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Deformable dielectrics 
I. Field equations for a dielectric 
made of several molecular species 

G. A. MAUGIN (PARIS) 

UsiNG d' Alembert's principle along with the objectivity requirement as starting point, the first 
part of this work develops in a rational manner both local and global field equations for the 
dynamical (continuum) theory of non-magnetized deformable dielectrics (ferroelectrics, etc.) 
made of several molecular species. The continuum is considered to be the assembly of a material 
lattice (substrate of deformations) and n polarization sub-lattices that account for dielectric 
effects. The decomposition obtained for the Cauchy stress allows a discussion and a comparison 
of various theories of deformable dielectrics without restriction on the thermodynamical pro­
cesses. 

Bior~c jako punkt wyjscia zasad~ d' Alemberta oraz i:cldanie obiektywnosci, w pierwszej c~ci 
pracy wyprowadzono w spos6b racjonalny zar6wno lokalne jak i globalne r6wnania pola dy­
.1amicznej (kontynualnej) teorii nie magnetyzowanych odksztalcalnych dielektryk6w (ferro­
elektryk6w itp.) wykonanych z wielu rodzai molekut. Kontynuum rozpatruje si~ tu jako zbi6r 
sieci materialnej (podstawa deformacji) in spolaryzowanych podsieci odpowiadaj'lcych za efekty 
dielektryczne. Otrzymana dekompozycja tensora Cauchy'ego pozwala na dyskusj~ i por6wnanie 
r6i:nych teorii odksztalcalnych dielektryk6w bez ograniczen naktadanych na procesy termody­
namiczne. 

llpHHHMa.fl 3a HCXOJ:lHYIO TOlfl<Y npHHQHII .J:(aJieM6epTa, a TaK>Ke Tpe6oBaHHe 06'bei<THBHOCTif, 

B nepsoii qacrH pa6oTbi BhiBe~eHbi paQHOH:aJILHhiM o6pa30M Tal< JIOKaJILHhie, Kai< H rno6aJib­

Hhie ypaBHeHH.fl DOJI.fl ~HHaM~eCKOH (KOHTHH:YaJILHOH) TeopHH HeMarH;HTHbiX ~e<PopMHpyeMhiX 
~H3Jiei<TpHKOB C<Peppo:mei<TpHKOB "T. n.) cocro~ H3 MHOrHx THIIOB MOJieKyJI. KoHTHHYYM 

pacCMaTpHBaeTC.fl 3~eCb KaK COBOKynHOCTb MaTepHaJILHOH peiiieTKH (OCHOBa ~e<PopMaQHH) 
H n DOJI.flpH30BaH;HbiX llO):lpeiiieTOK OTBeCTBeHHbiX 3a ):lii3JieKTpHqecKHe 3<P<Pei<Tbl. flonyqeH­

HOe B~OH3MeHeHHe TeH3opa KoiiiH n03BOJI.fleT o6cy~L H cpaBHHTb pa3Hbie TeopHH ~e<PopMH­
pyeMbiX ~H3JieKTpHKOB 6e3 orpau~eHHii aaKJia,l:lbiBaeMhiX aa TepMOJ:lHHaMHqecKHe npm.-ecCbi. 

1. Introduction 

THIS work grew out of the author's desire to understand the relationship that may exist 
between the various existing dynamical theories of non-linear elastic dielectrics (mainly the 
works ofToupin, Dixon and Eringen, Tiersten) and linear elastic dielectrics (Voigt's theory of 
piezoelectricity). Having brought these seemingly different theories within a common frame, 
the second aim was to try to give a more comprehensive physical description as far dielectric 
effects are concerned, so that the. different states of dielectricity could be accounted for. 
To fulfill this purpose we consider herebelow that the dielectric is built up of different co­
existing molecular species, each of these giving rise to an electric dipole moment, the sum 
of which yields the only physically observable field, the total volume polarization. For 
the sake of simplicity' the dielectric is assumed to be nonmagnetizable and no chemical 
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680 G.A. MAUGIN 

reactions are assumed to occur between the molecular species. Although we do not account 
for spatial disuniformities in the polarization sub-lattices, this multisub-lattice polarization 
model reproduces the ferroelectric, antiferroelectric and ferrielectric states. 

The method followed in this part (compare Part Ill) to construct the field equations 
is that favoured by P. GERMAIN [6] and the author and eo-workers (e.g. [1, 2]) in previous 
works. That is, all field equations, except Maxwell's equations, are deduced from d' Alem­
bert's principle in which generalized internal forces which account for the interactions are 
formally introduced as eo-factors of objective rates (for more detail see Paragraph 4.1). 
The form of the contributions of Maxwellian fields, especially the ponderomotive force 
and couple, are assumed. The intramolecular-force balance equation that governs each 
polarization sub-lattice is thus deduced on an equal foot with the Cauchy equations of 
motion. A typical decomposition of the Cauchy stress tensor is obtained in which it is 
shown that the interactions with the polarization sublattices participate. It is by playing 
with this decomposition and shifting terms either from or to the electromagnetic stress 
tensor (a nonuniquely defined quantity) that the relationship with other models of defor­
ma.ble dielectrics is exhibited. 

Part two will develop the relevant thermodynamics and the constitutive equations for 
both the non-linear and linear thermoelastic materials. 

2. Results from electrodynamics( 1) 

Let E, B, D, H, P and M be the electromagnetic fields of classical Maxwell's electro­
magnetism expressed in a fixed Galilean inertial frame fJl1G. Then, in Lorentz-Heaviside 
units, 

(2.1) D = E+P, H =B-M. 

Let I, :if and .A be respectively the electromotive intensity-i.e., the electric field expressed 
in a eo-moving frame Blc(x, t)-, the magnetic field in 9fc(x, t), and the volume magnet­
iz~tion in 9lc(x, t). Finally let q1 , J and f be the free-charge density, the total current 
(i.e. the electric current e~pressed in 9l1G), and the conduction current (i.e. the electric 
current expressed in Blc(x, t), respectively. Then, up to terms of the order of {P = (IUI/c)2

, 

where U is the matter velocity and c is the velocity of light in vacuum, one has the following 
relationships: 

(2.2) 
1 

G = E+-UxB, 
c 

(2.3) 
I 

:if= H--UxD, 
c 

(2.4) 
1 

.A= M+-UxP, 
c 

(2.5) J = q,U+f. 

(1) As a rule we use the standard Cartesian-tensor notation in rectangular coordinate frames. The div~ 
ergence ofsecond..order tensors is taken on the last index, e.g. (divt), = t,1, 1 • 
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DEFORMABLE DIELBCTRICS 681 

For the sake of simplicity, we shall consider the case of nonmagnetizable dielectrics, for 
which the magnetization vanishes identically in the eo-moving frame. Then, Eq. (2.4) 
yields 

(2.6) ..1( = 0. 

Furthermore, in a dielectric insulator 

(2.7) q, = 0, J = 0. 

On account of these assumptions Eqs. (2.1), (2.3) and (2.5) yield 

(2.8) H = B-_!_PxU 
c ' 

(2.9) 
1 

J'f = B--UxE 
c ' 

(2.10) J = 0. 

Then, results set forth or established in previous papers of ours for the general electro­
dynamic case [1]-[2] specialize to the following ones: 

(2.11) 

(2.12) 

and 

(2.13) 

(2.14) 

where 

(2.15) 

(2.16) 

(2.17) 

1 • 
rem= -PxB+(P· V)l, 

c 

Cfj = - t[ljj" = - 8 u Pn = - Cj,m, 

1 
G = -ExB, 

c 

Here, rem is the reduced form of the volume ponderomotive force (for non-magnetizable 
dielectrics, and discarding electric quadrupoles) as computed by DIXON and ERINGEN [3] 
from a microscopic model (essentially the Lorentz theory of electrons). cem is the corre­
sponding volume ponderomotive couple. Equations (2.13) and (2.14) are mere identities, 
which allow us to introduce in a non-unique manner the electromagnetic stress tensor 
tfj'' and the electromagnetic-field momentum G. tfj'' is none other than Maxwell's stress 
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• tensor for free electromagnetic fields: Finally, P denotes the convected-time derivative 
of P in such a way that 

(2.18) 
• . aP 
p = p- (P. V) u + p (V. U) = at+ V X (P X U) + u (V. P), 

where the superimposed dot indicates the usual material time derivative. 
Remark that if one defines a new ponderomotive force (as considered by TouPIN [4]) 

by 

(2.19) 
- 1 • 
rem= -(V· P)8+-PxB, 

c 

then, on account of Eqs. (2.15), (2.16) and (2.19), the identity (2.13) transforms to 

(2.20) (em = div t em.J- aG . · at 
Upon comparing Eqs. (2.13) and (2.20), we obtain the following identity: 

(2.21) rem- diV ~m.p S {em- diV tem·/' 

that proves useful in comparing various theories of dielectrics. 
The global energetic identity- for a regular spatial domain 5!1, of E3 bounded by the 

surface a 5!1, of unit outward normal n at time t- obtained by us [2] reduces to the follow­
ing one: 

(2.22) ifem(!!J,) = - j (rem· U +e8 · 'li)dv- J (Tem · U +)" · n)da, 

in which 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

Sit ag, 

uem(!!l,) = f ~ (E2+B2)dv, 
Sit 

Tf"' = - [ttj·"]n1, 

J' = c8xJff, 

7t = P/e, 
e is the matter density at timet. rem is the surface ponderomotive force, the familiar sym­
bolism [ ... ] indicating the jump across a !!I,. J' is the Poynting vector expressed in 9lc(x, t). 
rem and tfj·P have the expressions (2.11) and (2.15), respectively. Alternate forms of 
Eq. (2.22) are 

(2.27) ! f ~ (E2 +B2+28·P)dv=- f (rem·U+P·i)dv- f (Tem.U+J'·n)da, 
~ ~ ~ 

and 

(2.28) if""(r»,) = f ( ~? · U-el· K+ti'j'"'U,.1)dv- J f·ndz. 
Sit aSJt 

These are obtained by straightforward transformations using Eq. (2.13) and a transport 
theorem. 
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Maxwell's equations· within the spatial region !11, read in BIIG: 

(2.29) 

1 aB 
VxE+--=0 V·B=O, 

c at ' 
1 an 

VxH---=0 V·D=O, 
c at ' 

683 

on account of Eqs. (2. 7) 1 and (2.1 0). On account of Eqs. (2.1) 1 and (2.8) and of the second 

expression for P given in Eq. (2.18), the last two of Eqs. (2.29) can also be rewritten as 

(2.30) 
1 aE 1 ~ 

VxB--- = -tr-(V· P)U] 
c at c ' 

V•·E = -V·P, 

which, in agreement with Eq. (2.19), exhibit the role of induced charge density, induced 

convection current and induced conduction current played by -V · P, - (V · P) U and P, 
respectively. In these conditions the ponderomotive force (2wl9) assumes exactly Lorentz's 
form. 

3. The dielectric description 

For the sake of simplicity we consider the following somewhat simplified description -
although it is more involved than any other one heretofore considered in the non-linear 
theory of dielectrics. From the electrical viewpoint the dielectric is viewed as being the 
assembly of n co-existing molecular species(l) ex = 1 , 2, ... , n. Each molecular species 
gives rise to a field of electric dipoles which, when suitably averaged, is represented by 
a volume density P ~ of electrical polarization. The total polarization is thus (in the fixed 
Galilean frame 9t 16) 

(3.1) 
a 

Let e« be the density of ex molecules and ea. the corresponding concentration, i.e., 

(3.2) 

Then we have 

(3.3) 

On the other hand, if e, Ya., na. and Wa. denote respectively the electronic charge, the dipole 
charge per ex-molecule expressed in electronic units, the number of ex-molecules per unit 
volume, and the displacement field which gives rise to electrical polarization within the 
ex-molecule, then 

(3.4) 

(2) There is no necessary one-to-one correspondence between the present sch{matization and a micro­
scopic model at the molecular leveL 
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It is assumed that (i) no chemical reaction occurs between the different molecular species, 
so that there is no mass transfer; (ii) mechanically, the assembly of molecules behaves 
like a single continuum, the volumetric behavior being that of the classical continuum 
(e.g., the substratum of elastic deformations), so that there is no diffusion; (iii) the total 
continuum is everywhere neutral (dielectric). On account of these assumptions we have, 
with Eq. (3.2) and the conservation of charge equation: 

(3.5) ea.= 0, d ( f! ) - 0 - d ( f!a. ) 
dt q; - - dt qa. ' V·wa. = 0, 

of which the latter is a generalization of the condition set forth by TIERSTEN [5], but 
is in no way essential. 

The natural time rate of n~ is~. However, an objective time rate is obtained by con­
sidering the Jaumann eo-rotational derivative: 

(3.6) (Ilx)t = na.~- DtJl'laJt D,i = Urt,JJ. 

If necessary, one can also introduce the objective convected-time derivative Pa. defined 

as in Eq. (2.18) but for each Pa.. Then it is a simple matter to show that Pa. and :dx are 
related by the equation 

" . 
(3.7) C1cxnai = Pa.tHa.DiJna.b Dt} = u(i,j)• 

4. Field equations 

4.1. The principle of virtual power 

We proceed to deduce both local and global equations that govern the motion of the 
dielectric and the polarization fields of the molecular species from a unique principle, the 
virtual power principle in the form used by P. GERMAIN [6] and the author [1, 7, 8]. We 
do not repeat here in detail its justification and the manner in which the different virtual 
powers are constructed. All that need be recalled is that, in order to guarantee the objectiv­
ity (or material frame indifference) of the generalized internal forces for which {)ne ulti­
mately needs to construct constitutive equations, the virtual power of intemal forces 
ought to be written as a linear functional on a set of adequate objective time rates. In the 
present case where the description is based on the classical motion and the different mole­
cular species, the fundamental generalized velocity field is v = {U, 1ia.; a = 1 , 2, ... , n}, 
whereas the objective set of generalized velocities needed to describe non-linear elastic 
dielectrics is 

(4.1) 

or, for instance, since such a set is not unique 

(4.2) 
- . 
'f'"obJ = {DiJ, Pa.; a= 1, 2, ... , n}. 
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Following previous works [7, 8], we shall use the set (4.1) to start with. Remark that 
there is no such requirement of objectivity as regards the volume forces, the surface or 
contact forces, and the inertia forces, which are therefore introduced as eo-factors in linear 
functionals on the sets "Y = {U, VU, it«; ex = 1, 2, ... , n }, and v, respectively. Proceeding 
as in [7 and 8], we thus set the expressions of the virtual power of internal, volume and 
contact forces, respectively, &'<1,, &'<u> and &'<eh for the whole region!», bounded by o!»" as 

(4.3) &'~>(!»,) = - J (uiiD~-e.E c« LE(X • ft!)dv, 
~t (X 

(4.4) &'iv>(!»,) = f (r · U* -tftP uti+ .E !?«8 · it:)t~v, 
gt (X 

(4.5) &'~c>(o!»,) = J (T · U*)da. 
o!ir 

Here an asterisk indicates a virtual generalized velocity field or the value of an expression 
in such a field. Signs are chosen, and !?« is introduced, for convenience. In Eq. (4.3) the 
generalized internal forces are introduced via the duality inherent in the method. rfiJ = u11 
is called the intrinsic stress tensor, whereas the fields LE«, ex = 1, 2, ... , n, whose dimension 
is that of an electric field, will be referred to as the local electric fields. In Eq. (4.4}, f is 
a volume body force of non-electromagnetic origin (e.g., gravity), tfj·P is the electromagnet­
ic stress tensor defined by Eq. (2.15), and 8 is given by~· (2.2). Finally, T is a purely 
mechanical surface traction (either a prescribed quantity or an unknown to be determined 
by solving a well-posed problem). We have anticipated the forthcoming results in discarding 
any polarization traction on o!»,. . 

To express the virtual power of inertia forces one must remark that three kinds of 

inertia can be distinguished: the classical inertia eti, the inertia of the electromagnetic 
fields which, since we chose to use the tensor (2.15), is none other than oGfot, and the 
inertia possibly associated with the internal deformation of the molecules. A simple ex­
pression for the latter is derived in the appendix. Consequently, the virtual power of inertial 
forces for the whole body is written down in the form 

(4.6) 11}J* <(M) - J [( . -1 aG). * ~ d .. . • •] ..~. .::::r<a> =u, - e U+e Tt U + ~ c« «n« 7t« av, 
~ IX 

where (see the appendix) 

(4.7) 

Then, for an absolute Newtonian chronology and in a Galilean inertial frame, the total 
virtual power .of inertial forces is balanced by that of all other types of forces, internal or 
external (d'Alembert's principle). That is, 

(4.8) 

at all times and for arbitrary virtual velocity fields. 
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4.1. Local field equations 

The expression (4.8) is posited to hold true for arbitrary virtual . velocity fields U* 
and it! at all points within ~t and on a !fit, provided these manifolds are sufficiently regular. 
On account of Eqs. (2.13), (2.24) and (3.6), we are led to the following results: 

THEOREM. The local field equations that govern the motion and the molecular polar­
izations in the dynamical theory of deformbale non-magnetizahle dielectrics made of several 
molecular species are 

(4.9) 

(4.10) 

(4.11) 

with 

(4.12) 

(4.13) 

. 1 * 
eU = divt+f+-PxB+(P· V)8 in~, 

c 

1i + Tf"' = t;1 n1 on a~, 

«f+L.Eat = dcx;tcc in ~1 , ex::::; 1, 2, ... , n, 

t,j = O'tj+tmi, 

t iNT- ~ LE 
ij = l? .L..J Ccz t1.i1'tczj • 

cc 

Equation ( 4.9) is none other than the local statement of the Euler-Cauchy equation of 
motion. Equation (4.10) is the associated boundary condition. t0 is the .Cauchy stress 
tensor, which does· not account for the electromagnetic forces. However, as is shown by 
Eq. (4.12), it includes a part, referred to as the interaction-stress tensor(l), which accounts 
for the presence of the different polarization fields. The interactions between these polar­
izations and the usual crystal lattice in fact are represented by the fields LEac. From Eq. (4.12) 
it follows at once that 

(4.14) 

The second of these equations can be considered to be the local statement of the balance 
law of moment of momentum, since it defines the skew-symmetric part of tbe Cauchy 
stress. The fact that this statement here follows immediately is a clear consequence of the 
fact that expression ( 4.3) has been written while taking account of the objectivity require­
ment. Further comments on Eq. (4.14h are made in Sect. 5. 

Equation (4.11) resembles Newton's law of motion and can in fact be referred to as 
the motion equation for the "continuum" of ex-molecules. Indeed, on account of drx. - the 
molecular polarization inertia- and of Eqs. (3.5)1 and (3.4), Eq. (4.11) can be rewritten as 

(4.15) 

This is the equation of motion of a system of charge qrx., per unit volume, on which are 
acting ·both the electromotive intensity 8 due to external· sources, and the local electric 
field LEcc due to the presence of the crystal lattice and the other molecular species. For 
historical reasons recalled in Part 11, Eq. (4.15) or (4.11) is called the intramolecularforce 
balance law for the ex-coq1ponent of the dielectric. 

(l) This notion of interaction in continua is dealt with· by us in another paper · [9]. 
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To form the complete set of local field equations Eqs. (4.9)-(4.11) must be supple­
mented with Maxwell's equations (2.29) and the associated boundary conditions, the 
continuity equation 

(4.16) !_g_ +V· (eU) = 0 or e +eD"" = 0 in !?Jr, at 
and a local statement of the energy equation (which yields the heat conduction equation). 
The latter, as well as the constitutive theory for the fields a;1 and LE01 , will be discussed 
in Part Two. 

4.3. Global field equations 

A. Balance of momentum. Consider Eq. (4.8) and the following virtual velocity field: 

(4.17) U*(x, t) = U(t), vU= 0, it:= 0, V a, 

throughout jr ( = closure of !?Jr). Then B'ro (~,) = 0 since D1~ = iJ<,,J> = 0 and D: = 0 

for all ex. The resulting equation (4.8), valid for all spatially uniform fields U. yields after 
using Eq. (2.13) and a transport theorem 

(4.18) 

where 

(4.19) g = GJe, i = T+eg(U·n) . 

Equation (4.18) is the global balance law of momentum. Due to the fact that we intro­
duced the momentum of the electromagnetic fields, g, per unit mass in order that the 
left-hand side of Eq. (4.18) be written in the form of a total time derivative, the contact 
force had to be redefined in agreement with Eq. (4.19)2 • This in fact results from a rede­
finition of the electromagnetic stress tensor. Indeed, the following identity can be derived 
in lieu of Eq. (2.13) or (2.20). Using Eqs. (4.19)1 and (4.16), one shows that 

(4.20) . aG d" ( U) eg = Tt + •v G® . 

Bearing in mind that rem is, from our viewpoint, the only meaningful quantity related 
to the average of Lorentz's theory of electrons, and that . the notions of electromagnetic 
stress tensor, electromagnetic momentum, and surface ponderomotive force are only 
secondary notions introduced through identities, Eq. (2.13) can be rewritten as 

(4.21) 

on account of Eq. (4.20). It is then readily shown that, from Eqs. (4.18), (4.19) and (4.21), 

follow both Eqs. (4.9) and (4.10) if one applies the tetrahedron argument, so that T; = i,,n, 
on ()~t with t7i =: tii+tfj"P+G;U1 . 
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B. Balance of moment of momentum. Consider Eq. (4.8) and the following particular 
virtual velocity field : 

ur(x, t) = ii,1(t)xb liij = -D1i, li11," = o, 
(4.22) n:1(x, t) = D1j(t)na.1, V a.' 

throughout ?it. Then &'~> (?J,) = 0 again is readily checked, whereas the remainder 

of Eq. (4.8) valid for all spatially uniform fields DiJ is shown to yield the following global 
equation after some rearrangement: 

(4.23) ! J {e(U[i+gu)x11 +eSJ.f>}dfJ = J (f[,xn+eguCJ.iJ)dfJ+ J (T[ixn)da. 
~ ~ ~ 

This is the global balance law of moment of momentum, in which 

(4.24) S[y> = .2,; Ca. da. na.[i na.J] = - SJJ> 
a. 

is the spin angular momentum tensor that results from the molecular-polarization inertia. 
On account of the local form ofEq. (4.18) it is easily shown that the local form ofEq. (4.23) 
reads thus 

(4.25) 

where tiJ and cfj are the fields defined by Eqs. (4.12) and (2.14), respectively. Here, there 
is no need to use the tetrahedron argument, since no surface couple participates in the 
statement (4.23). There is no contradiction between Eq. (4.25) and Eq. (4.14)2 , for the 
former can be deduced from the latter and Eqs. (4.11) in the following manner. For a given 
IX take the tensor product of Eq. (4.11) with ea.'lta., and then the skew-symmetric part of 
the resulting tensorial equation. One obtains by summing over IX: 

(4.26) e .2,; Ca. LEa.[ina.j]-8[1 (1; ecxnczj]) = eSJf>. 
a. a. 

On account of Eqs. (3.2), (2.14), (4.13) and (4.12) this is nothing but Eq. (4.25), QED. 
C. Global balance laws governing the molecular polarizations. Consider Eq. (4.8) and 

the following particular virtual velocity field(4 ) 

U*(x, t) = U(t), VU = o, 
n:(x, t) = Acz(t), VAcz = 0, 

(4.27) 

throughout ~~, where one has selected a particular IX so that all other ic~ = 0 for {J :1: IX. 

Then B't0 is reduced to the form 

(4.28) &Jto(?l,) = Acz · J e,LE,.dfJ. 
!J, 

('') Of course, one can also select a field if vanishing everywhere in E?,, so that the statement (4.8) be­
comes that of the ,principle of virtual power" for a rigid body. 
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The first of Eqs. (4.27) again yields Eq. (4.18), whereas the remainder of Eq. (4.8) valid 
for arbitrary spatially uniform A~~. yields the global equation (IX fixed): 

(4.29) ! f (!Crzd«it«dv = f f!rz(I+LE11)dv, 
s, !lt 

of which the local form naturally is Eq. (4.11). The same procedure is repeated for all 
IX = 1 , 2, ... , n, so that one gets n equations of the type ( 4.29) for the n molecular species. 
Although the physical significance of the local equation ( 4.11) was made clear via Eq. ( 4.15), 
the meaning of Eq. (4.29) is as yet unclear. 

D. The principle of virtual power for real velocity fields. Consider now that the virtual 
fields that appear in the general expression (4.8) are none other than the present fields 
(no asterisk), at timet, which are the solutions of a well-posed problem. Then Eq. (4.8) 
can be rewritten in the following form: 

(4.30) K(~r)+ J ~~ · Udv = 9lt<i>(~r)+.9<.,>(~,)+9<c>(a!'J,), 
as, 

where the total kinetic energy is defined as 

K(~,) = J ~ e (u2 + ~ c«d«it~) dv. 
!lt at 

Upon combining Eq. (4.30) with the energetic identity (2.28), one obtains the following 
energetic expression: 

(4.31) ~ {K(~,)+Uem(~,)} =&'<i>(~r)+ jf·Udv+ J (T·U-.f·n)da. 
s, as, 

Remark that this is not the statement of the first principle of thermodynamics. This com­
pletes the exploitation of the virtual power principle (4.8), per se. To proceed further one 
must combine it with the global statements of the first and second principles of thermo­
dynamics. (See Part Two). To conclude this section, it can in fact be remarked that the 
virtual power principle used herein above is of essentially mechanistic nature and is not 
a general energy principle (for instance, Maxwell's equations cannot be deduced from it). 
However, in contrast to Lagrangian and Hamiltonian principles, d' Alembert's principle 
allows one to deal with general thermodynamical processes (e.g., no hypotheses have been 
made with regard to the thermodynamical behaviour of the fields a11 and LE« which may 
present dissipative contributions). 

5. Relationship with other theories of deformable dielectrics 

First, one may think of eliminating the interaction fields LEcx between Eqs. (4.9) and 
(4.11). To this purpose it is convenient to define the following symmetric tensor: 

(5.1) Er,1 = r~1 -tffT = ·aij-rmr = Er1,. 

From Eqs. (4.11) it follows that 

(5.2) 
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Substituting from t11 in Eq. (4.9) and taking account of Eqs. (5.1), (5.2), (2.13) and (2.15) 
one obtains the following expression for the Euler-Cauchy equations: 

(5.3) eU+ ~~ = div(Et+te"'·f)+f+e ~ Cczdcz[(1tcz' V>*«+iicz(V. 7tcz)J. 
ot 

It can be shown in the case of non-linear elastic bodies (Cf. Part 2) that Et11 no longer 
contains the interaction fields LE11 • Thus, at least for this case, the interactions LE« no 
longer participate in the motion equation (5.3). However, when there are several mol~­
cular species, we still have to consider the equations (4.11) for, obviously, by summimg 
over ex, we have lost much information. That is, the three scalar equations represented 
by Eq. (5.3) cannot replace the 3(n+ 1) scalar equations represented by Eqs. (4.9) and (4.11). 
One may however inquire in what conditions this equivalence holds true. Obviously, this 
is so if there is only one polarization continuum, for instance, when one considers only 
electronic polarization, in which case Eqs. (5.3) and (4.11) are reduced to (de= electronic 
polarization inertia; cf. Appendix) 

(5.4) eU+ ~~ = div(st+~"'·f)+ede[(n ·V)ii+ii(V · n)]+f, 

and 

(5.5) I+LE =dei, 

where there exists only one interaction field LE. Then the relationship with theories prev­
iously set forth by several authors is made clear. If polarization inertia is discarded­
.de= 0- then, using the identity (2.20), Eq. (5.4) takes on the form 

(5.6) eii = divEt+f +fem, 

where fe'" has the expression given by Eq. (2.19). Eq. (5.6) is the Cauchy equation of 
Toupin's [4] theory (See also DIXON and ERINGEN [3]). If, furthermore, magnetic induction 
is discarded (i.e., in quasi-electrostatics), then Eq. (5.4) reduces to 

(5.7) eir = div(st+~"'·f)+f, 
or 

(5.8) eiJ = divt+f + (P ·V) E. 

The Kelvin force (P · V)E of Eq. (5.7) can also be written as (VE) · P on account of Max­
well's electrostatic equation V x E = 0. By the same token Eq. (5.5) is reduced to 

(5.9) E+LE = 0. 

Equation (5.7) is Cauchy's equation as considered by ERINGEN [10] and SUHUBI [11], 
whereas ;Eqs. (5.8) and (5.9) are the equations ofTIERSTEN [5]. Eq. (5.9) was also considered 
in the pioneering work of TouPIN [13]. Thus all previously given theories of non-linear 
elastic dielectrics (excluding polarization gradients and electric quadrupoles) appear to be 
special cases of the present one (at' least, as far as Cauchy's equation and the balance 
equation of the type (4.11) are concerned, but the statement holds true also for the thermo­
dynamical considerations; cf. Part2). A final r~mark, however, is in order, for the different 
formulations, although mathematically equivalent in their respective frame of approxi-
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mation, do not bear the same conceptual and physical significance. In the formulations 
(5.4), (5.5) and (5.6) the notion of interaction or local electric field has disappeared. This 
fact yields a common misunderstanding. Explicitly, since only symmetric stress tensors­
such as Et11 and tij"'·l- remain in the formulations, one is tempted to say that the stress 
tensor is symmetric and that there do not exist volume couples in such dielectrics. However, 
the tensor Etii is not to be mistaken for the Cauchy stress(5), the latter still being non-sym'­
metric according to Eq. (4.12) or (4.14)2 , of which the latter is equivalent to Eq. (4.25) 
in the general case and reduces to the equations t£1i1 = P£1811 or t011 = P£1 El1 depending 
on whether one considers the simplified case of Eq. (5.5) or (5.8), respectively. In these 
last two cases the asymmetry of tiJ is caused or balanced by the ponderomotive couple, 
a notion absolutely necessary if one desires to understand the phenomenon of electric­
dipole orientation in an applied electric field. That is, the medium considered is polar in 
spite of the absence of couple stresses. 

Appendix 

We determine the inertia associated with the internal deformations of the · molecular 
species. If m« is the mass set in motion within the a-molecule in the process of its polari­
zation then, per unit volume which contains iz« a-molecules and a = 1 , 2, ... , n different 
molecular species, the corresponding kinetic energy due to the dipole displacements Wee is 

(A.1) 

On account of Eqs. (3.4) and (3.5), (A.l) is rewritten as 

(A.2) k(P) - n ~ _!_ C d .;,.2 
- 1::" .L.; 2 11 «""Cl' 

ot 

where the a-molecular-polarization inertia d« is defined as 

(A.3) d« = (~)
2 

= (~)
2 

eY« q« 

Equivalently, if K« is the spring constant related to the displacement w« in the mechanical 
model of polarization, and if A« denotes the polarizability of the a-molecular species in 
such a way that A« = (eY«)2 /K11 , then d« = m~/A11K11 • Furthermore, if electrons only 
are accounted for, then Y« = 1 and d11 goes to de= (m0 fe) 2 , which is the value considered 
by MAUGIN and COLLET in a previous work [13]. Finally, it is clear that the virtual power 
associated with the kinetic energy k<f> is 

(A.4) PiP>« = ec«d«1t« · -n:, 
so that, for a real field (no asterisk), 

- d (k<P>f ) P<P)« = e di « e · 

(') That, is the equation Et[l}] = 0 is not to be mistaken for tlw local statement of the balance of mo­
ment of momentum, but is only an algebraic identity resulting from the very definition (5.1). 
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