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Stress singularities at vertices of composite plates with 
smooth or rough interfaces 

P. S. THEOCARIS and E. E. GDOUTOS (ATHENS) 

THE asymptotic behaviour of the stress and displacement field in a multi-wedge corner of a com
posite body consisting of a number of homogeneous and isotropic wedges with rough interfaces in 
linear elasticity was studied. The order of the stress singularity at the singular vertex was examined 
and its dependence on the mechanical properties of the wedges and their particular geometric 
configuration was studied by a simple method based on complex variables. According to this 
method the two complex stress functions of the Mushkelishvili formulation of the plane-stress 
problem are expressed as sums of powers of complex exponents and their conjugates. Introducing 
these forms of the stress functions into the appropriate boundary conditions for the particular 
type of interface considered, the order of singularity was determined. The characteristic equations 
for the evaluation of the order of singularity in a hi-wedge with a rough interface were established 
when the hi-wedge was loaded with a prescribed stresses along the remaining boundaries. Numer
ical results for the special case of wedges of different angles adhering along a half-space were given. 

W ramach liniowej teorii spr~zystosci rozwaiono asymptotyczne zachowanie si~ pol napr~i:en 
i odksztalcen w wieloklinowym naroru ciala kompozytowego, skladaj(\cego si~ z dui:ej liczby 
jednorodnych i izotopowych klin6w z szorstkimi powierzchniami podzialu. Zbadano fZCld oso
bliwosci napr~i:en w wierzcholku osobliwym i przeanalizowano w prosty spos6b za pomoc(\ 
funkcji zmiennej zespolonej wplyw tej osobliwosci na wlasnosci mechaniczne klin6w i ich po
szczeg6lne konfiguracje geometryczne. Zgodnie z t(\ metod(\ dwie funkcje zmiennej zespolonej 
wyst~puj(\ce w sformulowanym przez Muscheliszwilego rozwi'lZClniu zagadnienia plaskiego stanu 
napr~i:enia ~ wyraione jako sumy pot~g zespolonych wykladnik6w i ich sp~i:en. Wprowadzaj<\C 
tak okreslone funkcje napr~i:en do odpowiednich warunk6w brzegowych dla poszczeg6lnych 
typ6w powierzchni podzialu okre8lono fZCld osobliwosci. R6wnania charakterystyczne dla wy
znaczenia ~u osobliwosci w ,dwuklinie" z szorstk'l powierzchni'l podzialu okre8lono dla przy
padku, gdy dwuklin ten jest obci(\Zony przez napr~i:enia dane na pozostalych brzegach. Podano 
wyniki numeryczne dla szczeg6lnych pnypadk6w klin6w o r6znych k'ltach rozwarcia przylega
j(\cych do p6lprzestrzeni. 

B paMKaX mmcliuo:li TeopHH ynpyrOCTH paCCMo-rpeuo aCHMIITOTH'IecKoe noae~eHHe none:li 
uanp.IDKemm H ~ecpopM~ a MHororpaHHo:li aepnnme I<OMn03HTHoro Tena, cocro~ero H3 
6o.m.moro KOJIH'.IecTBa o~opo~LIX H H301'pOnHbiX rpaHeii c mepoxoaaT&IMH noaepXHOCTJIMH 
paa~e.n:a. Hccn~oaaH nopJmOI< oco6eHHOCTH uanpiDKeHHH: a oco6oii aepnnme H auanuaupy
eTCH npOCTbiM o6p830M, npH DOMO~ <l>YH~ I<OMnnei<CHOrO nepeMeHHoro, BnHHHHe 3TOH 
OC06eHHOCTH Ha MeXaHH'Ieci<HC CBOHCTBa I'paHH H HX OT~CJILHbiC reoMeTpHlleCI<He I<OH<l>HrY
PatlHH· Cornacuo 3TOMY MeTO~Y BbiCTynaiO~e ~Be ci>YHI<llHH I<OMnnei<CHOro nepeMeHHoro, 
a c<PopMynupoaauuo:li Mycxemmmunu ~aqe nnoCJ<oro uanpiDKeHHoro cOCTomum, BLtpa>Kll
IOTCH 1<a1< cyMMLI creneueii KOMnneKCHLIX nol<a3aTeneu H HX conpn>Kemm. Bao~ Tal< onpe
~eneHHLie <l>YJ~I<UHH uanpiDKeuHH a cooTBeTCTByro~e rpaHH'Dibie ycnoaHH, wm: OT~eJILHbiX 
Tunoa noaepXHOCTH pa3~ena, onpe~eneu nopJmol< oco6eHHoCTH. XapaKTepuCTHqeCJ<He ypaa
HCHHH, ~H onpe~e.n:eHHH nopMJ<a oco6eHHOCTH a 6urpaHH c mepoxoaaTo:li noaepXHOCTLIO 
paa~e.n:a, onp~e.n:eu&I WIJ1 cnytUU~, Kor~a 3Ta 6urpaHL uarpymeua uanpiDKCHBeM 3a,D;8HHLIM 

Ha OCTanLHbiX l<paHX. IlpHB~eHLI tiHcneHHbiC peayJILT8Tbi WU1 OT~eJILHbiX cnyqaea rpaue:li 
CMe>KIIbiX DO~ p83HbiMH yrnaMH C nonynpOCTpaHCTBOM. 

1. Introduction 

DUE to the great complexity of the problem of the stress and displacement distribution 
in a composite body consisting of a number of dissimilar wedges, a small number of contri
butions has been appeared. The most important region in the multiwedge is the close vicinity 
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of the vertex of the wedges where their interfaces coalesce. This is due to the fact that 
a stress singularity is engendered at the vertex. Thus, the problem is reduced to that of 
finding the order of singularity and its dependence on the mechanical properties of .the 
dissimilar bodies and the geometry of the wedges at the particular corner considered. 
Stress singularities have been investigated in many crack problems as well as in the homo
geneous wedge under various loading conditions [1, 2]. 

A systematic study of the problem of a bimaterial wedge has been done by BOGY in 
a series of recent publications [3, 4]. Bogy applied the Meliin transform to reduce the 
problem of the bimaterial wedge to a simpler one in the transform plane. However, due 
to the great complexity of the solution even in the transform plane, Bogy restricted his 
solutions at the close vicinity of the corner, where the two interfaces coalesce. Only in the 
case of the problem of two edge-bonded quarter planes with a concentrated normal load 
applied at the boundary [4] he gave a more systematic study by calculating the stresses 
at the bonded interface at some distance from the singular vertex. 

RAo [5] presented recently a general procedure for the determination of singularities 
at corners at the intersection of two or more interfaces in domains governed by harmonic 
and biharmonic types of equations. Several types of boundary conditions at the interfaces 
were considered and special cases of the bimaterial wedge were analysed. 

DUNDURS [6] made a significant contribution to the ·multiwedge problem by ·pointing 
out that for the case of a bimaterial wedge under plane-stress or plane-strain conditions 
a reduced dependence of the stress field exists on only two combinations of the four elastic 
constants of the materials constituting the biwedge. 

THEocARis [7] applied the complex variable technique [1] for the study of the region 
very close to a singular vertex in a multiwedge. This method was applied to . the case of 
a transverse semi-infinite crack in an infinite plate, as well as to the problem of a homo
geneous wedge under various boundary conditions. The results obtained coincided with 
the existing solutions. 

The remarkable feature of the results obtained by any of the above theories for the 
multiwedge is that they hold regardless of the· topological intricacies of the composite body. 
Furthermore, they can be adapted to the mechanical conditions which are imposed to the 
interfaces between phases, be it full adhesion or frictionless slip. Partial separation between 
phases in the form of cracks running along the interface may be considered by these solu
tions. Furthermore, if there is some friction between partly separated interfaces, the 
boundary conditions between phases change and, therefore, this problem necessitates 
special attention. Since in most of the engineering problems the adherence between phases 
is in general not cpmplete, the problem of partially rough interfaces is of great importance. 
Indeed, we can say that this is the case in almost all practical applications where two or 
more bodies are in contact creating a number of interfaces. Thus, in the .macrostructural 
analysis some friction always exists between any two surfaces in contact. Furthermore, 
the role of friction becomes very important in the microstructural study of the bodies 
in contact, where the smoothest possible surface consists in reality of a large number of 
zig-zag parts: .Thus, .a great .number of microsurfaces are always in contact, while gaps 
always exist along large distances ·in any interface and these are distributed in a very compli- · 
cated manner. The totality of these microcontacts and microgaps · for each interface of ' 
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STJU!SS SINOULAIUTIES AT VERTICES 695-

two materials in contact cre~tes some overall friction, which depends on the distribution 
of these microsurfaces and which modulates the appropriate conditions at the interface. 
Therefore, it is reasonable to accept for all engineering applications that the contact prob
lem of two bodies with some friction is the most realistic. 

In the present paper the above mentioned cases in composite plates were analysed. 
The boundary conditions at a smooth or rough interface were investigated and the order 
of singularity at a multi wedge corner of a composite body as a function of the mechanical 
properties and the geometry of the wedges as well as of the conditions at the . interface 
was found. The special case of the bimaterial wedge was analysed in detail. 

2. Boundary conditions for a multiwedge with bonded or rough interfaces 

Consider the general case of a composite body consisting of n dissimilar homogeneous, 
isotropic and elastic wedges with their interfaces coalescing at a point, and which is under· 
plane-strain or generalized plane-stress conditions. A system of Cartesian coordinates 
with origin at the vertex of the wedges is related to the body (Fig. 1). Each of the wedges 
denoted by sj (j = 1' 2, ... 'n) is included between the interfaces El and E<J+l) (E(II+l) = 
= E1), where each tangent at the interface E.i subtends an angle {}i with the x-axis. The 
two successive wedges S(lc-t > and Sk may be considered either as perfectly bonded along 
their interface E", or smooth and free to slip relatively to each other. A third and more 
realistic situation between these two extreme cases is when friction is developed between. 
the two bodies along their interface E". 

F'Io. 1. Geometry of a multi wedge plate. 
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According to the Muskhelishvili formulation for the plane stress problem in linear 
elasticity where Airy's stress function is expressed in terms of two complex functions q>(z) 
and '!f'(z), the resultant force along a generic curve E between the positions s = 0 and 
s = sA is given by [8]: 

'"' 
(2.1) i J [Tx(t)+iT,(t)]tb = q>(z)+zq>'(z)+tp(z), 

0 

where T"(t) and T,(t) are the components of the specified tractions along this curve. In 
this relation it is assumed that the direction of increasing arc-coordinates t is chosen so 
that the wedge always lies to the left of curve E when one follows the direction of increasing 
arc-coordinates. 

When the displacements are specified on the boundary of the wedge the sole boundary 
condition is given by: 

(2.2) uq>(z)-zq>'(z)-tp(z) = 2GLf(t)+ih(t)], 

where G is the shear modulus, u = (3-4v) for plane strain and u = (3-v)/(1 +v) for 
plane stress," is the Poisson ratio and/(t) and h(t) are the two components of the specified 
displacements. 

When the two dissimilar wedges S<t-t > and S~r. are perfectly bonded along their inter
face Et, it is natural to require that the stresses and displacements at the interface E" are 
continuous. Using the subscripts (k-1) and k for the wedges S<k-o and S" we have for 
the perfectly bonded faces of the wedges s(k- 1) and sk: 

(2.3) 

(2.4) 

(u:;c+iu1)<t-o = (u:;c+iu,)~r., 
(T" + iT,)<t-o = - (T" + iT1)~r.. 

Since the positive direction on the curve E" corresponding to wedge S<t-o is reversed 
for the same curve corresponding to wedge S~r., an adjustment is necessary in relation 
(2.4) by putting a negative sign in this relation. Combining relations (2.3) and (2.4) with 
equations (2.1) and (2.2), we obtain the boundary conditions along the bonded interface 
E~: as follows: 

(2.5) (/'(k-1)(1~;) + lt(/1 1(A:-1)(t~;) +'f'<A:-l)(l~r.) = (/'~r.(t~r.) + l~r.q>k<t~r.) +'!f'~r.(l~:)' 

(2.6) F~r.[u<A:-o(/'<t-o(t~:)- lt(/1<~-o(l~:)-'lf'<t-o(l~:)] = u~r.q>~r.(l~:)~ l~;q>k{t.)-'P~r.(l~:), 

where F~: = G,JG<t- 1> is the ratio of the shear moduli of the materials of the two wedges 
and primes denote differentiation with respect to z. 

When some friction is developed between the wedges S<t- 1 > and S" along their inter
face E~:, the appropriate boundary conditions are expressed by: 

(2.7) 

(2.8) 

(2.9) 

(~)<t-o = (ue)~;, 
( O'e)<A:-o = - ( O'e)A:, 

('r,e)<A:-o = ('rr8)A: = q(O'e)<A:-1> = q(O'e)~r., 
where q is the friction coefficient between the two rough surfaces. 
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We replace Eqs. (2.8) and (2.9) by the following expressions: 

(2.10) 

(2.11) 

(a~+iT,&)<k-O = - (a&+iTr6)b 

(r,&)k = q(a#)b 

697 

so that the boundary conditions at the interface Ek with friction are expressed by Eqs. 

(2. 7), (2.1 0) and (2.11 ), respectively. 
The components of stresses and displacements in polar coordinates are expressed by [8]: 

(2.12) 

(2.13) 

(2.14) 

a6 +a, = 2[q/(z)+qJ'(z)], 

a6-(]r+2irrl1 = 2[:ZqJ"(z)+tp'(z)]e2i~, 

2G(u,+iu6) = [uqJ(z)-z<p'(z)-tp(z)]e-w. 

If we substitute the expressions for stresses a6 , r,0 and displacement u6 obtained from 
the above relations into Eqs. (2.7), (2.10) and (2.11), we obtain the following boundary 

conditions for a rough interface Ek: 

(2.15) rkim[ e- i &k [u(k- I) 9'<k-l)(tk)- fk<Jl~k-l)(tk)- "''<k-o(tk)l] 

= Im[ e-i~~t[uk(/'k(tk)- ZfPt{tk)- ~k(tk)]], 

(2.16) <p~k-o (td + <p~k-o(td + e2
i
6

t [tk<p~k-o(tk) + "''~t-t (tk)] = <plc(tk) 

+ <pk(tk) + e2 i6t[tfP~ (tk)+ "''lc(tk)], 

(2.17) I m[ e2
i&k [tk <plc' (tk) + "''i(tk)l] = qRe [ 2<pk(tk) + e2

i
6

k [t<plc' (tk) + "''i(tk)l], 

where Re and Im represent the real and imaginary parts of the corresponding functions. 
The boundary conditions for the special case of a smooth interface, where the two wedges 
are free to mutually slip may be deduced from the above equations by putting q = 0. 

We assume now for the complex stress-functions <p(z) and tp(z) in the Muskhelishvili 
formulation for the plane-stress problem at the close vicinity of -the vertex of the multi-

wedge the forms: 

(2.18) 

Furthermore, these expressions for 'Pk and "''k must satisfy the appropriate boundary condi
tions for the particular type of mechanical conditions prevailing at the considered interface 

Ek. 

3. The order of singularity at the vertex of the multiwedge 

3.1. The general equations 

From the above established boundary conditions and the particular form of the complex 
stress functions <p(z) and tp(z), for which only singular terms are considered, the type of 
singularity can be determined, and its dependence on the mechanical properties of the 
dissimilar materials of the composite multiwedge, as well as of the particular vertex geo
metric configuration considered. 
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If we introduce relations (2.18) into Eqs. (2.15), (2.16), (2.17), put tk = r.-P'" and elimi

nate the coefficients of r;. and ;-x, we obtain the following conditions for the case of a rough 
interface with a friction coefficient equal to q: 

(3.1) Fk[(u<k -oa1 <k -oei<;l.-1>0"- A.a2<k -oeiO-;.>o"- b2<k -1 >e-iO +;.>o")- (u<k -oa2<k -ox 

x ei<1-;.>o"- ).a Hk _0 ei<;<.-t>o" -bHk-oei<1+;.>o")] = (uka1kei<;<.-1>~'h _ xa2kei<1-;.>o" 

- b2ke-i<1+;.>1)t)- (uka2kei<1-A>D~:- A.alkei<;<.-t>D" -blkei<A+1>1)")' 

(3.2) Aal(k _
0

ei(A-1)1)t +al(k-1)ei<1-;l.)Dk +bHk+Oei<l+A)Dic = Aalkei<A-1)01< 

+ a2kei(l-).)0k + blkei<l +).)Dt' 

(3.3) --,-0 ei<""i-1>D"+-a ei<1-A>I)"+h ei<1+1>D~: _ 1a ei<A-l>o" 
11. 2(k -1) l(k -1) 2(k -1) - 11. 2k 

+ alkei<1-A>D" + b2kei().+ 1)0~:, 

(3.4) (1- iq) A.(A.-1)ei<A-t>0"alk + (1- iq) A.ei<A+ 1>0"blk- (1 + iq) A.(A.-1)ei<t-A>0"a2k 

- (1 + iq) A.e-i<t +">l)"b2k = 2iqA.ei<A-t>{}"alk + 2iqA.ei<1-;.>o"a2k. 

Applying equations (3.1), (3.2), (3.3), (3.4) to the case of an interface with friction in 
the n interfaces of a composite body consisting of n dissimilar materials, we obtain 4n 

equations homogeneous for the unknown coefficients alk, a2k, blk, b2k· For the non
trivial solution of the system of 4n-equations the determinant of the coefficients of the 
unknowns must be equal to zero. Thus, we obtain an equation from which the value of A. can 
be determined. 

3.2. The bimaterial wedge 

Consider now the special case of a composite body consisting of two dissimilar wedges 
with a rough interface E1 and subjected to any type of loading on the faces E2 and E3 

(Fig. 2). The Ox-axis of the Cartesian coordinate system is taken to coincide with the 

FIG 2. Geometry of a bimaterial wedge. 
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interface E 1 , while the tangents to E2 and E3 at the origin 0 make angles equal to rp1 and rp2 

with E1 respectively. 
By putting {}k = 0 into relations (3.3), (3.2), (3.4), (3.1) we obtain the following four 

equations respectively, which represent the boundary conditions at E1 under the form 
of functions rp(z) and 1p(z) given by Eqs. (2.18): 

(3.5) 

(3.6) 

(3.7) [l(l-iq)- (1 +iq)]a12 - [l(l +iq)- (l-iq)]~2 + (1-iq)b 12 - (l +iq)b2 2 = 0, 

In order to obtain the boundary conditions at the faces E1 and E2 , we introduce into 
relations (3.2) and (3.3), which represent the continuity of stresses at the interface, the 
particular values for the angles of the faces of wedges, that is {}" = rp 1 for E1 and {}" = f/J2 

for E2 and equate the right-hand sides of these relations to zero, since only one material 
exists at either face E1 and E2 • Thus, we obtain: 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

02te- 21A9'1 + Aaue-li9't +hu = 0, 

a12e21A912+M22e21912 +h22 = 0, 

Relations (3.5) to (3.12) constitute a system of eight homogeneous equations for the un

knowns a11 , a12 , o21 , o22 , b11 , b12 , b21 , ~2 • By eliminating the unknowns bu, b12, b21, 

b22 for a non-trivial solution of the derived system for the unknowns a11 , au, o21, a22, 
we must equate to zero the determinant of the coefficients of the unknowns and we obtain: 

(1 _ e2lA9't) l(l-e2••) (l-e2lA9'2 ) l(l-e21912) 

A.(l-e- 2••) (l-e-2'A9'•) A.(l-e-219'2) (l-e-2'A912) 

0 0 (1 +iq)(l-e2'A9'2)- A.(l +iq)(l-e21912 )-
(3.13) - A.(l - iq)(l- e- 21912) - (1- iq) (l-e-21J,tp2) = 0. 

F[(u1 +A.)- -F[(u1 + - [(u2+A.)- - [(u2 +A.)-
-(A.e-219't_ +A.)- (k219't _ _ (k- 21912 _ e2fJ,tp2)] _ (k219'2 _e-2i}.tpl)] 

_ e2'J,tp•)] _ e- 2'A9't)] 

Relation (3.13) gives the characteristic equation for the determination of A. in a hi-ma
terial wedge in terms of the mechanical properties of the two wedges for the special con
figuration considered and for the case of the first fundamental problem when a rough 
interface exists in the bi-wedge. For the special case of a smooth interface we must put 
q = 0 into relation (3.13). 

8 Arch. Mech. Stos. nr 4176 
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By applying some simple properties of the determinants it is possible to put equation 
(3.13) in an equivalent real form as follows: 

(3.14) 

where: 

AA(q11, A)+ C(911, A) AA((/12, A)+B((/12, A) C(912, 1) 
+B(9'h A) 

-D(911, A) -AA(9'h A)+ 
+ B(911, A) 

FD(qJ1, J.) F[AA((/11, A)+ 
+ E((/11Ub J.)] 

-FD(911, J.) -F[AA(9'h A)+ 
. + E(q>1U1' J..)] 

A(q>, J.) = 1-cos2fP, 

B(fP, A) = 1-cos2AfP, 

-D(q12 , A) -AA((/12, 1)+ 
+B(9'2,J.) 

q[J.A(qJ2, A)+ qC(qJ2, A)+(u2 +l) 
+ B(912, J.)] 

q[AA(q>2, A)+ - [2J..A(q>2, A)-
+B((/12, J..)]- -B(q12, A)-
- 2D(q>2, J..) - qC( 912, A)+ E( 9'2"2, J..)] 

D(fP, J..) = sin2Aq>+ J.sin2q>, 

E(fP, u, A) = u+cos2AqJ, 

C(q>, J..) = sin2Aq>- J..sin2q>. 

= 0, 

3.2.1. Special cases of hi-wedges. As a special case of the hi-wedge considered above we 
study the situation where a wedge of any angle 9' adheres along a semi-infinite plane. 

By putting 9'1 = 9' and 9'2 = -~in relations (3.13) or (3.14), we obtain the following 
equation for the determination of A: 

(3.15) (u1 + 1)sin(2h)[A2sin2lp-sin2 J..q>]-F(u1 + 1)sin2(h)[sin(2J..9') + J.sin(29')] 

+qsin2(h)[2F(u1-l)sin2(J.9')+2A[A(u2+2F-1)+F(u1 + 1)]sin29'] = 0. 

Relation (3.15) can be written in the form: 

(3.16) Aa.+BfJ+C = 0 

with 

(3.17) 

where 

(3.18) 

A = 2G(q>, A)cos(h)-K(qJ, J.)sin(h)+qJ(q>, A), 

B = 4qG(fP, A)sin(~), 

C = -2G(qJ, A)cos(h)-K(qJ, A)sin(A~)+qJ(qJ, A), 

G(fP, A) = sin2(Alp)- A2sin2fP, 

K(fP, A) = sin(2AfP)+ Asin(2q>), 

J(fP, A) = 2J..(A+ l)sin(~)cos2q>, 

if we introduce the composite material parameter a. and {3 given by: 

(3.19) 
(Fu1 -u2)+ (F-1) 

a.= (Fu1 +1)+(F+u2)' 
(Fu1 -u2)- (F-1) 

{3 = (Fu1 +l)+(F+u2) · 

Relations (3.19) have been introduced by DUNDURS [6]. ;Referring all the physically inter
esting material combinations (0 ~ J~1. 2 ~ 0.5, 0 < r < oo) to the (a.-{3)-plane, a parallel-
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ogram is obtained which is symmetric with respect to the origin with sides given by [4]: 

(3.20) ~ = ± 1' ± ~ + 4/l + 1 = 0. 

From relations (3.16)-(3.18) we conclude that the singularity boundary, that is the locus 
of points for which A = 1, is a straight line parallel to the fl-axis intersecting the ~-axis 
at a point with ~b equal to 

(3.21) 
- (1 +nq)sinq>+ (3t+q>)cosq> 

~, = - ....__,..(l=----3t-q-:-):..;...,si,_n-q;~+-(,.......:n---q>...;...)-'-co_s_q>..:_ · 

The variation of the position of the singularity boundary with angle q> of the wedge 
for several values of the friction coefficient q is presented in Fig. 3. 

0 - 02 -04 -{)6 -08 -10 -2.0 - 100 

FIG. 3. Variation of the position of the singularity boundary with the angle tp of the wedge adhering along 
a half-plane for the following values of friction coefficient q = 1.0, 0.8, 0.6, 0.4, 0.2, 0, -0.2, 

-0.4, -0.6, -0.8, -1.0, -2.0, -10.0. 

As a numerical example we consider the variation of the order of singularity A, as the 
angle q> of the wedges varies for a particular value of friction coefficient q equal to q = 1. 
The contour lines of A for q> = 30°, 60°, 90° and q> = 120°, 150°, 1800 are presented in 
Figs. 4 and 5, respectively. Comparing these figures we conclude that A decreases, i.e., 
the singularity becomes more severe, as the angle q> increases. We can also observe that the 
contour lines for A rotate counterclockwise as q> increases becoming parallel to the ~-axis 
for fP = n. 

By putting q = 0 · into Eq. (3.15) we obtain for plane-strain conditions (ui = 3-4vi) 
the relation : 

(3.22) (tanh)(sin2Aq>+ Asin2q>) = :-- GG1 1
1 -~2 [(1-cos2Aq>)- A2 (1-cos2q>)], 

2 _,1 
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Fio. 4. Contour lines of A in the r~.-{J parallelogram for the following 
values of the angle cp of the wedge adhering along the half

plane cp = 30°, 60°, 90°. Friction coefficient q = 1.0. 
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F10. 5. Contour lines of A in the r1.- fJ parallelogram for the following 
values of the angle cp of the wedge adhering along the half-plane 

cp = 120°, 150°, 180°, Friction coefficient q = 1.0. 
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while for plane-stress conditions (ui = (3 -vi)/(1 +vi)), we have: 

(3.23) (tan An)(sin2Aq:>+ Asin2q:>) = - !: [(l-cos2Aq:>)- A2 (1-cos2q:>)]. 

Relation (3.23.) is similar to Eq. (22) given by RAo [5]. However, Rao from Eq. (22) 
of [5] concluded that the order of singularity is independent of Poisson's ratios for 
both cases of plane-stress or plane-strain conditions. According to our results the order 
of singularity A. is independent of Poisson's ratios only for plane-stress conditions [Eq. 
(3.23)], while for plane-strain conditions [Eq. (3.22)] this quantity is a function of v1 and v2 

of the two materials. 
·From relations (3.16)-(3.18) we obtain for q; = 180° for q = 0 or for q =1= 0 but 

for indentical materials (a = {J = 0) A = 0.5 that is, the order of singularity at the 
end of contact of any two materials which can slip along their common interface, 
or for identical materials with smooth, rough or bonded contact is always equal 
to A= 0.50. 

4. Conclusions 

A realistic model for the study of the order of singularity at the end of partial contact 
of an interface of two dissimilar wedges was proposed and analysed. Thus, adherence of 
any degree varying from the extreme case of a smooth to the other extreme case of a com
pletely bonded interface with different amounts of friction between the faces in contact 
can be taken into account. The boundary conditions at the interface corresponding to the 
above cases were considered and analysed. The most important region at the close vicinity 
of a multiwedge corner of a composite body consisting of many homogeneous, isotropic 
and elastic wedges was analysed and the asymptotic behaviour of the stress and displace
ment fields was investigated for the conditions on the interfaces mentioned above by applying 
the method of the complex stress function. The two complex stress functions of the Muskhe
lishvili formulation of the plane-stress problem are expressed as sums of powers of complex 
exponents and their conjugates and, by implying to. these expressions for the stress functions 
to satisfy the particular boundary conditions for each case, the characteristic equations 
for the determination of the order of singularity were obtained. Thus, the dependence of the 
order of singularity on the mechanical properties and the particular configuration of 
a composite body consisting of n dissimilar wedges has been found. 

The special case of the hi-material wedge was considered and the characteristic equation 
derived for the determination of the order of stress singularity A when the two wedges 
adhere along their common interface, while stresses are prescribed along the two other 
boundaries of the hi-wedge. The particular case of a wedge adhering along a half-plane 
was analysed. Numerical results for A were given for the angles q:> = 30°, 60°, 90°, 120° 
150° and 180° for one value of the friction coefficient q equal to q = 1, in Dundurs' paral
lelograms for all the physically interesting material combinations of the wedge and the 
half plane. 
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