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Stress singularities at vertices of composite plates with
smooth or rough interfaces

P.S. THEOCARIS and E. E. GDOUTOS (ATHENS)

THE asymptotic behaviour of the stress and displacement field in a multi-wedge corner of a com-
posite body consisting of a number of homogeneous and isotropic wedges with rough interfaces in
linear elasticity was studied. The order of the stress singularity at the singular vertex was examined
and its dependence on the mechanical properties of the wedges and their particular geometric
configuration was studied by a simple method based on complex variables. According to this
method the two complex stress functions of the Mushkelishvili formulation of the plane-stress
problem are expressed as sums of powers of complex exponents and their conjugates. Introducing
these forms of the stress functions into the appropriate boundary conditions for the particular
type of interface considered, the order of singularity was determined. The characteristic equations
for the evaluation of the order of singularity in a bi-wedge with a rough interface were established
when the bi-wedge wasloaded with a prescribed stresses along the remaining boundaries. Numer-
ical results for the special case of wedges of different angles adhering along a half-space were given,

W ramach liniowej teorii sprezystosci rozwazono asymptotyczne zachowanie si¢ pol naprezefi
i odksztalceri w wieloklinowym narozu ciala kompozytowego, skladajacego si¢ z duzej liczby
jednorodnych i izotopowych klinéw z szorstkimi powierzchniami podzialu. Zbadano rzad oso-
bliwosci naprezen w wierzcholku osobliwym i przeanalizowano w prosty sposdb za pomoca
funkcji zmiennej zespolonej wplyw tej osobliwosci na wlasnosci mechaniczne klinéw i ich po-
szczegblne konfiguracje geometryczne. Zgodnie z ta metoda dwie funkcje zmiennej zespolonej
wystepujace w sformulowanym przez Muscheliszwilego rozwiazaniu zagadnienia plaskiego stanu
naprezenia sg wyrazone jako sumy poteg zespolonych wykladnikdéw i ich sprzezen. Wprowadzajac
tak okreslone funkcje naprezenn do odpowiednich warunkéw brzegowych dla poszczegblnych
typéw powierzchni podzialu okre§lono rzad osobliwosci. Réwnania charakterystyczne dla wy-
znaczenia rzedu osobliwoéci w ,,dwuklinie” z szorstka powierzchnia podziatu okrelono dla przy-
padku, gdy dwuklin ten jest obcigzony przez naprezenia dane na pozostatych brzegach. Podano
wyniki numeryczne dla szczeg6lnych przypadkow klindw o réZnych katach rozwarcia przylega-
jacych do potprzestrzeni,

B pamixax ymmeiiHONH TeOpHH YNPYTOCTH PACCMOTPEHO ACHMITOTHUECKOS NOBEACHHE moeit
HanpsoKeHuit 1 AecdopMaimii B MHOTOTPAHHOMN BEpIIHHE KOMIIOSHTHOTO Teja, COCTOMILErO M3
GoMBIIOro KOIMYECTBa OJHOPOAHBIX ¥ MIOTPOMHBIX I'paHell C INEPOXOBATHIMH NOBEPXHOCTAMHE
paagena. Hcenenosan nopAmok ocobeHHOCTH HANpsDKeHMH B ocoGoll BepumMHe M aHATHIADY-
€TCA NMpOCTEIM 06pa3oM, NpH nomouy GYHKIHA KOMILIEKCHOTO MEPEMEHHOro, BIMAHHE 3TOH
0coOEHHOCTH HAa MeXaHWYecKHe CBOHCTBA IPAHH M HMX OTHAE/BHBIE reoMerpuueckue KoHbury-
paupn. CorjiacHO 3TOMY METOAY BhICTynawmomue ABe (YHKIHH KOMIUIEKCHOIO IEPEMEHHOrO,
B cthopmympoBaHHO# MycXe/MIBHIN 38a%e IUIOCKOr'0 HANIPSIKEHHOr0 COCTOAHMA, BRIPAXKa~
IOTCSL KAK CYMMBI CTENeHeil KOMIUIEKCHBIX IOKasaTeliel M HX conmpsxkeHmit. Beona Tak onpe-
AesieHHbIE (QYHKUMH HANPSDKEHHH B COOTBETCTEYIONNE MPAHHYHBIC YCIOBHA, A OTACILHEIX
THIIOB MOBEPXHOCTH pasfiefia, ONnpe/esieH NopAfoK 0cobeHHOCTH, XapaKTepHCTHYECKHE YpaB-
HEHHA, JNIA ONpe/esIeHHA MOPAAKa OCOGEHHOCTH B OHI'DaHH C IIEPOXOBATON NOBEPXHOCTBHIO
paspgena, onpejfeNeHbl JUIA CJTydas, Korja 3Ta OHrpaHs Harpy)<eHa HanpsDHEHHEM 3aMaHHBIM
Ha OCTATBHBLIX Kpasx. IIpuBeeHbI YHCIeHHbIE Pe3yIbTaThl AMIA OTAIBHEIX CIIydYaeB rpaHei
CMEYKHBIX TOJ| Pa3HLIMH YTJIAMH C TOJYNPOCTPAHCTBOM.

1. Introduction

DUE to the great complexity of the problem of the stress and displacement distribution
in a composite body consisting of a number of dissimilar wedges, a small number of contri-
butions has been appeared. The most important region in the multiwedge is the close vicinity
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of the vertex of the wedges where their interfaces coalesce. This is due to the fact that
a stress singularity is engendered at the vertex. Thus, the problem is reduced to that of
finding the order of singularity and its dependence on the mechanical properties of the
dissimilar bodies and the geometry of the wedges at the particular corner considered.
Stress singularities have been investigated in many crack problems as well as in the homo-
geneous wedge under various loading conditions [I, 2].

A systematic study of the problem of a bimaterial wedge has been done by BoGy in
a series of recent publications [3, 4]. Bogy applied the Mellin transform to reduce the
problem of the bimaterial wedge to a simpler one in the transform plane. However, due
to the great complexity of the solution even in the transform plane, Bogy restricted his
solutions at the close vicinity of the corner, where the two interfaces coalesce. Only in the
case of the problem of two edge-bonded quarter planes with a concentrated normal load
applied at the boundary [4] he gave a more systematic study by calculating the stresses
at the bonded interface at some distance from the singular vertex.

RAo [5] presented recently a general procedure for the determination of singularities
at corners at the intersection of two or more interfaces in domains governed by harmonic
and biharmonic types of equations. Several types of boundary conditions at the interfaces
were considered and special cases of the bimaterial wedge were analysed.

DunDURs [6] made a significant contribution to the multiwedge problem by pointing
out that for the case of a bimaterial wedge under plane-stress or plane-strain conditions
a reduced dependence of the stress field exists on only two combinations of the four elastic
constants of the materials constituting the biwedge.

THEOCARIS [7] applied the complex variable technique [1] for the study of the region
very close to a singular vertex in a multiwedge. This method was applied to the case of
a transverse semi-infinite crack in an infinite plate, as well as to the problem of a homo-
geneous wedge under various boundary conditions. The results obtained coincided with
the existing solutions.

The remarkable feature of the results obtained by any of the above theories for the
multiwedge is that they hold regardless of the topological intricacies of the composite body.
Furthermore, they can be adapted to the mechanical conditions which are imposed to the
interfaces between phases, be it full adhesion or frictionless slip. Partial separation between
phases in the form of cracks running along the interface may be considered by these solu-
tions. Furthermore, if there is some friction between partly separated interfaces, the
boundary conditions between phases change and, therefore, this problem necessitates
special attention. Since in most of the engineering problems the adherence between phases
is in general not complete, the problem of partially rough interfaces is of great importance.
Indeed, we can say that this is the case in almost all practical applications where two or
more bodies are in contact creating 2 number of interfaces. Thus, in the macrostructural
analysis some friction always exists between any two surfaces in contact. Furthermore,
the role of friction becomes very important in the microstructural study of the bodies
in contact, where the smoothest possible surface consists in reality of a large number of
zig-zag parts. Thus, a great number of microsurfaces are always in contact, while gaps
always exist along large distances in any interface and these are distributed in a very compli-
cated manner. The totality of these microcontacts and microgaps for each interface of-
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two materials in contact creates some overall friction, which depends on the distribution
of these microsurfaces and which modulates the appropriate conditions at the interface.
Therefore, it is reasonable to accept for all engineering applications that the contact prob-
lem of two bodies with some friction is the most realistic.

In the present paper the above mentioned cases in composite plates were analysed.
The boundary conditions at a smooth or rough interface were investigated and the order
of singularity at a multiwedge corner of a composite body as a function of the mechanical
properties and the geometry of the wedges as well as of the conditions at the interface
was found. The special case of the bimaterial wedge was analysed in detail.

2. Boundary conditions for a multiwedge with bonded or rough interfaces

Consider the general case of a composite body consisting of n dissimilar homogeneous,
isotropic and elastic wedges with their interfaces coalescing at a point, and which is under-
plane-strain or generalized plane-stress conditions. A system of Cartesian coordinates
with origin at the vertex of the wedges is related to the body (Fig. 1). Each of the wedges
denoted by S; (j = 1, 2, ..., n) is included between the interfaces E; and E;, ;) (Euyny =
= E,), where each tangent at the interface E; subtends an angle ¥; with the x-axis. The
two successive wedges S;;_,, and S, may be considered either as perfectly bonded along
their interface E, or smooth and free to slip relatively to each other. A third and more
realistic situation between these two extreme cases is when friction is developed between.
the two bodies along their interface E,.

F1G. 1. Geometry of a multiwedge plate.
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According to the Muskhelishvili formulation for the plane stress problem in linear
elasticity where Airy’s stress function is expressed in terms of two complex functions ¢(z)
and ¢(z), the resultant force along a generic curve E between the positions s = 0 and
s = s, is given by [8]:

@.1) i [ [T +iT,0lds = p(2)+29 D +9(),
0

where T.(¢) and T,(t) are the components of the specified tractions along this curve. In
this relation it is assumed that the direction of increasing arc-coordinates ¢ is chosen so
that the wedge always lies to the left of curve E when one follows the direction of increasing
arc-coordinates.

When the displacements are specified on the boundary of the wedge the sole boundary
condition is given by:

2.2) ugp(2)—29'(z) - y(z) = 2G[f(t) +ih(®)],

where G is the shear modulus, u = (3—4») for plane strain and u = (3—»)/(1+v) for
plane stress, » is the Poisson ratio and f(r) and A(t) are the two components of the specified
displacements.

When the two dissimilar wedges S, and S; are perfectly bonded along their inter-
face E,, it is natural to require that the stresses and displacements at the interface E; are
continuous. Using the subscripts (k—1) and k for the wedges S _;, and S; we have for
the perfectly bonded faces of the wedges Si_,, and S:

(2'3) (ux +fuy)(k-ll -5 (ux +l'u!)l:

(2.4) (Tx+iT)k-1y = —(Te+iTy).

Since the positive direction on the curve E; corresponding to wedge S, is reversed
for the same curve corresponding to wedge Si, an adjustment is necessary in relation
(2.4) by putting a negative sign in this relation. Combining relations (2.3) and (2.4) with
equations (2.1) and (2.2), we obtain the boundary conditions along the bonded interface
E; as follows:

2.5) Pek- () F 149 -1 (8) + P () = @u(te) +hpi(t) + (),
(2:6)  Lifug-1yPox- 1) = t@i- 1) = Pa-1(8)] = wePe(te) — e Pi(te) — valt),

where I'y = G,/G_,, is the ratio of the shear moduli of the materials of the two wedges
and primes denote differentiation with respect to z.

When some friction is developed between the wedges Si-;, and Sy along their inter-
face E,;, the appropriate boundary conditions are expressed by:

2.7 Ue)k-1) = (Uo)e»
(2.8) (©@)a-1) = —(Ta)>
(2.9) (T)a-1) = (T = 9(G0)-1) = q(oe)k,

where g is the friction coefficient between the two rough surfaces.
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We replace Egs. (2.8) and (2.9) by the following expressions:
(2.10) (05 +iT0) -1y = — (05 +iTro)k,
(2.11) (zradk = g0k,

so that the boundary conditions at the interface E, with friction are expressed by Egs.
(2.7), (2.10) and (2.11), respectively.
The components of stresses and displacements in polar coordinates are expressed by [8]:

(2.12) os+ 0, = 2[g'(2)+¢'(2)],
(2.13) 0s—0,+2i1,5 = 2[29"(2) + v’ (2)] €*",
(2.14) 2G(u, +ius) = [up(z)—z¢'(2)—p(z)le ™.

If we substitute the expressions for stresses o, 7,5 and displacement u, obtained from
the above relations into Eqs. (2.7), (2.10) and (2.11), we obtain the following boundary

conditions for a rough interface E;:
(2.15)  IImfe™ ™ [ug— 1y P 1)) = taPlr— 1y (1) = Por—1>(#)]]

= Im[e~ " [u, @i (1) — 20 (0) — i8]
(2.16) @l 1y (1) + Pk 1> (1) + € [tlic— 15 (1) + Y- 1 (1)] = (1)

+ et + ¥ [ty (1) +pi(t)],
(2.17) Im[e* ™[ty () + i ()] = qRe[ 204(t) + > [ty (1) + wi (1))

where Re and Im represent the real and imaginary parts of the corresponding functions.
The boundary conditions for the special case of a smooth interface, where the two wedges
are free to mutually slip may be deduced from the above equations by putting g = 0.

We assume now for the complex stress-functions ¢(z) and y(z) in the Muskhelishvili
formulation for the plane-stress problem at the close vicinity of the vertex of the multi-
wedge the forms:

(2.18) Pe = ﬂlkza+ﬂn21, Ve = b,,‘z“+bn;‘.

Furthermore, these expressions for ¢, and , must satisfy the appropriate boundary condi-

tions for the particular type of mechanical conditions prevailing at the considered interface
E,.

3. The order of singularity at the vertex of the multiwedge

3.1. The general equations

From the above established boundary conditions and the particular form of the complex
stress functions ¢(z) and w(z), for which only singular terms are considered, the type of
singularity can be determined, and its dependence on the mechanical properties of the
dissimilar materials of the composite multiwedge, as well as of the particular vertex geo-
metric configuration considered.
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If we introduce relations (2.18) into Egs. (2.15), (2.16), (2.17), put #, = re'® and elimi-

nate the coefficients of r*and ri, we obtain the following conditions for the case of a rough
interface with a friction coefficient equal to g:

(3.1) Dl 1)1 k- 1y @ V% — Dy p gy H%— ba-1ye~ "I — (g - D20k = 1)%
xei(l-ll}sg_}.al(k_”ei(i—l}ak_b”k_]}ei{l +a;a.)] = (u,,alke"‘“‘””*— jﬁuei(l-hﬂx
—-sze"(“’"ﬂ*)-(utﬁuem““"‘— J.a"‘e““1’”*—b1kei(‘t+"*k),
(2 Aayu- @t V4B LD @ D% = g, e D%
+Enei(l =)0y +buei(1+a\wl,
(33) M- V%48, 1)@ P4 by @ BE D% = g, G- D0
+ auet(l-])a. + b;geta“w",
(34) (1—ig) M(A—1)e*D%q, 4 (1—ig) Ae'*+V%p, — (1 +ig) A(A—1)e'~Phg,,
— (1 +ig) e~ ' +P%p . = 2igled~Vg,, 4 2igheid-PPg,, .

Applying equations (3.1), (3.2), (3.3), (3.4) to the case of an interface with friction in
the n interfaces of a composite body consisting of n dissimilar materials, we obtain 4n

equations homogeneous for the unknown coefficients a,x, @, b4, 32,. For the non-
trivial solution of the system of 4n-equations the determinant of the coefficients of the
unknowns must be equal to zero. Thus, we obtain an equation from which the value of 4 can
be determined.

3.2. The bimaterial wedge

Consider now the special case of a composite body consisting of two dissimilar wedges
with a rough interface E; and subjected to any type of loading on the faces E, and E,
(Fig. 2). The Ox-axis of the Cartesian coordinate system is taken to coincide with the

I
x¥

Fic 2. Geometry of a bimaterial wedge.
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interface E,, while the tangents to E, and E, at the origin 0 make angles equal to ¢, and ¢,
with E, respectively.

By putting #, = 0 into relations (3.3), (3.2), (3.4), (3.1) we obtain the following four
equations respectively, which represent the boundary conditions at E, under the form
of functions ¢(z) and y(z) given by Egs. (2.18):

(3.5) ayy+ A8y, +byy = 812+ Aag2+bs3,
(3.6) Gy +Aay +byy = a2+ Aagy+ by,
(3.7 [A(l—ig)— (1 +ig)lay— [A(1 +ig)— (1 —ig))@zs + (1 —ig) by, — (1 +ig)by, = O,
(3.8) TI'[(u,+Aay, — (uy +Aay; —byy +by1] = (uy+Aay,— W+ Naz;—byy +by,.

In order to obtain the boundary conditions at the faces E; and E,, we introduce into
relations (3.2) and (3.3), which represent the continuity of stresses at the interface, the
particular values for the angles of the faces of wedges, that is & = ¢, for E, and &y = ¢,
for E, and equate the right-hand sides of these relations to zero, since only one material
exists at either face E, and E,. Thus, we obtain:

(3.9) a,,€*%1 + 1a,, ¥ +b,, =0,
(3.10) G614 g em 14 h, =0,
3.11) 4,623 4 13,,63%1 +b,, = 0,
(3.12) 6”14 Ja e 14 by, = 0.

Relations (3.5) to (3.12) constitute a system of eight homogeneous equations for the un-
knowns a,,, a,,, @31, @22, byy, bya, b2y, by By eliminating the unknowns by, by2, b3y,

l:t_22 for a non-trivial solution of the derived system for the unknowns a,, @2, @21, @22,
we must equate to zero the determinant of the coefficients of the unknowns and we obtain:

(1—e21)  A(1—e?m) (1—e?ite2) A(1—e?%3)
A(l—e~2o1) (1 —e=24en) A(1—e~ %) (1—e~20m)
0 0 (1 +ig)(1—e*™3)—  A(1+ig)(1—e**) -

B — A1 —ig)(1 —e~2%2) —(1—ig)(1—e~243)| = O.
I+ H—- -I'(u, + = [(u2+ ) - = [(u2+2)—
—(Ae=21— £ A)—(Re?P1— —(Je~P2—g2W2)] — (Re?WP2— ™ 20m)]

=3 ezﬂﬂ)] = 2“91)]

Relation (3.13) gives the characteristic equation for the determination of A in a bi-ma-
terial wedge in terms of the mechanical properties of the two wedges for the special con-
figuration considered and for the case of the first fundamental problem when a rough
interface exists in the bi-wedge. For the special case of a smooth interface we must put
g = 0 into relation (3.13).

8 Arch. Mech. Stos. nr 4/76
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By applying some simple properties of the determinants it is possible to put equation
(3.13) in an equivalent real form as follows:

Ad(py, N+ Clpi, )  Ad(pz, H+B(p2, 4) Clpz2, A
+ B(ps, 4)
_D(‘Pl!’]) _M(‘Pls ’D"' —D(‘Pz,l) "M((Pz’)')‘i'
+B(9,, A) + B(p,, 4)
G| I'D(p,, ) Tlid(p, H+  qlid(gs, H+ 9C(g2, N+, +1) [=0s
+E(§01H1 » 1)] + B(?’I: "1)]
=I'D(p1,4) —TAd(ps, N+  qlAA(p,, D+ ~ [2A4(p2, H)—
+ E(pyuy, A)] + B(p,, A)]— —B(p,, H—
—2D(g1, 4) —qC(@z, A)+E(pauz, 4)]
where:
A(p, ) = 1—cos2g, D(p, 4) = sin2Ap+ Asin2g,
B(p, A) = 1—cos2igp, E(p,u, A) = u+cos2ig,

C(p, A) = sin2Ap— Asin2¢p.

3.2.1. Special cases of bi-wedges. As a special case of the bi-wedge considered above we
study the situation where a wedge of any angle ¢ adheres along a semi-infinite plane.

By putting ¢; = @ and ¢, = —a= in relations (3.13) or (3.14), we obtain the following
equation for the determination of 4:

(3.15)  (uy +1)sin(2An)[Asin?@ — sin? Ap] — (4, + 1)sin?(An)[sin(2Ap) + Asin(2p)]
+gsin?(Am)[21 (u, — 1)sin?(A) + 2A[A(uy + 21— 1)+ I'(u, + 1)]sin?gp] = 0.
Relation (3.15) can be written in the form:
(3.16) Aa+Bf+C =0
with
A = 2G(p, A)cos(in)— K(p, A)sin(An)+qJ(p, A),
3.17) B = 44G(p, A)sin(Ax),
C = -2G(g, A)cos(An)—K(p, A)sin(An)+qJ (g, 4),
where
G(p, A) = sin?*(Ap)— A%sin g,
(3.18) K(p, 1) = sin(24¢) + Asin(2¢p),
J(p, A) = 2A(A+1)sin(An)cos®p,
if we introduce the composite material parameter o and § given by:
a=(P"1"‘“2)+(P"1)’ ﬁ=(-r“1-“2)—(11—1) )
Lug+ 1)+ +uy) Ty + 1)+ T+ uy)

Relations (3.19) have been introduced by DUNDURS [6]. Referring all the physically inter-
esting material combinations (0 < %;,, < 0.5, 0 < I"' < ) to the («— f)-plane, a parallel-

(3.19)
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ogram is obtained which is symmetric with respect to the origin with sides given by [4]:
(3.20) a=+1, +aF48+1=0.
From relations (3.16)-(3.18) we conclude that the singularity boundary, that is the locus

of points for which A = 1, is a straight line parallel to the f-axis intersecting the «-axis
at a point with a, equal to

= (1+7g)sing+(x+g)cosp
(3.21) %= T (1—ng)sing+ @—g)cosp

The variation of the position of the singularity boundary with angle ¢ of the wedge
for several values of the friction coefficient ¢ is presented in Fig. 3.

- q=10 08 06 04 02 o -02 -04 -06-08-10 -20 -100

:: 11/
a W/
/24

Wz~

30° sb“ %0° 120° #0° @ 80°

-10
a

F1a, 3. Variation of the position of the singularity boundary with the angle ¢ of the wedge adhering along
a half-plane for the following values of friction coefficient ¢ = 1.0, 0.8, 0.6, 04, 0.2, 0, —0.2,
—0.4, —0.6, —0.8, —1.0, —2.0, —10.0.

As a numerical example we consider the variation of the order of singularity 4, as the
angle ¢ of the wedges varies for a particular value of friction coefficient g equal to ¢ = 1.
The contour lines of 4 for ¢ = 30°, 60°, 90° and @ = 120°, 150°, 180° are presented in
Figs. 4 and 5, respectively. Comparing these figures we conclude that A decreases, i.e.,
the singularity becomes more severe, as the angle ¢ increases. We can also observe that the
contour lines for A rotate counterclockwise as ¢ increases becoming parallel to the a-axis
for p = n.

By putting ¢ = 0-into Eq. (3.15) we obtain for plane-strain conditions (¥; = 3—4;)
the relation:

G, 1-v,

(3.22)  (tanin)(sin24p+Asin2¢) = — F 1 —
2 17

[(1 —cos2Ag)— A*(1 —cos2¢)],

Lol
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FiG. 4. Contour lines of 4 in the «—pg parallelogram for the following

values of the angle @ of the wedge adhering along the half-
plane ¢ = 30°, 60°, 90°. Friction coeflicient 4 = 1.0.
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FiG. 5. Contour lines of 4 in the «—g parallelogram for the following
values of the angle ¢ of the wedge adhering along the half-plane

@ = 120°, 150°, 180°, Friction coefficient ¢ = 1.0,
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Il

while for plane-stress conditions (u; = (3—»)/(1+%)), we have:

(3.23) (tan Az)(sin24p+ Asin2¢p) = — % [(1—cos24g)— A2(1 —cos2¢)].

2

Relation (3.23.) is similar to Eq. (22) given by Rao [5]. However, Rao from Eq. (22)
of [5] concluded that the order of singularity is independent of Poisson’s ratios for
both cases of plane-stress or plane-strain conditions. According to our results the order
of singularity A is independent of Poisson’s ratios only for plane-stress conditions [Eq.
(3.23)], while for plane-strain conditions [Eq. (3.22)] this quantity is a function of »; and »,
of the two materials.

From relations (3.16)-(3.18) we obtain for ¢ = 180° for g = 0 or for ¢ # 0 but
for indentical materials (@ = # = 0) A = 0.5 that is, the order of singularity at the
end of contact of any two materials which can slip along their common interface,
or for identical materials with smooth, rough or bonded contact is always equal
to 4 = 0.50.

4. Conclusions

A realistic model for the study of the order of singularity at the end of partial contact
of an interface of two dissimilar wedges was proposed and analysed. Thus, adherence of
any degree varying from the extreme case of a smooth to the other extreme case of a com-
pletely bonded interface with different amounts of friction between the faces in contact
can be taken into account. The boundary conditions at the interface corresponding to the
above cases were considered and analysed. The most important region at the close vicinity
of a multiwedge corner of a composite body consisting of many homogeneous, isotropic
and elastic wedges was analysed and the asymptotic behaviour of the stress and displace-
ment fields was investigated for the conditions on the interfaces mentioned above by applying
the method of the complex stress function. The two complex stress functions of the Muskhe-
lishvili formulation of the plane-stress problem are expressed as sums of powers of complex
exponents and their conjugates and, by implying to these expressions for the stress functions
to satisfy the particular boundary conditions for each case, the characteristic equations
for the determination of the order of singularity were obtained. Thus, the dependence of the
order of singularity on the mechanical properties and the particular configuration of
a composite body consisting of n dissimilar wedges has been found.

The special case of the bi-material wedge was considered and the characteristic equation
derived for the determination of the order of stress singularity A when the two wedges
adhere along their common interface, while stresses are prescribed along the two other
boundaries of the bi-wedge. The particular case of a wedge adhering along a half-plane
was analysed. Numerical results for A were given for the angles ¢ = 30°, 60°, 90°, 120°
150° and 180° for one value of the friction coefficient g equal to g = 1, in Dundurs’ paral-
lelograms for all the physically interesting material combinations of the wedge and the
halfplane.
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