On the initial value problem in non-linear thermoelasticity

Z. DOMAŃSKI and A. PISKOREK (WARSZAWA)

Abstract

The initial value problem for the dynamic equations of non-linear thermoelasticity is solved in the Sobolev space. This problem is reduced to the initial value problem for the wave equation and to the initial value problem for the non-linear system of the heat equation and the wave equation. Then, using the principle of contraction mapping a solution to the problem under consideration is found.

Problem początkowy dla równań dynamiki nieliniowej termosprężystości został rozwiązany w przestrzeni Sobolewa. Problem został sprowadzony do zagadnienia poczatkowego dla nieliniowego równania przewodnictwa ciepła i równania falowego. Wykorzystując następnie zasadę odwzorowania zwężającego znaleziono rozwiązanie rozważanego problemu.

Начальная задача для уравнений динамики нелинейной термоупругости решена в пространстве Соболева. Задача сведена к начальной задаче для нелинейного уравнения теплопроводности и для волнового уравнения. Затем используя принцип отображения сжатия найдено решение рассматриваемой проблемы.

We consider Shalov's basic equations of continuum mechanics (see [7], p. 919, Eqs. (30), (31)) in the following form:

$$
\begin{gather*}
\nabla_{k} \sigma^{k l}-\varrho \partial_{t} x^{k} \nabla_{k} \partial_{t} x^{l}-\varrho \partial_{t}^{2} x^{l}=F^{l}, \quad l=1,2,3 \tag{1}\\
c_{\varepsilon l j} \partial_{t} T-\hat{\nabla}_{k} \wedge \frac{\partial T}{\partial \xi^{k}}+\left(q^{k l}+T-\frac{\partial p^{k l}}{\partial T}\right) e_{k l}=\varrho Q^{e} \tag{2}
\end{gather*}
$$

where $\sigma^{k l}$ is the symmetric stress tensor, ϱ - the mass density, T - the local absolute temperature, x^{l} - the function of motion, which determines the spatial position occupied by the material point at time t (Euler's coordinates), $\nabla_{k}=\partial / \partial x^{k} \pm \Gamma_{k l}^{\prime}$ - covariant derivative, ξ^{k} - Lagrangian coordinates of the material point, $\hat{\nabla}_{k}=\partial / \partial \xi^{k} \pm \hat{\Gamma}_{k}^{\prime}$ covariant derivative with respect to the Lagrangian coordinates, F^{l} and Q^{e} are the body force and the intensity of heat sources respectively, $p^{k l}$ is the part of the stress tensor, which is independent of the velocity $e_{k l}$ of the strain tensor $\varepsilon_{i j}$ (cf., [7], p. 915, formula (14)), and $q^{k l}=\sigma^{k l}-p^{k l}, c_{\varepsilon_{\ell,}}$ - the specific heat at constant deformation, \wedge - the coefficient of heat conduction.

For the sake of simplicity we assume (cf., [7], p. 920) that

$$
x^{l}=\xi^{l}+u^{l}(\xi, t), \quad l=1,2,3,
$$

where u^{l} is the displacement vector field of the medium.
Now, the Eqs. (1), (2) can be written as

$$
\begin{gather*}
\hat{\nabla}_{k} \sigma^{k l}-\varrho \partial_{t}^{2} u^{l}=F^{l}, \quad l=1,2,3, \tag{3}\\
c_{\varepsilon_{l}} \partial_{t} T-\hat{\nabla}_{k} \wedge \frac{\partial T}{\partial \xi^{k}}+\left(q^{k l}+T \frac{\partial p^{k l}}{\partial T}\right) e_{k l}=\varrho Q^{e} . \tag{4}
\end{gather*}
$$

In the case of a homogeneous, isotropic, thermoelastic medium where the familiar relation of Duhamel-Neuman (cf., [8], formula (2.25), p. 320) is used in the form

$$
\begin{equation*}
\sigma^{k l}=\left(\lambda \hat{\nabla}_{j} u^{j}-\gamma T\right) g^{k l}+2 \mu \varepsilon^{k l} \tag{5}
\end{equation*}
$$

where λ, μ are the two Lamé constants of the medium, $\gamma=(3 \lambda+2 \mu) \cdot \alpha_{t}, \alpha_{t}$ is the linear coefficient of thermal expansion, $g^{k l}$ - the metric tensor and $\varepsilon^{k l}=\left(g^{k i} \hat{\nabla}_{i} u^{l}+g^{l i} \hat{\nabla}_{i} u^{k}\right) / 2$, from Eqs. (3), (4) under assumption $q_{i}^{k l}=0$ we obtain

$$
\begin{gather*}
\lambda g^{k l} \frac{\partial}{\partial \xi_{i}^{k}}\left(g^{-1 / 2} \frac{\partial}{\partial \xi^{m}}\left(g^{1 / 2} u^{m}\right)\right)-\gamma g^{k l} \frac{\partial T}{\partial \xi^{k}}+\mu\left(g^{k m} \hat{\nabla}_{k} \hat{\nabla}_{m} u^{l}+g^{k l} \hat{\nabla}_{m} \hat{\nabla}_{k} u^{m}\right) \tag{6}\\
-\varrho \partial_{t}^{2} u^{l}=F^{l}, \quad l=1,2,3, \\
c_{s_{i j}} \partial_{t} T-\wedge g^{-1 / 2} \frac{\partial}{\partial \xi^{l}}\left(g^{1 / 2} g^{l m} \frac{\partial T}{\partial \xi^{m}}\right)+\gamma T g^{l m} \partial_{t}\left(\hat{\nabla}_{l} u_{m}+\hat{\nabla}_{m} u_{l}\right) / 2=\varrho Q^{e},
\end{gather*}
$$

where $g=\operatorname{det}\left(g_{k l}\right)$ and $g_{k l}$ are covariant components of the metric tensor $g^{m n}$.
Now, we assume that the coordinates ξ^{l} are rectangular and we set $\xi=x$. In these coordinates the Eqs. (6), (7) have the following form

$$
\begin{gather*}
\mu \Delta u+(\lambda+\mu) \operatorname{grad} \operatorname{div} u-\gamma \operatorname{grad} T-\varrho \partial_{t}^{2} u=F, \tag{8}\\
x^{-1} \partial_{t} T-\Delta T+\eta T \operatorname{div} \partial_{t} u=\frac{\varrho}{\lambda} Q^{e}, \tag{9}
\end{gather*}
$$

where $x=\Lambda / c_{\varepsilon_{i J}}, \eta=\gamma / \Lambda$.
These last equations were given by W. Nowacki in [5]. From Shalov's concepts of continuum mechanics [7] it follows that the natural functional spaces in which one finds the solution of initial-boundary value problems is (cf. [7], p. 918, definition 3) the family of Sobolev's spaces $H^{s}\left(=B_{2, k}\right.$ in the notation of [3], Chapter II, where $k_{s}(\xi)$ is the temperate weight function defined by $\left.k_{s}(\xi)=\left(1+|\xi|^{2}\right)^{s / 2}\right)$.

For the Eqs. (8), (9) we consider the initial value problem in the half-space-time R_{4}^{+} (cf. [6], p. 993) with the initial conditions

$$
\begin{equation*}
u(x,+0)=u^{\circ}(x), \quad\left(\partial_{t} u\right)(x,+0)=u^{1}(x), \quad T(x,+0)=T_{0}(x), \tag{10}
\end{equation*}
$$

where u^{0}, u^{1} are the given vector fields of classes $\left({ }^{1}\right) H^{s}\left(\mathrm{R}_{3}, \mathrm{R}_{3}\right) H^{s-1}\left(\mathrm{R}_{3}, \mathrm{R}_{3}\right)$ respectively for $s>\frac{3}{2}+r, r$ some positive integer $\geqslant 4$, and T is the given scalar function of class $H^{s}\left(\mathrm{R}_{3}, \mathrm{R}_{1}\right)$.

For the sake of simplicity we assume that the body forces F and the intensity Q^{e} vanish in R_{4}^{+}.

Under the foregoing assumption we seek the solution u, T of the initial value problem for the Eqs. (8), (9) with the conditions (10) in the class $\left({ }^{2}\right) C\left([0, \vartheta], H^{s}\right)$.

[^0]Using Helmholtz's decomposition $u=v$ - grad ϕ we reduce (cf. [6], p. 994, formulae (4), (5), (6)) the initial value problem for the Eqs. (8), (9) with the conditions (10) under the assumptions $F=0=Q^{e}$ to the following initial value problems:

$$
\begin{gather*}
L_{a} v=0, \quad v(x,+0)=v^{0}(x), \quad\left(\partial_{t} v\right)(x,+0)=v^{1}(x), \tag{11}\\
x^{-1} \partial_{t} T-\Delta T=\eta T \Delta \partial_{t} \phi, \quad T(x,+0)=T_{0}(x), \tag{12}\\
L_{b} \phi=\frac{\gamma}{\varrho} T, \quad \phi(x,+0)=\varphi_{0}(x) ; \quad\left(\partial_{t} \phi\right)(x,+0)=\varphi_{1}(x) . \tag{13}
\end{gather*}
$$

Here L_{j} for $j=a, b$, the propagation speeds a, b of shear and compressional waves respectively, and the initial data φ_{k}, v^{k} for $k=0,1$ are defined by

$$
\begin{align*}
L_{j} & =\partial_{t}^{2}-j^{2} \Lambda, \quad a=(\mu / \varrho)^{1 / 2}, \quad b=((\lambda+2 \mu) / \varrho)^{1 / 2}, \tag{14}\\
\varphi_{k}(x) & =-(4 \pi)^{-1} \int_{R_{3}}|x-y|^{-1}\left(\operatorname{div} u^{k}\right)(y) d y, \quad v_{k}=u^{k}-\operatorname{grad} \varphi_{k} .
\end{align*}
$$

Remark 1. The initial data φ_{k} for $k=0,1$ belong to the classes $H^{s+1}\left(\mathbf{R}_{3}, \mathbf{R}_{1}\right)$, $H^{s}\left(\mathrm{R}_{3}, \mathrm{R}_{1}\right)$ respectively. This follows from the assumptions on $u^{\boldsymbol{k}}$ and some integral representation of φ_{k} for $k=0,1$ (see [6], p. 994, formula (7) and [4], p. 31). The initial data \boldsymbol{v}^{k} for $k=0,1$ belong to the classes $H^{s}\left(\mathrm{R}_{3}, \mathrm{R}_{3}\right), H^{s-1}\left(\mathrm{R}_{3}, \mathrm{R}_{3}\right)$ respectively. This follows immediately from Helmholtz's decomposition and the regularity of u^{0}, u^{1} and φ_{0}, φ_{1}.

The initial value problem (11) is the classical initial value problem for the wave equation (cf. [9], pp. 161-163, 168-190) and its solution takes the explicit form

$$
\begin{equation*}
v=G_{a}{ }^{*}{ }_{3} v^{1}+\left(\partial_{t} G_{a}\right){ }_{3}{ }_{3} v^{0} . \tag{15}
\end{equation*}
$$

Here $G_{a}(x, t)=\left(4 \pi a^{2} t\right)^{-1} H(t) \delta(a t-|x|)$ is the fundamental solution for the wave equation $L_{a} v=0, H$ denotes Heaviside's function, δ is the one-dimensional Dirac delta distribution and ${ }_{3}$ denotes the three-dimensional convolution.

In order to solve the initial value problem for the Eqs. (12), (13) we may assume $b=1$ without loss of generality, and then we reduce this problem to the following equivalent problem

$$
\begin{gather*}
\partial_{t} U=A^{j} \partial_{j} U+\theta, \quad U(x,+0)=U^{0}(x) \tag{16}\\
x^{-1} \partial_{t} T-\Delta T-\left(\eta \Delta U_{4}\right) T=0, \quad T(x,+0)=T_{0}(l) \tag{17}
\end{gather*}
$$

where (16) is the symmetric hyperbolic first order system (see [2], pp. 588-589) with the vector functions

$$
U=\left[\begin{array}{l}
U_{1} \\
U_{2} \\
U_{3} \\
U_{4}
\end{array}\right], \quad \theta=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\frac{\gamma}{\varrho} T
\end{array}\right]
$$

and the given initial data

$$
U^{0}=\left[\begin{array}{c}
\partial_{1} \varphi_{0} \\
\partial_{2} \varphi_{0} \\
\partial_{3} \varphi_{0} \\
\varphi_{1}
\end{array}\right]
$$

here $\partial_{j}=\partial x_{j}$.
Let $\left\|\|_{s}\right.$ denote the H^{s}-norm (cf. p. 674) for function U^{0} defined on R_{3} taking values in \mathbf{R}_{4}, let X be the set of continuous curves (see, p. 674, the footnote ${ }^{2}$)) $\Omega:[0, v] \rightarrow$ $H^{s}\left(\mathrm{R}_{3}, \mathrm{R}_{4}\right)$ such that $\Omega(0)=U^{0} \in H\left(\mathrm{R}_{3}, \mathrm{R}_{4}\right)$ and $\left\|\Omega(t)-U^{0}\right\|_{s} \leqslant M$ for $0 \leqslant t \leqslant \vartheta$. Thus, X is a complete metric space and we define S

$$
X_{\ni} \Omega \rightarrow(S \Omega)(t)=U^{0}+\int_{0}^{t} A^{j} \partial_{j}(S \Omega)(s) d s+\int_{0}^{t}\left[\begin{array}{c}
0 \tag{18}\\
0 \\
0 \\
\left(\frac{\gamma}{\varrho} G_{\Delta \Omega_{4}{ }_{3}} T_{0}\right)(s)
\end{array}\right] d s
$$

where the integration is done as a curve in $H^{s-1}\left(\mathrm{R}_{3}, \mathrm{R}_{4}\right)$ and $G_{\Delta \Omega_{4}}$ denotes the fundamental solution of the generalized heat equation $x^{-1} \partial_{t} T-\Delta T-\left(\eta \Delta \Omega_{4}\right) T=0$.

Remark 2. If a continuous curve $V:[0, \vartheta] \rightarrow L^{q}\left(\mathrm{R}_{N}\right)$ for $q>N / 2$ is given, then, fundamental solution G_{V} of the generalized heat equation $\partial_{t} T-\Delta T-V T=0$ has the form

$$
\begin{equation*}
G_{V}(x, y, t)=\Gamma(x-y, t) \omega(x, y, t) \tag{i}
\end{equation*}
$$

Here, Γ is the fundamental solution of the heat equation (cf. [6], p. 995 formula (12) for $x=1$), belongs to $L^{\infty}\left(\mathrm{R}_{N}\right) \otimes L^{\infty}\left(\mathrm{R}_{N}\right) \otimes L^{\infty}(0, \vartheta)$ and satisfies the following integral equation:

$$
\begin{equation*}
\omega(x, y, t)-(\Gamma(x-y, t))^{-1} \int_{0}^{t} \int_{\mathrm{R}_{N}} \Gamma(x-z, t-s) V(z, s) \Gamma(z-y, s) \omega(z, y, s) d z d s=1 \tag{ii}
\end{equation*}
$$

For this fundamental solution the following estimate holds:

$$
\begin{equation*}
\left\|G_{V_{1}}(x, \ldots, t)-G_{V_{2}}(x, \ldots, t)\right\|_{L^{1}}=C\left\|V_{1}(t)-V_{2}(t)\right\|_{L^{q}} . \tag{iii}
\end{equation*}
$$

The proof of this remark is easy and quite the same as for the corresponding statements in Lemmas 1.1 and 1.2 of [1].

Using Young's inequality and the fundamental property (iii) for $V_{1}=\Delta \Omega_{4}, V_{2}=0$, $q=2$ we obtain

$$
\begin{equation*}
\left.\| G_{\Delta \Omega_{4}}{ }_{3}{ }_{3} T\right)(t)\left\|_{5} \leqslant C\right\| \Delta \Omega_{4}(t)\left\|_{L^{2}}\right\| T_{0} \|_{s} \tag{19}
\end{equation*}
$$

Now, from the linear theory of first order symmetric hyperbolic systems it follows that there is such a unique map $S: X \rightarrow X$, namely for $\Omega \in X$ the unique solution W of the system

$$
\partial_{t} W=A^{j} \partial_{j} W+\left[\begin{array}{c}
0 \tag{20}\\
0 \\
0 \\
\frac{\gamma}{\varrho} G_{\Delta \Omega_{4}}{ }^{*} T_{3} T_{0}
\end{array}\right], \quad W(0)=U_{0}
$$

is exactly $S \Omega=W$ and belongs to X if ϑ is sufficiently small. In fact, for $\Omega \in X$ and $T_{0} \in$ $H^{s}\left(\mathrm{R}_{3}, \mathrm{R}_{1}\right)$ from the energy estimate (see [2], p. 647-650) of the solution W and the inequality (19) we conclude that S maps X into X if ϑ is sufficiently small.

Let Y be the completion of X with respect to the norm $\left\|\|_{s-1}\right.$. Now, we note that by virtue of the energy estimate (see[2], p. 650, formula (12a)) and inequality [iii] the map $S: X \rightarrow X$ if ϑ is sufficiently small, is a contraction mapping in the H^{s-1}-topology, i.e., for $\Omega, \Omega \in X$ and sufficiently small

$$
\begin{equation*}
\|(S \Omega)(t)-(S \tilde{\Omega})(t)\|_{s-1} \leqslant p\|\Omega(t)-\tilde{\Omega}(t)\|_{s-1} \tag{21}
\end{equation*}
$$

with $p<1$.
Thus S extends to concentration mapping on the complete metric space Y, therefore, by the contraction mapping principle S has a unique fixed point U in Y, i.e. $S U=U$, a solution in $C\left([0, \vartheta], H^{s-1}\right)$ of the initial value problem for the Eqs. (16), (17) when $T=$ $=G_{\Delta U_{4}}{ }_{3} T_{0}$. By standard technique (differentiation with respect to $x=\left(x_{1}, x_{2}, x_{3}\right)$ the Eqs. (16)) it can be easily seen that the fixed point U is in fact in $C\left[(0, \vartheta], H^{s}\right)$. From Helmholtz's decomposition, formula (15) and the existence of a fixed point of map S it is clear that the vector field u and the scalar function $T=G_{\text {div }_{t} u}{ }^{*}{ }_{3} T_{0}$ satisfy the Eqs. (8), (9) and the initial conditions (10). Then we deduce the following

Theorem 1. Let u°, u^{1} be vector fields of classes $H^{s}\left(\mathrm{R}_{3}, \mathrm{R}_{3}\right) H^{s-1}\left(\mathrm{R}_{3}, \mathrm{R}_{3}\right)$ respectively and let T_{0} be a scalar function of class $H^{s}\left(\mathrm{R}_{3}, \mathrm{R}_{1}\right)$ for $s>\frac{3}{2}+r, r$ some positive integer $\geqslant 4$. Assume that $F=0=Q^{e}$. Then there exist $\vartheta>0$ and unique solution u, T of the initial value problem for the Eqs. (8), (9) with condition (10) in $C\left([0, \vartheta], H^{s}\right)$.

Remark 3. From our proof of Theorem 1 it follows immediately that: 1) the solution u, T depends continuously on $u^{0}, u^{1} T_{0}$ in the H^{s}-topology, 2) if $r=\infty$, then u, T are C^{∞}-smooth.

References

1. A. A. Arsienijev, Singular Potentials and Resonances [in Russian], Moscow 1974.
2. R. Courant, Partial Differential Equations [in Russian], Moscow 1964.
3. L. Hörmander, Linear Partial Differential Operators [in Russian], Moscow 1965.
4. O. Ladyzhenskaya, The Mathematical Questions of Dynamics of Viscous Incompressible Fluid [in Russian].
5. W. Nowacki, Dynamical problems of thermaelasticity, in Problems of Thermoelasticity, Ossolineum, The Polish Academy of Sciences Press, 1967.
6. A. Piskorek, K. Sierpiński, On the initial value problem in thermoelasticity, Bull. Acad. Polon. Sci., Série Sci. Techn., 22, 12, 993-998, 1974.
7. V. M. Shalov, Equations of continuum mechanics [in Russian], Diff. Equations, 9, 5, 912-921, 1973.
8. L. I. Siedov, The Continuum Mechanics [in Russian], Vol. II, Moscow 1970.
9. V. S. Vladimirov, Equations of Mathematical Physics, [in Russian], Moscow 1967.

UNIVERSITY OF WARSAW.

Received January 19, 1976.

[^0]: (${ }^{1}$) We denote by $H^{s}\left(D, \mathrm{R}_{m}\right)$ the space of maps from D to R_{m} of class H^{s}.
 $\left(^{2}\right)$ We denote by $C(I, E)$ the space of continuous functions defined on the interval $I \subset \mathrm{R}_{1}$ taking values in the Banach space E. The elements of $C(I, E)$ are called the continuous curves in E. Here $E=H^{s}$ means that $E=H^{s}\left(\mathbf{R}_{3}, \mathbf{R}_{3}\right)$ or $E=H^{s}\left(\mathbf{R}_{3}, \mathbf{R}_{1}\right)$.

