only in the case of a zero angle of attack, as
such data at « # 0 were not available for us. It is proved that the accuracy of the predic-
tion is sufficient for the general analysis of shock wave features and body distributions
of gasdynamical functions, though it diminishes for smaller free stream Mach numbers
and larger angles of attack.

)
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P1G. 2. Distributions of longitudinal v and circumferential w velocities along conical body o = 60° for
various angles of attack «, M, = 3.
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Now let us discuss a number of new computational results which supplement the
earlier publication [9]. At first, in Figs. 2-4 we present some numerical data for the flow
about a conical body with w = 60°, £, = 0.01 at the free stream Mach number M, = 3
and various angles of attack. The apex curvature radius of this body is 0.52% of its length.

Figure 2 demonstrates the behaviour of the longitudinal velocity v along the body
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FIG. 3. Pressure distribution along conical body w = 60° for various angles of attack a, M, = 3.
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F1G. 4. Aerodynamical coefficients versus angle of attack a for conical body w = 60°, M, = 3.
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surface. It is given as the function of the relative ordinate y = y/yc, where yc is the distance
of the body corner point C from the axis # = 0. The right and the left parts of the graph
correspond to the leeward (p = 0) and the windward (p = n) sides, respectively. When
the angle of attack increases, the velocity v changes rapidly in the vicinity of the small
bluntness and may exceed the sonic value at very large angles . As it is seen, a small
portion of nonmonotonic variation of  occurs on the leeward side at a # 0. The circum-
ferential velocity w, which is a feature of three-dimensional flows, is plotted by the dashed
line for the body generator y = =/2. This function changes more smoothly.

The corresponding body distribution of the pressure p/p,, (related to the stagnation
pressure p,,) is shown in Fig. 3. When the angle of attack increases and the flow direction
on the leeward side of the body approaches the local limiting angle, the pressure and
velocity distributions are transformed and tend to flatten out in a region behind the blunt-
ness.

The shock wave on the symmetry plane is also drawn in Fig. 2 for the same conical
body at « = 20°. When the angle of attack changes, the shock wave accordingly
rotates, weakly alternating its shape. The stagnation point is removed from the body
apex almost linearly versus o.

The coefficients of tangential force C,, of normal force C, and of longitudinal moment
m, with respect to the axis passing through the body apex and also the ratio K = C,/C;
are plotted versus « in Fig. 4. All the coefficients are referred to the body base area and
m, is additionally referred to the body length. The coefficient C, slightly diminishes with
the increase of «, as the pressure on the leeward side drops larger than it grows on the

P/Pst b
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Fi1G. 5. Pressure distribution along conical body w = 60° for various free stream Mach numbers M,
o« = 10°
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windward side. The dependences C, = C,(a) and m, = m,(«) are almost linear within
the considered interval of c.

Two next graphs illustrate the dependences of some flow properties on-the free stream
Mach number M. Here the data are presented for the same conical body with @ = 60°,
&, = 0.01 at the angle of attack o = 10°. The pressure distribution on the leeward and
windward sides of the body and the form of the shock wave on the symmetry plane of the
flow are shown in Fig. 5. When the free stream Mach number M, grows, pressure gradi-
ents in the vicinity of the bluntness increase strongly and, further, the pressure distribu-
tion on the leeward side tends to flatten out. This is inherent in flow regimes close to
limiting ones.

The shock wave detachment distance A (related to the radius of the base) at the axis
7 = 0, the velocity component , at the front point of the body and the relative ordinate
of the stagnation point y,, = v, /yc are given in Fig. 6 as the functions of the free stream

Mach number M, and velocity 4, = V,/a..
A
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F16. 6. Shock wave detachment distance 4, stagnation point coordinate ¥, and velocity at apex v, versus
M, for conical body & = 60°, « = 10°.

Now we study the influence of the semi-angle w of cone-shaped bodies. Figures 7 and
8 correspond to the bodies with &, = 0.01, located in the free stream at the angle of attack
a = 10° and the Mach number M,, = 3. Here the shock waves on the symmetry plane
and the stagnation stream lines are drawn for the cones w = 60°, 75°, the flat-faced cylin-
der w = 90° and the body with a cone-shaped concave nose w = 105°. The distributions
of the velocity components v and w are also depicted for this family of bodies. It is in-



F1o. 7. Shock waves for conical bodies with various apex semi-angles w, M, = 3, a = 10°.
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FiG. 8. Distributions of longitudinal v and circumferential w velocities along various conical bodies,
Mg =3, a=10°
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FIG. 9. Pressure distribution along conical body w = 75° for various angles of attack «, M, = 4.
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F1G. 10. Drag coefficient for sharp cones (solid line) and wedges (dashed line) for various apex semi-angles
 and free-stream Mach numbers M, « = 0°. Comparison with experiment (dark circle).
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teresting to note that a small region of nonmonotonic variation of v is located on the
leeward side for a convex nose and on the windward side for a concave nose (it is nat-
urally absent for a flat nose).

The pressure distribution for the conical body w = 75°, §, = 0.1 at M, = 4 and
« = 10° is given in Fig. 9. Comparison of this graph with Fig. 3 indicates that the pressure
and, accordingly, the velocity change less abruptly on blunter cones.

Let us present a graph from the work [7]. In Fig. 10 the drag coefficient Cj for sharp
cones (solid line) and wedges (dashed line) is plotted versus the body semi-angle w at
various M, and « = 0°. It is interesting to observe that within the considered interval
of M,,, the drag coefficient of the sharp cone with the semi-angle w tending to the limiting
value ,;,, for a flow regime with a detached shock wave proves to be 11-13%, less than
for a flow regime with an attached conical shock wave at w = ;. This results from the
fact that in the first case higher pressure in the vicinity of the cone tip acts on a small
area, while the main contribution into Cp is due to the drop of pressure to the sonic value
at the corner point of the base (in comparison with the constant pressure on the cone
with @ = o), in the second case). The effect obtained qualitatively remains as « increases
within 10°-20° or « slightly deviates from zero. This effect and also the sufficiently good
accuracy of the numerical results were later confirmed by the experimental data of AMA-
RANTOVA ef al. [14] at M, = 4.03 and « = 0°, shown by black circles in Fig. 10. An
analogous effect is not observed in the calculated flows about wedges.

5. Bodies with elliptical cross-section

Now we discuss the extension of the numerical technique worked out to cone-shaped
bodies with a noncircular, elliptical cross-section in the case, where the free stream velocity
vector is parallel to the symmetry plane of the body. Here, in contradistinction to an
axisymmetrical body, a semi-angle of the body w is not constant, but a given function
of the meridional angle y. As before, the problem is solved using the coordinates £, 5, .
The two first coordinates are defined by the same expression (2.1), but now with @ = w(y)
and n = n(y). The scale factor ¢ is also a function of y which is chosen in accordance
with the shape of the body cross-section and is supposed to satisfy the symmetry con-
ditions dc/dy = 0 at p = 0, x/2, =.

Solving the problem, only three meridional planes v = 0, #/2 and = are considered
where the coordinates £, #, v are orthogonal (though they are not orthogonal at other
arbitrary values of y). Therefore the approximating system for conical bodies with an
elliptical cross-section will differ from the system (3.2)-(3.3) only owing to the fact that
the body semi-angle w and the scale factor ¢ at y = #/2 are other than at = 0 and
Y = 7.

Since the trigonometrical approximations of the type (3.1) only with one or two inter-
polation nodes are employed, it appears reasonable to modify them in order to take into
account better the elliptical shape of the body cross-section. Thus the meridional angle
v in the approximations (3.1) is replaced by the corresponding elliptical variable denoted,
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say, through y. For the ellipse with a relative thickness ¢, the variables y and y are connected
by the easy relation

tgx = ttgy.

A higher accuracy of solution for conical bodies with an elliptical cross-section may
be obtained if one adds another interpolation node on the plane y = x/2 and an appro-
priate term in the first interpolation polynomial (3.1). Then, operating with two first
equations of the system (2.1), two new integral relations are written for this meridional
plane, which are reduced to two additional approximating equations of view (3.2) for
&,, and vy;. The fourth unknown quantity — the value of the shock wave derivative
d&,,/dn appears in the boundary conditions at » = 0. To specify this quantity, one must
use the condition of regularity at the singular point arisen in the equation for 7,, in the
transonic region.

Recently we have performed some test calculations of three-dimensional flows about
conical bodies with elliptical cross-section. The flow regime with a detached shock wave
was studied. A computed example is presented in Fig. 11 where the bodies with various

vw |

‘clw

Fic. 11. Velocity distribution along conical bodies with elliptical cross-section and various relative thick-
nesses 7, M = 4, a = 10°

relative thicknesses ¢ are considered. The bodies have the same finite length, the small
spherical apex bluntness (£, = 0.01), the same semi-angle w = 75° at y =0 and y = =
and the different corresponding semi-angle w, = arctg(¢~'tgw) at y = x/2. The results
are given for the free stream Mach number M, = 4, the angle of attack « = 10° and the
specific heat ratio » = 1.4. The distributions of the longitudinal velocity v on the body
leeward and windward sides and of the circumferential velocity w at y = 7/2 are plotted
in the graph.
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Concluding, it should be remarked that the developed numerical technique may be
simply extended to the case of a real gas with high temperature equilibrium physical-
-chemical processes.
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