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Large-angle cone-shaped bodies in supersonic three-dimensional 
stream(*) 

P. I. CHUSHKIN (MOSCOW) 

THE NUMERICAL investigation of three-dimensional flow about large-angle cone-shaped bodies 
at an angle of attack in supersonic free stream of gas is carried out. The bodies have a finite 
length, a small bluntness at the apex and an angle exceeding the limiting one. The mixed flow 
behind the detached shock wave is calculated by the method of integral relations using the 
special variables which are consistent with the flow behaviour near the body apex. The influence 
of the free stream parameters and the body geometry is studied. Both cones and cone-shaped 
concave noses are considered. 

Przeprowadzono obliczenia numeryczne dotyc7J~ce tr6jwymiarowego oplywu szerokola\to­
wych cial stoZkowych pod k~tem natarcia w ponaddfwi~kowym strumieniu swobodnym gazu. 
Ciala maj~ skonczon~ dlugosc i wierzcholki o zat~pieniu przekraczaj~cym wartoAC granicznll. 
Pneplyw za oderwanll falll uderzeniowll analizuje si~ za pom~ zwi~k6w calkowych, stosuj~c 
specjalne zmienne zgodnie z charakterem przeplywu w pobliiu wierzcholka. Zbadano wplyw 
parametr6w strumienia swobodnego i geometrii ciala. Rozwarono zar6wno przypadki stoik6w 
jak r6wniez wkle(slych dysz stoikowych. 

llpoao,zurrcs~ 'tDICJieHHoe uccne,noaaHHe TPeXMepHoro o6Tel<aHHJJ :KOHYCOB~ TeJI c 6oJILIJ:IWl 
yrnoM paCTaopa, pacuono>KeHHbiX no.n yrnoM aT81<H B csepX3BY:KOBOM nOTo:Ke raaa. Tena 
HMeiDT :KOHelDiyJO .zvnmy, Manoe 3aT}'IIJieHHe y aepWHHhl u yron paCTaopa, npeBbmiaiOnndi 
npe,nem.HbiH. CMemaHHoe Te'lleHHe 3a oTome,nweii: y,napHoit BOJIHoA pacC'liHThiBaeTcs MeTO,nOA\ 
mrrerpam.HbiX cooTHomemm B cueuHaJILHbiX nepeMeHHbiX, Y'tDfThiBaJOIIUIX uose,neHHe Te1.1emm 
y aepliiHHhl Tena. M3yqeHo BJIWIHHe napaMeTPOB HeBo3MymeHHoro noro:Ka H reoMeTPHH TCJia. 
PaCCMOTpeHbi :Ka:K :KOHyChl, Ta:K H :KOHYCOBH,nHbie BOrHyTble HOCOBhle 'llaCTH. 

t. Introduction 

WE CONSIDER cone-shaped bodies having a semi-angle greater than its limiting value and 
located in a supersonic free stream of an ideal gas at an angle of attack. In this case, even 
if the body apex has a small bluntness, an arising detached shock wave is mainly determined 
by the body sides rather than by the bluntness. The mixed subsonic-supersonic rotational 
ftow about the body, which is essentially three-dimensional in the case under consideration, 
can be calculated with the help of numerical methods only. An analogous situation takes 
place for an arbitrary pointed body with a sufficiently large apex semi-angle. 

Computations of flows about cones with large apex angles and large bluntnesses have 
been successfully carried out by a number of authors who used different numerical tech­
niques such as the finite-difference method, the net-characteristics method, the method of 
lines. Information on works of this kind can be found in the survey by VosKRESENSKY 

and CHUSHKIN' [1]. 

(*) Paper given at XVI Symposium on Advanced Problems and Methods in Fluid Mechanics, Spala, 
4-10 September, 1983. 
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220 P. I. CHusHKIN 

But let us take a different case. If a large-angle conical body has a sharp apex or a small 
apex bluntness (with a curvature radius sm8.ller than 1% of the body length), serious 
computational difficulties occur. The fact is that the tip is a singular point with any stan­
dard coordinates and here derivatives of gasdynamical functions are infinite (even in the 
case of zero angle of attack), while near a small bluntness they are limited but very great. 
The situation becomes more complicated for three-dimensional flows. 

Owing to these difficulties, only few works devoted to computations of three-dimen­
sional flows about pointed nose parts of bodies with detached shock wave have been 
published. For this case IVAN'OVA and RAnvoGIN' [2, 3] adapted the well-known finite­
-difference method proposed by BABBNKO and VosKRESENSKY [4], but these authors con­
fined themselves only to small angles of attack. KoVBNYA, TARN'AVSKn andY AN'EN'KO [5] 
developed a technique of splitting up by which a flow about a pointed body at small angle 
of attack was calculated as an example, but here the body tip was not strictly treated 
and was actually cut off. The laborious unsteady three-dimensional methods were used 
in these two papers, and the time-asymptotic solutions were computed. 

The simple and reasonable solution of the problem under consideration was calculated 
using the method of integral relations proposed by DORODNICYN' [6]. Having introduced 
some special coordinates which take into account the singularity at the body tip, CRUSH­

ION' [7] for the first time obtained reliable results by this method for symmetric flows 
past sharp cones and wedges with semi-angles within the wide interval from the limiting 
values to those exceeding 90°. Later the author extended his approach to the case of the 
angle of attack and considered wedges [8] and axisymmetrical cones [9] with small 
apex bluntnesses and finite lengths. 

In the present paper the author wishes to continue this numerical inrestigation of 
three-dimensional flows about large-angle conical bodies with a detached sb..ock wave 
at a supersonic free stream velocity. Here some new results are reported for bodies with 
a smaller bluntness radius and for flow regimes closer to the limiting ones. Besides, the 
generalization of the method to the case of bodies with noncircular (elliptical) cross-section 
is described. 

2. Governing equations and boundary conditions 

Let us to consider flows about cone-shaped bodies located at an angle of attack in 
a supersonic free stream with the Mach number Moo. The gas is supposed to be in viscid 
non-heatconducting and perfect with the constant specific heat ratio "'· The body has 
a semi-angle w exceeding its limiting value w 11m, a small apex bluntness and a given finite 
length limited by the base with the sonic shoulder. 

The spherical system of coordinates r, (), "P is initially taken (Fig. 1), in which "P = 0 
and "P = n correspond to the leeward and windward planes, respectively. Owing to the 
flow symmetry, the region of interest is bounded by the meridional planes "P = 0 and 
"P = n. To take into account the behaviour of flow near the body apex, the new orthogonal 
curvilinear coordinates e' TJ are introduced in each :meridional plane instead of r, () by 
the following formulae: 
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FIG. 1. Coordinate system. 

(2.1) ~ = cr"sinn(O-ro), 'YJ = cr"cosn(O-ro), 

where n = n/2(n-ro), cis a certain scale factor. 
At first we confine ourselves to the case of axisymmetrical bodies where ro (and also c) 

does not depend on the angle tp. The equation e = eo(eo > 0) determines the surface of 
the cone-shaped body with the semi-angle ro and the apex bluntness having the curvature 
radius R 0 = (1-n)-1(e0/c)11". If eo = 0, there is a sharp cone. This family of bodies 
includes cones (ro < n/2), a fiat-faced cylinder (ro = n/2), bodies with cone-shaped con­
cave noses (ro > n/2). The line 'YJ = 0 (0 = n) corresponds to the body axis continued 
into the shock layer. 

As the basic sought functions we take three velocity components u, '0, w along the 
e' 'YJ' 1p-directions, respectively, the pressure p and the density l!· All these functions are 
considered to be dimensionless assuming the critical sound velocity acr and the free 
stream density eoo as the reference quantities. 

The governing system of the problem includes the transformed continuity equation, 
the E- and tp-momentum equations. To improve the computational properties of the 
solution in the vicinity of the body apex, these equations are multiplied by r"- 2 • Carrying 
over to the right-hand side all the derivatives with respect to 1p, we represent the equations 
in such a divergence form 

OTU OTV - p 
ar+~- , 

(2.2) 

o(eu 2 + p) + O(!UV = Q 
ae · a'YJ ' 

O(!UW O(!VW - T ---w- + at} - ' 
where 

[ 
x+ 1 ( x-1 2)]1/(K-1) 

T= -- 1- - -V ' 
2x x+ 1 

P, Q, T are the known functions of independent and dependent variables and contain 
naturally also the derivatives with respect to tp. 
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The Bernoulli equation is used instead of the YJ -momentum equation 

p = "2:
1 (t- ::: v•)e. 

The equation of entropy conservation (S = pfe") on a stream surface closes the governing 
system. 

The system should be integrated in the region of mixed rotational flow between the 
body surface~= ~0 and the detached shock wave~= ~1 (YJ, VJ) which must be determined 
as the result of the solution. The normal velocity vanishes on the body (i.e. u = 0) and 
besides the entropy is here supposed to have the maximal value, i.e. the stagnation stream 
line AB on the windward plane 'P = n (Fig. 1) passes across that point of the shock wave 
where the shock is normal. The following relation is satisfied at this point: 

d~1 ~ 
arctgdf/ +(n-l)(ro-8)+ro+!X = 2· 

The gasdynamical functions immediately behind the shock wave are calculated from the 
Rankine-Hugoniot relations. At the corner points of the body base (i.e. on the line CD), 
the longitudinal velocity component must have the sonic value, that is fJ = 1. 

It should be noted that some terms in Eqs. (2.2) and in the boundary conditions have 
indeterminacies at the axis YJ = 0, which may be simply revealed. 

3. Numerical method 

The numerical solution of the problem is carried out by means of the method of in­
tegral relations, using the scheme of BELOTSERKOVSKD [1 0, 11] with polynomial approxi­
mations across the shock layer and trigonometrical approximations with respect to the 
meridional angle [12]. Equations (2.2) are integrated with respect to ~ from the body to 
the shock wave on a certain meridional plane 'I'= 'I'J = const. For example, the integral 
relation for the first of these equations is derived as follows: 

where the values of functions on the body and on the shock wave are denoted by the 
first index i = 0 and i = 1, respectively, while the second index j corresponds to the 
number of the meridional plane. 

In the one-strip approximation, all the integrands in the integral relations are approxi­
mated linearly using their values on the body and on the shock wave. Then, in order 
to eliminate the independent variable tp, the trigonometrical approximations are carried 
out. The meridional planes of interpolation "P = 'PJ = jn/2 (j = 0, 1, 2) are taken and 
the following approximate representations 

1 1 
f, = 2(/,o+/12)+ 2(f,o-f,2)costp, 

(3.1) 
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are assumed for all even functionsfi and odd functions wi. Therefore the governing system 

(2.2) is reduced to the approximating system of ordinary differential equations with respect 

to 'YJ· 
It should be noted that the interpolation (3.1) for even functions involves not three, 

but only two nodal meridional planes "P = 0 and 1p = n. Such an approach proposed by 

KozLOVA and MIN'AILOS [13] enables to decrease the number of the equations of the 

approximating system and to simplify the solution of the boundary value problem. The 

required values of even functions on the plane "P = n/2 are found with the help of the 

interpolation (3.1 ). 
The equations of the approximating system, which the two first equations (2.2) yield, 

are taken on the planes "P = 0 and "P = n. These equations for different values of "P are 

interconnected only through the derivatives (owdi3'rp)1 = (1-j)wil in P and Q (the last 

formula follows from the accepted interpolation for w ). Actually, the symmetry conditions 

give for the other derivatives (ofifo"P)1 = 0 and for the velocity component w;1 = 0 (j = 

= 0, 2). As a result we obtain four approximating equations for four sought functions­

the shock wave coordinate ~ u and the velocity on the body v0 i 

(3.2) (j = 0, 2). 

To calculate the velocity component w01 , we shall not construct a corresponding 

integral relation but merely write the "P -momentum equation on the body surface for 

"P = n/2. The application of the trigonometrical interpolations (3.1) reduces it to the 

ordinary differential equation 

(3.3) 

Therefore the approximating system is closed. The concrete form of the system is 

presented in the work by CHUSHKIN [9]. The system becomes simpler in the case of two­

-dimensional flow about wedge at an angle of attack due to the absence of Eq. (3.3) and 

some terms in (/>1 and 'P1 • More simplifications take place in the case of a zero angle of 

attack. 
The approximating system (3.2)-(3.3) contains some terms with revealed indetermin­

acy at 'YJ = 0. Moreover, the derivatives dv01 /d'Y] become infinite at the corner points 

of the body base C and D, where the velocity v01 reaches the sonic value, i.e. v01 --+ 1. 

As for sharp bodies, the velocity derivative with respect to 'YJ at the tip is infinite for ex :1= 0, 

but it is finite for ex = 0. 
One starts the integration of the approximating system from the axis 'YJ = 0, where 

in fact onJy three quantities are unknown, for instance ~10 , d~10/d'YJ, v00 , since here the 

following evident relations exist: 

Voo = -Vo2 = -Wo1' ~10 = ~12, 

Three these unknown quantities are determined as a result of the solution of the bound­

ary-value problem satisfying the sonic velocity condition at two corner points of the 

body base C and D (v00 = v02 = 1) and the condition that the stagnation stream line 
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AB passes across the normal shock. The stagnation stream line can be traced by inte­
grating the ·appropriate differential equation. For the zero angle of attack, the stagnation 
point is located at the body apex; thus here the last condition is automatically satisfied 
and Voo = detofd'YJ = 0 at 'YJ = 0. If the body length (that is the position of the body 
base) is not given, an arbitrary value e1 o at 'YJ = 0 may be chosen. When the systematical 
calculations are carried out, the typical run of time required for the solution of the boun­
dary value problem with three unknown parameters is rather short since, for instance, the 
sought parameter elo appears" to depend on oc very weakly. 

4. Some results of computations 

'f4.e developed method is used for the numerical investigation of flows about axisym­
metrical cone-shaped bodies located in a supersonic free stream at an angle of attack. 
The bodies have a finite length, a small apex bluntness and a semi-angle w greater than 
its limiting value Wum. The parameters are chosen within the following intervals: w = 
= 60°-120°, Eo= 0.001-0.1, Moo= 2-oo, oc = 0°-25°, the specific heat ratio is 
" = 1.4. The accuracy of the calculated solutions was estimated by comparison with 
other numerical solutions and experiments only in the case of a zero angle of attack, as 
such data at oc :1: 0 were not available for us. It is proved that the accuracy of the predic­
tion is sufficient for the general analysis of shock wave features and body distributions 
of gasdynamical functions, though it diminishes for smaller free stream Mach numbers 
and larger angles of attack. 

v,w 

Pro. 2. Distributions of longitudinal v and circumferential w velocities along conical body w = 60° for 
various angles of attack <X, M 00 = 3. 
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Now let us discuss a number of new computational results which supplement the 
earlier publication [9]. At first, in Figs. 2-4 we present some numerical data for the flow 
about a conical body with w = 60°, ~0 = 0.01 at the free stream Mach number Moo = 3 
and various angles of attack. The apex curvature radius of this body is 0.52% of its length. 

Figure 2 demonstrates the behaviour of the longitudinal velocity v along the body 

P/Pst 

-1 0 1 

FIG. 3. Pressure distribution along conical body w = 60° for various angles of attack a, MaJ = 3. 

!en, 0.1mz, K 
0.1 

D 10 

Ct 

20 ao 

FIG. 4. Aerodynamical coefficients versus angle of attack a for conical body w = 60°, MaJ = 3. 
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surface. It is given as the function of the relative ordinate y = y lYe, where Yc is the distance 

of the body comer point C from the axis 1J = 0. The right and the left parts of the graph 

correspond to the leeward (tp = 0) and the windward (tp = n) sides, respectively. When 

the angle of attack increases, the velocity v changes rapidly in the vicinity of the small 

bluntness and may exceed the sonic value at very large angles IX. As it is seen, a small 

portion of nonmonotonic variation of v occurs on the leeward side at IX =/: 0. The circum­

ferential velocity w, which is a feature of three-dimensional flows, is plotted by the dashed 

line for the body generator V' = n/2. This function changes more smoothly. 

The corresponding body distribution of the pressure pfp,, (related to the stagnation 

pressure p,,) is shown in Fig. 3. When the angle of attack increases and the flow direction 

on the leeward side of the body approaches the local limiting angle, the pressure and 

velocity distributions are transformed and tend to flatten out in a region behind the blunt­

ness. 

The shock wave on the symmetry plane is also drawn in Fig. 2 for the same conical 

body at IX= 20°. When the angle of attack changes, the shock wave accordingly 

rotates, weakly alternating its shape. The stagnation point is removed from the body 

apex almost linearly versus IX. 

The coefficients of tangential force C,, of normal force C,. and of longitudinal moment 

mz with respect to the axis passing through the body apex and also the ratio K = C11 /C, 

are plotted versus IX in Fig. 4. All the coefficients are referred to the body base area and 

mz is additionally referred to the body length. The coefficient C, slightly diminishes with 

the increase of IX, as the pressure on the leeward side drops larger than it grows on the 

P/Pst 

1 

Flo. S. Pressure distribution along conical body w = 60° for various free stream Mach numbers M 00 , 

~ = 10°. 
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windward side. The dependences C, = Cn(oc) and mz = mz(oc) are almost linear within 
the considered interval of oc. 

Two next graphs illustrate the dependences of some flow properties on· the free stream 
Mach number M 00 • Here the data are presented for the same conical body with w = 60°, 
~0 = 0.01 at the angle of attack oc = 10°. The pressure distribution on the leeward and 
windward sides of the body and the form of the shock wave on the symmetry plane of the 
flow are shown in Fig. 5. When the free stream Mach number M 00 grows, pressure gradi­
ents in the vicinity of the bluntness increase strongly and, further, the pressure distribu­
tion on the leeward side tends to flatten out. This is inherent in flow regimes close to 
limiting ones. 

The shock wave detachment distance Ll (related to the radius of the base) at the axis 
'YJ = 0, the velocity component v0 at the front point of the body and the relative ordinate 
of the stagnation point Yst = y,tfyc are given in Fig. 6 as the functions of the free stream 

Mach number Moo and velocity A00 = V00 /0cr· 

0.2 

0.1 

3 If ~ 10 oo Moo 

1.8 2.D 2.2 2.4 A-

FIG. 6. Shock $ave detachment distance .1, stagnation point coordinate Yat and velocity at apex v0 versus 
M 00 for conical body w = 60°, (X = 1 oo. 

Now we study the influence of the semi-angle w of cone-shaped bodies. Figures 7 and 
8 correspond to the bodies with ~0 = 0.01, located in the free stream at the angle of attack 
IX = 10° and the Mach number M 00 = 3. Here the shock waves on the symmetry plane 
and the stagnation stream lines are drawn for the cones w = 60°, 75°, the flat-faced cylin­
der w = 90° and the body with a cone-shaped concave nose w = 105°. The distributions 
of the velocity components v and w are also depicted for this family of bodies. It is in-
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Flo. 7. Shock waves for conical bodies with various apex semi-angles c.o, MfX) = 3, « = 10°. 

v,w 

1 

0.5 
w 

----~----

-0.5 

-1 

FIG. 8. Distributions of longitudinal v and circumferential w velocities along various conical bodies, 
MfX) = 3, « = 10°. 
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-1 0 1 y 

FIG. 9. Pressure distribution along conical body w = 75° for various angles of attack oc, M 00 = 4. 

1.8 

'1.6 

1.4 

1.210 60 

FIG. 10. Drag coefficient for sharp cones (solid line) and wedges (dashed line) for various apex semi-angles 

m and free-stream Mach numbers M«J, oc = 0°. Comparison with experiment (dark circle). 

[229) 
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teresting to note that a small region of nonmonotonic variation of v is located on the 
leeward side for a convex nose and on ·the windward side for a concave nose (it is nat­
urally absent for a flat nose). 

The pressure distribution for the conical body w = 75°, ~0 = 0.1 at M 00 = 4 and 
oc = 10° is given in Fig. 9. Comparison of this graph with Fig. 3 indicates that the pressure 
and, accordingly, the velocity change less abruptly on blunter cones. 

Let us present a graph from the work [7]. In Fig. 10 the drag coefficient CD for sharp 
cones (solid line) and wedges (dashed line) is plotted versus the body semi-angle w at 
various M 00 and a = oo. It is interesting to observe that within the considered interval 
of M 00 , the drag coefficient of the sharp cone with the semi-angle w tending to the limiting 
value Wum for a flow regime with a detached shock wave proves to be 11-13% less than 
for a flow regime with an attached conical shock wave at w = w11m. This results from the 
f~ct that in the first case higher pressure in the vicinity of the cone tip acts on a small 
area, while the main contribution into CD is due to the drop of pressure to the sonic value 
at the corner point of the base (in comparison with the constant pressure on the cone 
with w = w11m in the second case). The effect obtained qualitatively remains as w increases 
within 1 oo -20° or a slightly deviates from zero. This effect and also the sufficiently good 
accuracy of the numerical results were later confirmed by the experimental data of AMA­
RANTOVA et a/. [14] at M 00 = 4.03 and oc = 0°, shown by black circles in Fig. 10. An 
analogous effect is not observed in the calculated flows about wedges. 

S. Bodies with elliptical cross-section 

Now we discuss the extension of the numerical technique worked out to cone-shaped 
bodies with a noncircular, elliptical cross-section in the case, where the free stream velocity 
vector is parallel to the symmetry plane of the body. Here, in contradistinction to an 
axisymmetrical body, a semi-angle of the body w is not constant, but a given function 
of the meridional angle "P· As before, the problem is solved using the coordinates ~, 'YJ, 1p. 

The two first coordinates are defined by the same expression (2.1), but now with w = w(tp) 
and n = n( tp ). The scale factor c is also a function of 1p which is chosen in accordance 
with the shape of the body cross-section and is supposed to satisfy the symmetry con­
ditions dcjd1p = 0 at 1p = 0, n/2, n. 

Solving the problem, only three meridional planes 1p = 0, n/2 and n are considered 
where the coordinates ~' 7], 1p are orthogonal (though they are not orthogonal at other 
arbitrary values of 1p). Therefore the approximating system for conical bodies with an 
elliptical cross-section will differ from the system (3.2)-(3.3) only owing to the fact that 
the body semi-angle w and the scale factor c at 1p = n/2 are other than at 1p = 0 and 
'P = n. 

Since the trigonometrical approximations of the type (3.1) only with one or two inter­
polation nodes are employed, it appears reasonable to modify them in order to take into 
account better the elliptical shape of the body cross-section. Thus the meridional angle 
'P in the approximations (3.1) is replaced by the corresponding elliptical variable denoted, 
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say, through X· For the ellipse with a relative thickness t, the variables 1p and x are connected 
by the easy relation 

tgx = ttg1p. 

A higher accuracy of solution for conical bodies with an elliptical cross-section may 
be obtained if one adds another interpolation node on the plane 1p = n/2 and an appro­
priate term in the first interpolation polynomial (3.1 ). Then, operating with two first 
equations of the system (2.1), two new integral relations are written for this meridional 
plane, which are reduced to two additional approximating equations of view (3.2) for 
~11 and v01 • The fourth unknown quantity- the value of the shock wave derivative 
d~11 /d'YJ appears in the boundary conditions at 17 = 0. To specify this quantity, one must 
use the condition of regularity at the singular point arisen in the equation for v01 in the 
transonic region. 

Recently we have performed some test calculations of three-dimensional flows about 
conical bodies with elliptical cross-section. The flow regime with a detached shock wave 
was studied. A computed example is presented in Fig. 11 where the bodies with various 

v,w 

1 

t= o.zs ----"'\ -------- \ 
0.5 w \ 

1 

-1 

FIG. 11. Velocity distribution along conical bodies with eBiptical cross-section and various relative thick­
nesses t, M 00 = 4, « = 10°, 

relative thicknesses t are considered. The bodies have the same finite length, the small 
spherical apex bluntness (~0 = 0.01), the same semi-angle c.o = 75° at 1p = 0 and 1p = n 
and the different corresponding semi-angle c.o 1 = arctg( t-1 tgc.o) at 1p = n/2. The results 
are given for the free stream Mach number Moo = 4, the angle of attack ex= 10° and the 
specific heat ratio " = 1.4. The distributions of the longitudinal velocity v on the body 
leeward and windward sides and of the circumferential velocity w at 1p = n /2 are plotted 
in the graph. 
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Concluding, it should be remarked that the developed nwnerical technique may be 
simply extended to the case of a real gas with high temperature equilibrium physical­
-chemical processes. 
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