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Approximate path independent integrals in the 
plane problems of cracks and associated 
antiplane shear problems 

H. D. BUI (PARIS) 

THE paper discusses the path independence property of generalized integrals in the plane problems 
of cracks J" and !", the problem of a branched crack and approximation of path integrals utilizing 
the bounds of the potential energy. Upper and lower bounds for the potential energy are furnished 
by the two antiplane sbear problems associated with the plane strain problem, which are solved 
experimentally by standard methods of potential ftow fields. 

W pracy przedyskutowano szczeg61owo wlasnosc niezaleZI1o~i od drogi calek uog6lnionych 
J" i !" wyst~puj'lcych w plaskich zagadnieniach szczelin, problem ro~onej szczeliny oraz 
aproksymacj~ calek wykorzystuj'lc oszacowania energii potencjalnej. G6mego i dolnego osza· 
cowania energii potencjalnej dostarczaj'l dwa zagadnienia antyplaskiego ~inania stowarzyszone 
z zagadnieniem plaskiego stanu odksztalcenia, kt6re zostaly rozwi'lzane do~wiadczalnie metodami 
standardowym dla przeplyw6w w polach potencjalnych. 

B pa6oTe ~elll>l no.npo6HO CBOitCTBO He311BBCBMOCTH OT nyTB o6o61J.tCHBbiX BHTerpBJIOB 

J" B ]," BhiCT}'IIaJOIUHX B DJIOCKHX 38,[(8li8X ~' npo6JieMa pasBeTBJICIDIOA TpelltBHhl, 
a TIUOKe annpoKCHM~ BHTerpaJIOB, HCDOJIIhJYH ()~eHKY DOTe~&m.HOit 3Hepnm. Bepmeii 
B IUDKHeit o~eHKH no~am.Hoit auepnm ~OCTaBJUDOT ~e 38,l(a'IH aHTBDJIOCKoro CJtBHI'a 
aCCOJ.UIHPOB8HHLIC C ~aqeft WIOCKOro ~$p~OmtOro COCTOJIJUIH, KOTOphiC 6hiJIB 
peweHhl 3KaiepBMCHTam.HO c:TaJmQpTHhiMH MeTOA&MH WIJ1 TCtiCIQVI B . DOTe~IJIWihiX 
DOJUIX. 

1. lntrodliction 

THE J-integral is extensively. used in fracture mechanics as a new method of getting stress
iptensity factors and energy release rate [1, 2]. This paper discusses the path independence 
property of certain generalized integrals Jk introduced by BUDIANSKY and RICE [3], as 
well as the significance of the J-integral use in the case of branched cracks. 

Path independence property is not satisfied when approximate fields are introduced, 
as shown in papers [4, 5] dealing with the dual formulation of the J theory. The dual 
integral I is first introduced in [4]. Its .generalization /kis given in (6] and also in paper [71 
by CARLSSON, but not in connection with the problem of duality between two independent 
kinematic and static fields. The use of such fields as an approximation yields upper 
and lower bounds for the potential energy. In · this paper another set of bounds 
is given for a plane strain case, based on the two associated antiplane shear 
pf,oblems. 

Analogous methods for getting the stress intensity factor KII1 are also given. 
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2. Path-integrals J" and /" 

The integrals J" and /" (k = 1 , 2) are defined as follows: 

(2.1) 

Jf = j {W(e)na:---a,1n1u1,t}ds-,_ 
c 

If= - j {U(O')nk-u,n10'tJ,t}ds, 
c 

H.D.Bul 

where C is an open path joining two arbitrary points on opposite sides of the crack's surface 
while going around the tip; n is a unit outward normal to C; the comma means partial 
derivative. In the brackets we have the elastic strain energy derisitY 'W(e):~nd1 it~ i Legendre 
transform U(O') which give stress-strain laws in the alternative forms: 

aw au 
O'tj = ~ , e,J = -a· : . 

ve,J .. O'tj 
(2,2) 

In this paragraph, compatibility and equilibrium are supposed to be verified: 

(2.3) e41= (Ut.J+Uj~t)/2, Utj,j = Q, 

From (2.2), (2.3) it follows that 

(2.4) 
f{W(e)nt-a,1n1u,,a:}ds = 0~ 

f {U(u)n~c-u1 n1 u,1,t}ds = 0, 

FIG. 1. Path integration for a curved crack in an 
elastic body. 

for all closed paths not including holes or singularities. Hence, . it follows from the conseri" 
vation's laws (2.4), that if the integrands vanish along the crack's surface, then J.; and 11 
are independent of the path's end points (Fig. 1). This is a strong condition which restricts 
considerably the applicability of the path independence theorem to particular cases. Consid~ 
er a straight crack along the x axis, then lx and lx are known to be pathindependent. 
If the geometry and loading are such that w+ = w- on the crack's surface, then, lr is 
path independent, but the two end points must be opposite to each other. 

For any curved crack which is tangent to Ox like that shown in Fig. 1, there is no path 
independence. Consider now two particular path-integrals: 1: along the outer contour S 
and Jf along a zero circuit C0 around the tip. Then, 

~~ ~~~ 
and similar inequality for the dual integral/". This may be interpreted by energy consider:.. 
ations. It is worthwhile dwelling on the physical significance of these path integrals. 
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3. Energy considerations 

The interpretation of JIJ and Ik as "generalized crack extension forces" is based on their 
equivalence with the . potential energy release rate. Let the potential energy of the body 
be P and its complementary Q: 

P(e) = J W(e)dA- J7iu1ds, 

(3.1) 
D ST 

Q(u) = - J U(u)dA+ J ii;u;1n1ds, 
D Su 

where fa is the prescribed traction on STand u1 the prescribed displacement on Su . 
. Let the cr~ck be. translated with the unit velocity I while the exterior boundary remains 

fixed and the boundary conditions remain unchanged; the derivative of the potentials with 
respect to a time like parameter t is given by [1, 3, 4, 14] 

(3.2) 

Thus, the integrals Jf and /f with signs reversed are considered as generalized crack 
~X. tension forces. They are associated with a translation of the whole crack, which generally 
i~ not the same as that growing at the tip by the same amount, like in the case of straight 
crack moving in its plane. Generally, the virtual velocity field defined on the crack does 
not correspond to any physical process. Clearly, any velocity field for a virtual growth 
of a crack of any form must have vanishing normal component on the main part of the 
crack but not near the. tip. If the crack grows smoothly, i.e., tangently at the tip, the energy 
release rate is given by : Irwin formulas or by the integrals J~ or /~ associated with the 
zero circuit: 

(3.3) 0 0 "+ 1 ( 2 '2) J" = lx =~ K,+Kn, 

'.' :;::: 3-4, in plane strain, " = (3 - ") f (1 + ") in plane stress case, K1 and K11 are the stress• 
intensity factors. 

For a straight crack, a. yirtual translation in they-direction normal to the crack leads to 

(3.4) 0 0 "+1 Jr = Ir = ---K1 K11 4p 

(cf. BERGEZ [8], CARI.SSON [7]). 
While (3.3) has been interpreted physically as the energy release rate for extension in 

the x-direction, Eq . . (3.4) has not. 
The concept of a virtual motion given by a variable velocity field v;(s) used by Bu~ 

DIANSKY and RICE for a cavity [3] can be extended for a crack ~s follows: 

(3.5) 
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652 .H. D. BUI 

with the path C in Fig. 2 consisting of the cracks' faces c+ c- and the' zero circuit C0 

around the tip. The particular integrals Jf and J~ are then related to Eq. (3.5) through 
the velocity fields: For Vt(s) = I" Eq. (3.5) gives the energy release rate -l1Jf; the path 
C can be replaced by S. For vA:(s) = Ta;(s), where 'f is the unit vector tangent to the crack, 
Eq. (3.5) gives the energy release rate - T1(0)J~. 

+ --==-- c : :e 
C

0 
F1o. 2. Path integration along the crack. 

4. The problem of the brandied crack 

The problem of crack growth due to an abrupt change of direction (Fig. 3), has been 
studied by many authors [9, 10, 12]. However, the applicability of path integrals for this 
problem is not clear. This is a typical case of path dependence of the: integral. Consider 
two paths cl' c2 for the branched crack and the cases where the length of the branc~ 
shrinks to zero as well as the paths radius, I --+ 0, C1 --+ 0. Those limits must certainly t>e 
taken in suitable order if it is to influence the final result. The results obtained may vary 
according to path dependency and difference in the limiting singular fields by a change 
of the polar coordinate. When I = 0, the zero path C 1 goes around the tip A of the original 
crack OA, so that the integral Ji'> is computed from the initial field of the main crack or 
from the stress-intensity factors K1, K11 • Now, the second integral should be defined as 

(4.1) 1~2 > = lim lim Jf2 • 

1.....0 c,~o 

New singular · fields at the tip B are needed to compute (4.1 ). For example, consider 
the branch crack (Fig. 3) under remote uniform traction Tat the angle {J to the main crack. 
Exact values of K1 , Ku at the tip A of the initial crack 0 A (I = 0) yields cf. [7]: 

(4.2) 

This integral should be interpreted as a generalized force associated with the translation 
of the crack in the direction making an angle ex with Ox. Attemps ·to solve analytically 
the problem of the branched crack are found in [9, 10]. For our purpose we take the new 
stress-intensity factors K:, K't given by HussAIN, Pu, · UNDERWOOD [9]. ·These factors 
at the tip Bare associated with the new polar coordinates (!,t/J. 

The limiting values for I = 0 are: 

Kf = T(M)11
2 3+~s2 a (: ~= f" (cosasin2 p + ~ sinaoospsinp ). 

(4.3) 

x:, = T(na)112 3+ c!s2"' (: ~: r (cos a sin pcosp- ~ sinasin
2 P) . 

The J~2> integral is given by (m = cxfn) . 

(4.4) J<l> = J<2>coscx+J.<2>sincx = "+ 1 naT2 ( l-m)"'( 4 
)

2 

x 
J :If ' 32p l +m 3+cos2 cx 

x ( (1 + 3cos2 cx)sin4 {J + 8sin cxcoscxsin3 {Jcos{J + (9- 5cos2 cx)sin2 {Jcos2 {J) 
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which can be put in the familiar form 

(4.5) J<2> = "+ l (K*l + K*l) 
..1 8p I ll · 

Therefore, the integral (4.4) is interpreted as the energy release rate in the extension of the 
crack in the a-direction which is different from the original x-direction. Equations (4.4) 
and ( 4.2) clearly show the path dependence of the J-integral. 

0 

Fto. 3. Branched crack. 

Without referring to the path-integral, the energy release rate can be defined directly 
as the work required to close the branch ABC 

(4.6) G = lim ~/ J u1(l +d/)T,(/)ds 
dl-+0 ABC 

which is equivalent to 

(4.7) 1 J( au, ar,) G=T T,al-"'alds, 

where the integral is taken over any closed curve enclosing the crack. Formulas (4.6) and 
'(4.7) apply to linear elastic materials only. Equation (4.5) shows the equivalence between 
the J~2 > integral and the energy release rate G. 

DunuKALENKO and RoMAus [10] have computed G for I = 0. Their result is reproduced 
here: 

(4.8) G = "(" ~:;aT
2 

(: ~: n (sin2 {J + ;, sin <zcos(2{J- «) (I =:2 -log ! ~: ) 
1 . ( 8m 1 -m) 1 . 2 ( 3n2 4m 1-m 

+ 32n sm 2a 1-m2 +Jlog 1 +m + l6n2 stn a -2--1-m2 log 1 +m 

- (I;,>. log:~= +32+ 20 ~ml)(log !~:)' + 0 :m>• -log:~:)). 
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654 .H. D. Bur 

It can be seen that results ( 4.4) and ( 4.8) are different. Without explaining this disagreement, 
it turns out that the growth directions predicted according to the greatest energy released 
are very close to each other (Fig. 4). 
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FIG. 4. Crack growth direction versus loading angle according to the greatest energy released. 

For comparison curves are plotted in the same figure of values obtained from the 1~ 1 > 

theory: 

( 4.9) sin a+ sin 2{3 cos a = 0 

and from the maximum stress-theory, cf. [11] 

. cos{J 
(4.10) sma- (Jcosa-1)---:--{J = 0. 

sm 

For small {J, Eq. (4.9) gives for the crack growth direction a. value not far from zero, 
while other curves give -a notfar from 70°. CHAITERJEE [12] gives a numerical solution 
for the same problem })ut for l/2a higher than 10- 3

• Inserting the x: and x:, values given 
by him in Eq. (4.5), we find values different from (4.4) and (4.8) (Table 1). 

Table 1. 
4p.Gj(x+ 1)aT2 

(/ = n/2) 

Ref. 9 Ref. 10 Ref. 12 

ot = n/2 0.23 1.13 0.34 

ot = 0 n/2 n/2 

The lack of accuracy of tlie numerical solution and the fact that the branch length is 
not zero In [12]' undoubtedly make the comparison difficult. 
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S•= Dual. variational me~· 

Equations (2.1), (3.2) show the symmetry between the theories of the J and I integrals 
and the equality between integrals which · follow's from 

(5.1) P(e) = Q(a) 

whenever stress and strain fields are actual solutions of the boundary-value problem [5) .. 
Paper [5] discusses approximate solutions in relation with the dual variational method. 
Accordingly, approximate fields are components of two independent ones: kinematic 
e* and static a**. The results of [5] are summed up as follows: for approximations, the 
integrals in (2.1)1 and (2.1)2 are path dependent and (3.2)1 and (3.2)2 themselves are not 
valid. What remains is the so-called bound-theorem 

(5.2) -P(e*) < -P(e) = -Q(a) < -Q(a**) 

which holds for any material, the energy density of which is a convex function of the· 
strain (for W). Starting with approximate potential& P* = P(e*) and Q** = Q(a**) 
approximate values of integrals 15 amd / 5 are defined by 

(5.3) J* = _BP* 
aJ , / ** = - BQ** aJ . 

We consider here only the case of a straight crack growing in its plane. As pointed out 
in [5], the gradients (5.3) are not respectively lower and upper bounds for the integrals 
J or /, neither are they values of the integrals as given by direct calculations according 
to their definitions (2.1) from the approximate fields. This limitation should be observed 
seriously together with · the fact that no information is yet available besides that given by 
(5.3). Equation (5.3)1 is usual in the finite element method which deals with the kinematic 
fields. It is found that the calculated value of the J integral by Eq. (5.3)1 is generally under
estimated just like the value of - P. If examples of bounding the J-integral by means of 
)!qs. (5.3) can be given~ cf. [5], unfortunately there is no analytical criterion which would 
give inequalities similar to (5.2) for the gradients of the potentials. Of course, .J* < I** 
is necessary but not sufficient. 

In the following paragraph bounds for the potential P will be presented by associated 
antiplane shear problems. 

6. Associated antiplane problems 

Let a linear elastic body be sqbjected to tractions Tx, T1 'with no body forces. Equilib
rium in the x-direction gives 

au,x + CT%1 ,1. = 0 in D, 

O'xxnx+CTx,n, = T% on s. 
To get a first static field a**(Tx) for the antiplane loading by the longitudinal shear T = T:u 
the following field is used: 
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Similarly, a second static field is derived from the remaining equation of equilibrium and 
boundary condition 

..... (2) = ... Vr, V,,, 

The corresponding stress potentials are 

{6.1) 

Qt* = -+-I (t1~x+f1~1)dA, 
f.'D 

Q:* = - ,j- I (a:x+a:1)dA. 
f.'D 

We return to the plane strain problem for which we want to bound the potential Q(a) 
.as follows 

Q( ) 1 - 2, I 1 < 2 2 2 > a < - 2-. - - y- f1xx+2f1x1 +a, dA. 
D ,., 

According to (6.1) the potential Q is bounded by 

(6.2) 

By (5.2) we can replace Qt*Qf* by their exact values without changing inequality (6.2). 
Hence, the exact stress potentials of the associated anti plane problems give upper bounds 
to Q(a). 

To get a lower bound for Q or P, the potential P(e) is written in the form 

P(e) = a:2 f 2W(e)dA -P2 f T,uids 
D s 

with P2
- a 2 = 1 /2 so that the value of P( e) is unchanged. The first integral is bounded 

according to Kom's inequality 

J 2W(e)dA > k 0 J u,,1 u,,~;dA 
D 

where k0 is a constant. A possible one is k0 = f.' though it is not the best one. Choosing 
p{J2 = 2ko a;2 

From straightforward calculation it follow~ that the bracket is the sum of the strain poten
tial energies Pf and Pf of the associated antiplane problems 

{6.3) 

The kinematic fields of the associated problems are 
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The approximate potentials Pf Pf can be replaced by their exact values and the inequal
ity (6.3) remains valid. In conclusion, the plane strain potential energy can be bounded 
on both sides by using the associated antiplane problems. The bounds are not good enough 
for an estimation of the J integral but they give useful indications as to the potential P. 
They are easier to calculate in antiplane shear condition than in plane strain condition. 
Moreover, the associated antiplane problems give roughly the same stress-intensity factors 
as in plane strain condition for problems which have similar boundary values. This will 
be illustrated by two examples. 

Example 1. An infinite body is subjected to a remote uniform traction T perpendicular 
to a crack with the length 2a. The stress intensity factor normalized by T(na)1 

/
2 is K1 = 1. 

The antiplane problem associated with this boundary condition gives K1n = 1. 
Example 2. An edge-crack with the length a, the crack being parallel to Ox, the boundary 

condition being a traction T at infinity in the y-direction. The stress~intensity factor is 
Kr = 1.12 while the corresponding anti plane problem gives Kn 1 = I. That is a difference 
of 12% which is small when compared to the uncertainty of the experimental critical value. 

At the moment no analytical treatment is available for finding boundary conditions 
for plane strain problems the stress-intensity factors of which come within a given range 
of those of the cmiesponding antiplane deformation problems. 

7. Fluid analogy 

For antiplane shear loading, stresses nu,n., and displacement w can be given by one 
analytical function f(Z) of the complex variable Z = x+iy 

nu-in.,= /'(Z), 

w = Ref(Z), lx-i11 = i/2p,f U') 2dZ. 

Similar relations are known for two-dimensional irrotational flows of incompressible 
non-viscous fluid with the velocity V = Vi/> 

Vx-iV, = /'(Z), 4> = Re/(Z), Fx-iF, = ie/2 f U') 2dZ. 

In this analogy the complex ]-integral appears to be equal to the hydrodynamic force 
acting on the tip of a thin plate. For boundary conditions, the normal velocity is made 
equal to the shear. Of course, disturbing effects like viscosity and separation of the bound
ary layer must be estimated. 

Another simple method uses the analogy between the /-integral and the kinetic energy 
variations of the fluid with respect to the plate length. Another analogy is possible, namely, 
the flow of an electric current f on a graphite-coated paper having a straight slit (length a) 
simulating the crack while normal currentj,. is maintained on the boundary, cf. [13] 

j, = c(nzxnx+n.1n1), 

c is a suitable dimensional constant. The power dissipated /I by Joule's effect is related 
to the /-integral · 
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R is the specific resistivity of the paper. Results of experiments on a finite strip having 
an edge crack are reported in [13) and agree well with calculations from an infinite strip 
(for a height greater than twice the width it is better than 1% Fig. 5). 

The analogy is even more valuable in the case of many cracks or holes of any shape, 
for which no analytical approach is possible. Rigid inclusions can also be represented by 
highly conductive areas (R = 0), for example, by using conductive paint coatings. 

0 

Electric power 
or 

(Stress potential Q} 
Q(o}-Q(a} 

Q(o} 

,.... ........ ~pre2scribf2d 
currc;mt 

H 

0.05 

0.1 0.2 

o/W 
03 

fiG. 5. Edge-crack in a finite strip simulated by a two-dimensional flow of electric current on a &rapbite 
coated paper . 
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