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A note on the influence of energy dissipation on the
propagation of elastic-plastic waves

K. PODOLAK and B. RANIECKI (WARSZAWA)

THE influence of the energy dissipation in an adiabatic “loading-unloading” process on the
phenomenon of propagation of second order spatial waves in an elastic-plastic medium at the
assumption of small strains is examined. It was demonstrated that in the adiabatic process the
velocities of the plastic waves and unloading waves are not greater than the corresponding velo-
cities in the isothermic process under assumption that in the adiabatic process the yield limit is
a decreasing function of temperature. As an example illustrating the problem considered the
analysis of longitudinal and transverse simple waves in an infinite thin-walled tube made of
mild steel is presented. It was shown that the energy dissipation taken into account influgnces
no;ﬁt;:!y on the propagation velocities of simple waves but also involves the change in'the wave

pr

W:pracy zabadano wplyw dysypacji energii w adiabatycznym procesie “obcigzenie-odcigzenie”
na przebieg zjawiska propagacji przestrzennych fal drugiego rzedu w przypadku malych odksztal-
cefi- ofrodka sprezysto-plastycznego. Wykazano, ze w procesie adiabatycznym predkosci fal
plastycznych i odciazenia nie sg wigksze od odpowiednich predkosci w procesie izotermicznym
przy zalozeniu, Ze w procesie adiabatycznym granica plynigcia jest malejaca funkcja temperatury.
w charaktiem przykladu dokonano analizy podiuzno-poprzecznych fal prostych w poinieskodi-
czonej, cienkosciennej rurze stalowej. Okazalo sie, ze uwzglednienie dysypacn energii prowadzi
nie ly!ki?aido zmiany predkosci rozprzestrzeniania sig fal prostych, lecz takize wywoluje zmiang
profilu fali

B paGote HCCIIEJ0BaHO BIIMAHHE AUCCHIIALIH SHEPT UM B anuabaTHUECKOM mpolLecce ,,HarpysKa=

pasrpyaka’’ Ha XOJ SBJICHHA DacIpOCTPAHEHHA MPOCTPAHCTBEHHLIX BOJH BTOPOTO MOPAIKA
K CiTy4ae Maibix gecopmarmit ynpyro-nnacruyeckoii cpenbl. [Tokasano, uTo B aguabaTHuecKom
MPOLECCe CKOPOCTH IUIACTHUYECKHX BOJIH M BOJIH PAasTpy3KH He GOJBIE WeM COOTBETCTBYIOMIHE
CKOPOCTH B H30TEPMHYECKOM ITpoLiecce MIPH MPeANOJIOHEH N, YTO B aquabaTHueckoM npouecce
npefes TEKy4ecTH ABJIAETCA yObIBalollelh ¢yHKiMell TemnepaTyphl. B XapaxTepe npmmepa
NpOBENeH AHAIH3 MPOAOIBHO-NONEPEYHBIX MPOCTHIX BOJH B HOMyOECKOHEYHOH, TOHKOCTEH-
HOM craymHO# TpyGe. OKa3anock, YTO YYeT JHCCHITALMHE SHEPTHH BEJIET HE TOJBKO K H3MEHEHMIO
CHKOPOCTH PacTIPOCTPAHEHHA NPOCTHIX BOJIH, HO TAIOKE BLISBIBACT HIMCHEHHE NPOMHIA BOMHEI.

1. Introduction

THE paper is devoted to the comparative study of the second-order isothermal and adiabatic
waves of infinitesimal strain in an elastic-plastic medium, under moderate pressure of order
of the usual yield limit. Such studies are of practical interest, since the adiabatic waves
(i.e., waves in non-conductors) and isothermal waves are two extreme idealizations of the
actual wave process generated by mechanical impact at the surface of an elastic-plastic
body in routine experiments.

The simplified equations for non-conductors derived in the paper [1] are used. They
are presented in Sect. 2. In Sect. 3 it is shown that the speeds of adiabatic plastic waves
and adiabatic unloading waves are smaller than the corresponding speeds of isothermal
plastic and unloading waves, provided that the yield limit decreases with the temperature.
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The results of the numerical example concerning the adiabatic and isothermal simple waves
of combined stress in a thin-walled tube made of mild steel are presented in Sect. 4. In this
section the influence of the energy dissipation on wave speeds and wave profile is also
discussed.

Notation and abbreviations
A-Bo 4B, or A;By,
A@B— A;B; or A;B.,
ABe— AyB; or ApBy

1 metric tensor.

2. Simplified equations for the elastic-plastic non-conductors

To investigate the influence of the energy dissipation on the propagation of three-
dimensional elastic-plastic waves we use the simplified equations derived in paper [1].
Those simplified equations are obtained from the general one [2] by disregarding both the
change of yield limit with temperature increment caused by the piezocaloric effect, and the
thermal expansion resulting from energy dissipation. As it was shown in the paper [1],
these two effects at moderate pressure of the order of usual yield limit are of much lesser
significance than the change of yield limit with a temperature increment caused by energy
dissipation.

For elastic-plastic non-conductors the simplified equations may be written as follows

L®?e if flo,%,%,,0)=0,9 >0,

(2‘1) € = Lo if f<0 or f=o,w<0,
P ) ~
22 o o 0,0 i f=0,930,
0 if f<0 orf=0,9<0,
1
P d' y ’0 ‘r =0, 0’
(23) %, = ¥ 10¢,%,,0) if S p >
0 if f<0 orf=0,y<0,
where

L® =L+ .Lfg@f“
hy

hﬁ-‘%'d*— af df>0, h1=h"'mﬁ>0:

0%,
oul® ou® .
4 = T =f. .
(24 m (f,u P cd*— 3xd) y=_fao,
”‘ao’ Jo=
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Here ¢ and € are the stress rate tensor and the infinitesimal strain rate tensor respectively,
L is the isothermal elastic compliance tensor, f denotes the yield function, y is the rate
of loading, »;; = »; and %, are hardening parameters, &, and / are adiabatic and isother-
mal hardening functions respectively, o is the material density, ¢, denotes the specific heat
at constant @, %, %,,0 = T—T,, T'is the thermodynamic temperature, T, is the temperature
at the reference state where x, »,, ¢ are assumed to vanish, and

U = y(n, x,, 0)

is the energy stored during plastic deformation per unit mass. The functions d* and 4%
occurring in the formal definitions (2.2), (2.3) of hardening parameters arejassumed to be
continuous, whereas the functions ¥ and f are assumed to be continuous and to possess
the continuous first derivatives.

Note that the simplified adiabatic flow rules (2.1) differ from the isothermal ones only
insofar as the isothermal hardening function 4 is replaced by the adiabatic one, 4, .

The temperature of elastic-plastic non-conductors may be calculated using the following
simplified equation:

m .
@.5) ifi? £ Sl
0 if f<0 or f=0,9p<0.

The physical meaning of the factor m occurring in Eqgs. (2.4), (2.5) may be perceived by

considering the heat output during the isothermal cyclic process (in o-space) of loading-
unloading of a macroelement. From such consideration it follows that [2]

(2.6) m=0

and therefore, if the yield limit decreases with temperature (f > 0), then h, < h.
For the case of the Huber-Mises yield condition

2.7 f=00p-Y(,0)=0
under the additional assumptions
(2.8) Y=Y(x%,0, d*=0; ou®= mx,, = = const
the quantities occurring in Egs. (2.4) take the form
P) = e ——

LS L+ .o S®S,

aY g,
2. =i =2
(2.9 h %, Ows m T (1-mny),

(oY | 1-m, OY
¥ = _5;¢T+—gc,_—6‘7) %
and Egs. (2.3), (2.5) become

(2.10) # =S-€, 6=0,+ 1":‘ %y,
1 3 vz e
Here S = o— Tltrcr, O = (—2—8 . S) , Yis the yield limit in a simple tension, €” denotes

the rate of plastic strain and 0, is the initial temperature.
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By solving the set of equations (2.10), and (2.7) with respect to », and 6, and by substi-
tuting the obtained results into A, , the adiabatic hardening function may be expressed in
terms of oy,

2.11) hy = hy(ow).

The above function is different from the corresponding function h = h(e;) which enters
the isothermal flow rules associated with Huber-Mises yield.

3. Some properties of the adiabatic three-dimensional elastic-plastic waves

On account of the similarity of the adiabatic and isothermal flow rules all properties
of isothermal second order waves in elastic-plastic medium discussed by J. MANDEL in the
paper [3] also concern adiabatic waves, provided that small coupling effect mentioned in
Sect. 2 are neglected.

Let us first recall some of the most important properties demonstrated by MANDEL.
Denote by n the unit normal to a travelling surface S(t) (wave) in the direction of its
propagation. The jump of the acceleration [¥] across the wave is determined by the formula

G.1) Q—0221)[i] = 0

whereas the wave speed £ may be calculated from the characteristic equation
(3.2) det(Q—p£2°1) = 0.

Here, Q is the so-called acoustic tensor defined by

0P @) = m Myp,ny, for elastic waves,
of’(m) = 0P ~r,aq for adiabatic plastic waves,

G3) Oy = 0P(m,») = O —r,a;a; for adiabatic unloading waves,
0fP(m,v) = QY —r,@a; for adiabatic loading waves,
M=L"1' a=Mf)n;
(3.4) = h+M}, M}=1f-Mg,
P
L wa—wans, Lo~ aear
ry * I oy v &

vis the loading “index” which is equal to the ratio of the rate of loading behind the wave
(yP—cf. Eq. (2.4)) to the rate of loading in front of wave (p)

2
(3.5) Y= v

w(l) )
The loading index is non-positive across unloading waves, and non-negative across loading
waves.
The most important properties mentioned above are as follows:
1. For the given unit normal n there exist three speeds
(3.6) Q8> 028> 08
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of adiabatic plastic waves. The eigenvectors [¥] corresponding to the values (3.6) are mutu-
ally orthogonal. The speeds QF (i = 1, 2, 3) are bounded by respective ordered speeds
Q, > Q, > Q, of elastic waves according to the formula

(&%) ML <A< <A<,
2. For the given unit normal n and for given loading index » < 0 there exist three speeds
(3.8) QR>02>09

of adiabatic unloading waves. The eigenvectors [¢;] corresponding to the values (3.8) are
mutually orthogonal. The speeds of plastic waves £F are the lower bounds for £, whereas
t_he speeds of elastic waves are upper bounds for 2}, i.e.,

(3.9) <A<, i=1,2,3.

3. The unloading waves propagate through the region of homogeneous state (¢ = const,
% = const, x, = const, 6 = const) with the speeds of elastic waves.

4. The values of speeds of adiabatic loading waves belong to the completion of open
intervals

(Qf)Qi), i= 19213
on the semi-axis of positive numbers. When the loading index » > 0 statisfies the inequal-
ities
hy

0%"5]“4_—1‘!? or y>1
1

then, for given n, there exists three speeds Qf > Q% > 0% of adiabatic loading waves.
Otherwise, the number of loading waves may be less than three.
Waves of finite strain in elastic-plastic conductors have the similar properties as shown

by MANDEL [4] and P1av [5]. Let us now suppose that the yield limit is the decreasing function
of a temperature, i.e.,

(3.10) fo > 00 that hy, < h.

The following two additional properties of adiabatic waves may be then justified (see
Appendix).
5. For a given n and for a given thermodynamic state @, %, %,, 6 the ordered speeds

m @M @
QF > Q% > Q% of isothermal plastic waves are not less than the corresponding speeds of
adiabatic plastic waves

(3.11) ?2}291’, i=1,2,3 :
m @O M
6. For a given n, » and thermodynamical state, the ordered speeds Q2§ > Q% > Q4 of
isothermal unloading waves are not less than the corresponding speeds of adiabatic un-
loading waves

¢y
(3.12) Q>@¢, i=1,2,3.
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It may also be shown that under prescribed thermodynamical state and a unit normal n
the speeds of adiabatic loading waves may be both greater and smaller than the corre-
sponding speeds of isothermal loading waves depending upon the value of the loading index
»20.

Thus, we may conclude that due to a decrease of the yield limit with temperature the
energy dissipation results in diminishing the speeds of plastic and unloading waves.

4. The influence of energy dissipation on combined longitudinal and torsional simple waves
in a thin-walled tube

1. The simple wave solution is the solution which depends on the material particle x and
time ¢ only through dependence on a single independent variable, say %, on x and ¢. The-
refore, the possible stress path (stress trajectories) for all particles are the same, and state
variables are constant on the travelling surface (simple wave) 7 = const. In the case
of elasticplastic non-conductors described by constitutive equations (2.1), simple waves
are planes which travel with the speed of plastic waves

Q)

where QF is equal to one of the plastic wave speeds 2f (i = 1, 2, 3). _

2. In order to estimate quantitatively the influence of the energy dissipation on the
propagation of elastic-plastic waves, we have analysed and compared the isothermal
and adiabatic one-dimensional simple waves in an isotropic thin-walled semi-infinite tube,
adopting the Huber-Mises yield condition (2.7) and assumption (2.8). The waves are gen-
erated by combined longitudinal and torsional impact at the end of a tube.

The isothermal waves of that type were originally examined by CLIFTON in his out-
standing paper [6] in which the details of the mathematical analysis may be found. In
a thin-walled tube there exist only two types of isothermal simple waves: fast waves (speed

@.1) P ). r], I-11=1,

..5{) and slow waves (specd—!sg < .(5'{). The corresponding speeds of adiabatic waves are
-denoted by 2F (i=1, 2).

The yield limit Y, isothermal and adiabatic hardening functions h(oy,) and h,(ey))
[cf. Egs. (2.7) and (2.9)-(2.11)] are specified by using the following relation between the
true stress o, plastic strain &* and temperature 8 in simple tension

4.2 o = co(1 —aph) (¥ +b,)".

For the specific values of the parameters entering (4.2), this relation can describe fairly well
Manjoine’s data [7] for mild steel in the temperature range 400°C-650°C. The values of
interest are [8]

4.3) g, =14%10"3°C', n=02 b, =001,
and for the strain rate of the order of 10 sec™1, the value of ¢, is

4.4 Co = 330 kGmm~2,
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Using (4.2)-(4.4) and assuming that
m, =01, E=15x10* kGmm=2, u=0.6x10* kGmm~2,
00¢s = 0.55 KG°C~'mm~2, 6, = 400°C,
where E and p are the Young modulus and shear modulus respectively, the functions h;
and h are found to be
hi(ow) = at g —az o, +atop,,

4.5) -
h(ow) = aoyy),
a¥ = 1.30x10'° kGmm™1°, a3 = 0.86 x 1072 mm?kG™!,
a} = 1.44x10~° kG "'mm~4, a = 1.29x10'° kGSmm™'°.
kamm'?]l 1 2 3 4
i f f f f 5 6
s < N ) / i
N TTF~~J_ B / 8
50 - T —— = S / g
2 e S Yy SNV iy N
1= 40 B ——t—__ _ - i ~ _\\o’ N 10
g e S VS \ /
| -~ ~,
b T e - Tt \“':? N §
_E : z S ~5 % \ /
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el N o \
\
B \ { 4 \ 9 \\
10 |- ! \ \ \\ \
L \ \ \
\ | \ 'I
L 1 I | | | ! | 1 I 1 h! 1 Ill 1 i1 "—.— 1 I. | C——
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Normal stress o H ‘ ‘ ‘ *
12 3 4 b §
Fia. 1.

The functions (4.5) were used to determine the stress trajectories and speeds of adiabatic
and isothermal simple waves in the tube. The stress trajectories are shown in Fig. 1. The
adiabatic stress trajectories turned out to be “very close” to the isothermal one, and this
is why they cannot be distinguished in the stress scale used in Fig. 1. Since for other ranges
of the temperature the yield limit of the mild steel is less temperature-sensitive, one can
conclude that the energy dissipation does not influence the stress trajectories for the mild
steel. Since the hardening of the mild steel is small at temperature ranging from 400°C
to 650°C, all slow wave trajectories intersect the initial yield curve, as it is shown in Fig. 1.
The successive trajectories for slow and fast waves are numbered in Fig. 1, and the change

T
in isothermal fast wave speed £ as the normal stress o varies along every wave trajectory is

T
shown in Fig. 2. Similarly, the change in the isothermal slow wave speed 25 as shear stress ©
varies along every slow wave trajectory is presented in Fig. 3. The speeds of adiabatic
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fast waves QF turned out to be again “very close” to the speeds of isothermal fast waves.

T
For given (o, ), £% and 2§ may, therefore, be assumed to be the same with sufficient
accuracy. There are, however, essential differences between the speeds of adiabatie slow

T
waves 22 and the speeds of isothermal slow waves (2%, as may be seen from Fig. 4.

T

In this figure the change in the ratio £25/2% as 7 varies along every slow wave trajectory,
is presented. It is seen that the speeds of slow waves may be diminished by 459, as
a result of energy dissipation. The profiles of the adiabatic stress waves and isothemal
stress waves at time ¢ = 1.0x 103 sec are shown in Fig. 5. The tube was initially
prestressed to the level represented by point 4 in Fig. 1 and then was subjected to step
loading at the end x = O to the level represented by point B in Fig. 1. In Fig. 5 the
profile of the temperature wave in the considered non-conductor is also shown. It is seen
from Fig. 5 that the energy dissipation results in the reduction of the constant state
region (plateau) and causes stress reduction up to aboyt 15% in some cross-sections.

Appendix

Denote by 0 > @ > QP the eigenvalues of the tensor Q® and assume that the
coordinate axes coincide with the principal axes of the tensor Q. From Eq. (3.2) it then
follows that the eigenvalues % > QF’ > QP of the tensor Q” are the roots of the follow-
ing equation [3]

(A F(X) = (@ -X) (0 -X) (@9~ X)~r, [0~ X) (0"~ X)a?
+@-X) (@0~ X)a} + (@~ X) (@~ X)a3] = 0.

T T T T
Denote by QP > 0% > QP the eigenvalues of the acoustic tensor Q® for isothermal

plastic waves
Q@) = QW-r;a8,
where (cf. Eq. (3.4))

‘ 1

(AZ) rp=m}—$fp.

T
The eigenvalues Qf’ (i = 1,2, 3) are the roots of the equation
(A3) F(X)=0.

Here F’(X) has the same form as (A1) except for r, which is replaced by r;.
Multiplying (A3) and (A1) by r, and r, respectively, and subtracting the second obtained
result from the first one, we get
(A4) roF (X)—r F(X) = (r, oy ) (P —X) (05— X) (O - X).
Since
FEP)=0 (=123, r-rn>0 (>0,
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from the property (3.7) and (A4) it follows that

F'eP =0, F@<0, F@P) =>0.
Hence

T
Q’P)ggiﬂ’ l=1,2,3

on account of F(co) < 0. This proves the property 5.
The proof of the fact that the ordered eigenvalues of the tensor Qf* are less than the

T
corresponding ordered eigenvalues of the acoustic tensor Q®

T 1
@ — O@_yp’ TN T
QP =Q®-ra®s, n=gaTuz <

for isothermal unloading waves (property 6) may be done in a similar manner. It is sufficient
to replace r, in Eq. (Al) by r,, and r, in Eq. (A3) by r..
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