287.

NOTE ON THE EQUATION FOR THE SQUARED DIFFERENCES OF THE ROOTS OF A CUBIC EQUATION.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. III. (1860), pp. 307-309.]

THE question of finding the equation for the squared differences of the roots, presents, in the case of a cubic equation, a peculiarity which does not occur for equations of a higher order, viz. we may in the first instance form the equation for the differences of the roots taken in a given cyclical order, and thence deduce the equation for the squared differences of the roots. Let the cubic equation be

$$U = (a, b, c, d(x, 1)^3) = a (x - \alpha) (x - \beta) (x - \gamma) = 0,$$

the function

 $\Pi \{\theta - (\beta - \gamma)\},\$

which equated to zero gives for θ the values $\beta - \gamma$, $\gamma - \alpha$, $\alpha - \beta$, which are the differences of the roots taken in a given circular order, has for any interchanges whatever of the roots, two values only, viz. that just written down, and the value $\Pi \{\theta - (\gamma - \beta)\}$, which may be deduced therefrom by changing first the sign of θ and then the sign of the entire expression (or what is the same thing, by changing the signs of the terms containing the even powers of θ); we may consequently write

$$\Pi \left\{ \theta - (\beta - \gamma) \right\} = P - Q \zeta^{\frac{1}{2}}(\alpha, \beta, \gamma),$$

which P, Q are symmetrical functions of the roots, and $\zeta^{\frac{1}{2}}(\alpha, \beta, \gamma)$ or $(\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)$ is a function the square of which is a symmetrical function of the roots, and such

www.rcin.org.pl

symmetrical functions of the roots can of course be expressed as functions of the coefficients. We have in fact

$$\begin{split} P &= \theta^{3} + \theta \left(\Sigma \beta \gamma - \Sigma \alpha^{2} \right) = a^{-2} \left\{ a^{2} \theta^{3} + 9 \left(ac - b^{2} \right) \theta \right\}, \\ Q &= 1, \end{split}$$

and

$$\zeta^{\frac{1}{2}}(\alpha, \beta, \gamma) = a^{-2}\sqrt{-27\Box},$$

where \Box is the discriminant of the cubic function,

$$= a^2 d^2 - 6abcd + 4ac^3 + 4b^3 d - 3b^2 c^2.$$

Consequently

$$\Pi \left\{ \theta - (\beta - \gamma) \right\} = a^{-2} \left\{ a^2 \theta^3 + 9 \left(ac - b^2 \right) \theta - \sqrt{-27 \Box} \right\},$$

and forming the similar equation

$$\Pi \{ \theta + (\beta - \gamma) \} = a^{-2} \{ a^2 \theta^3 + 9 (ac - b^2) \theta + \sqrt{-27} \Box \},\$$

multiplying the two equations together and writing u in the place of θ^2 , we find

$$\Pi \{ u - (\beta - \gamma)^2 \} = a^{-4} \{ [a^2u + 9 (ac - b^2)]^2 u + 27 \Box \}$$

and the equation for the squared differences of the roots is thus seen to be

$$[a^{2}u + 9 (ac - b^{2})]^{2} u + 27 \Box = 0,$$

or what is the same thing

$$a^{4}u^{3} + 18a^{2}(ac - b^{2})u^{2} + 81(ac - b^{2})^{2}u + 27\Box = 0.$$

I remark that if ω is an imaginary cube root of unity (so that $(\omega - \omega^2)^2 = -3$, $\omega - \omega^2$ being thus only another form of $\sqrt{-3}$) then if in the expression for $\Pi \{\theta - (\beta - \gamma)\}$ we write $\frac{3\theta}{(\omega - \omega^2)a}$ in the place of θ , the equation assumes the more simple form

$$\Pi \left\{ \theta - \frac{1}{3}a \left(\omega - \omega^2 \right) \left(\beta - \gamma \right) \right\} = \theta^3 - 3 \left(ac - b^2 \right) \theta - a \sqrt{\Box},$$

which if U be the cubic function, H the Hessian $=(ac-b^2, ad-bc, bd-c^2(x, y)^2)$, and \Box the discriminant as before, is a particular case (obtained by writing x=1, y=0) of the equation

$$\Pi \left\{ \theta - \frac{1}{3}\alpha \left(\omega - \omega^2 \right) \left(x - \alpha y \right) \right\} = \theta^3 - 3H\theta - U\sqrt{\Box},$$

which equation can be at once obtained from the equation (where Φ is the cubicovariant of the cubic function)

$$\sqrt[3]{\frac{1}{2}(\Phi + U\sqrt{\Box})} - \sqrt[3]{\frac{1}{2}(\phi - U\sqrt{\Box})} = \frac{1}{3}a(\omega - \omega^2)(\beta - \gamma)(x - \alpha y),$$

www.rcin.org.pl

464

given in my Fifth Memoir on Quantics, Phil. Trans., t. CXLVIII. (1858), [156]. For writing for a moment

 $\theta = \sqrt[3]{\overline{X}} - \sqrt[3]{\overline{Y}},$

we find

 $\theta^3 = X - Y - 3\sqrt[3]{XY\theta},$

or

$$\theta^3 + 3\sqrt[3]{XY\theta} - (X - Y) = 0,$$

where $\sqrt[3]{XY} = \sqrt[3]{\frac{1}{4}} (\Phi^2 - U^2 \Box)$, which by the equation

$$\phi^2 - U^2 \Box = -4H^3$$

(given in the Memoir) is = -H, and (X - Y) is $= U\sqrt{\Box}$, so that the equation in θ is, as above, $\theta^3 - 3H\theta - U\sqrt{\Box} = 0$, an equation which is satisfied by $\theta = \frac{1}{3}a (\omega - \omega^2)(\beta - \gamma)(x - \alpha y)$; and the other two roots being of course of the like form, the cubic function in θ is equal to $\prod \{\theta - \frac{1}{3}a (\omega - \omega^2)(\beta - \gamma)(x - \alpha y)\}$ which proves the theorem.

2, Stone Buildings, W.C., Nov. 3rd, 1859.

www.rcin.org.pl

465

287]