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Iterative methods in the analysis of dynamic processes 
of :plastic formiag· of · metals 

J. BIAbK.ffiWICZ (KRAKOW) 

~s . wo~k; .l>~Qts !t~rati~e, .~o~~~ enabJing t~ ~oJv~ a rel~~v~ly w,ide cl8S$, of. axially. 
syttililetrtc problems · of plasbc fotming under conditions of plane stress. In all solutions the 
Huber-Mises yield criterion and the associated flow law have been assumed. A procedure leading 
us to solutions for the strain-hardening and strain-rate sensitive materials is also proposed. 
As the first approximation in the iterative procedure we assume a quasi-static solution or .a dy
namic solution for the Tresca yield criterion and the associated flow law]A number of solutions 
to specific problems illustrated the methods proposed. 

W pracy przedstawiono algorytmy iteracyjne dla dynamicznych zagadnien osiowo-syme
trycznych w plaskim stanie napr~i:enia. Sformulowanie obejmuje r6wnanie ruchu, warunek 
plasty~osci Hu~~--t~~s~· ~fP,Waq)'S.ZO.ll,~ z riim pnnvo ~lyni~i~ oraz warunek ni~scis~iw<?$ci; 
Przeanaltzowano r6wmez WplyW pr~osct na wzrost ·oporu plastycznego, a ta.ki.e ZJaWisko 
wzmocnienia materialu. Za punkt wyj8cia procesu iteracyjnego przyjmuje si~ bl\df rozwi¥anie 
quasi-statyczne, bl\df uproszczon~\rpzwi~ dyaami~ne, otrzymane dla warunku plastyczp.o~i 
Treski i stowarzyszonego z nini prawa ptYni~ia. 'Efektywnosc proponowanych metod rozwiCllail. 
zilustrowano na przykladach liczbowych. 

B pa6oTe npe.z:tCTaBJieH;LI HTepaiU~OHHble BJiropHTMLI W1J1 ,z:nmaMJilleCKHX oce-CHMMeTJ>llliHLIX 
3a,z:taq B IIJIOCKOM H;aDpiDKCHHOM COCTO.fffilm. <l>opMy.JIHpOBKa OXB8TbiBaeT: ypaBHeHHC ,z:tBH
>KeHIDI, yCJIOBHe IIJiaCTI{q}j;OCTH· !)6epa,-~;-acc;x)IUq~p<>BaHHbiH C llHM 3aKOH Teq(JIWI, 
a TaK>Ke yCJIOBHe H;eC>KHMaeMOCTJf. llpoaHaJIH3HpOBaHb:f· ·TO>Ke BJIWIHHe CKOpoCTH BB poeT 
IIJiaCTH'IeCKoro conpoTHBJieHIDJ:, a TaK>Ke . HBJieHue ynpoqaeHWI MaTepHIUia. 3a HCX:OAHYIO 

·: TO'IU<y JITtpiinfeltiroro.nt)o~ecea npHHJIMuatCJI H1IH I<BaauCTamt~eCKoe pemeHtle, ivm yltpo~eii.;.' 
~9e. ~eCJ<~ p(m~~ . no~eHHoe WIJI~ yCJioBWI . IIJUlc.;mqHOCTIJ Tpecxa u . ~c~IQUIP<>-:
~ililao·ro c· uiiM aai<o'aa -tetie~~lbi: · 3~Cl>eKTHBilt>CTI> npeM&raeMi:.IX Mero~os WIJiroci'pilpoaaita 
-mi tmdiosbiX : ItpHMepax. . . . . . 

l. latroduction 

IN many cases of plastic forming processes a quasi.:static ·approach to · the theoretical ana-· 
lysis which neglects inertia 'terms in the equations ofmotion and assumes a rigid- (perfectly
plastic model of the material) gives satisfactory results [1, 2]. In numerous cases-the strain
hardening effect can be taken into accoutlt [3, 4]. There exist, however, many problems 
of plastic forming in which the dynamic effects play a significant role and cannot be omitted 
in the theoretical analysis. In general, two groups of such processes can be distinguished. 
In the first group we find proc.esses where, in spite of relatively slow speeds of the tool, th~ 
strain rates reach great values ; the compression of a thin plastic layer between two 
rigid plates may be mentioned as a typical example. In the second group ·we 
have high energy processes of plastic forming characterized by very fast deformation 
speeds. Here, explosive _forming may be mentioned as an example·~ In both cases the in
crease of the resistance of the metal: to plastic deformation due to the higp rate of strains, 
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586 J. BIAI.KIEWiCZ 

and the inertia terms in the equations of motion should be taken into consideration. Solving 
such dynamic problems is, however, a difficult to ask. We know of only a few solutions 
which account for both effects (see, for example [7, 8]). The dynamic solutions for 
perfectly plastic material may be found in [5, 9; 10, 14l 

This work presents iterative procedures enabling to solve a relatively , wide class of 
axially-symmetric problems of plastic forming under conditions of plane stress. In all 
solutions the Huber-Mises yield criterion and the associated flow law have been assumed. 
A procedure leading us to solutions for the strain-hardening and. strain .. rate sensitive ma
terials is also proposed. As the first approximation in the iterative procedure we assume 
a quasi-static solution or a dynamic solution for the Tresca yield criterion and the associated 
flow law. A number of solutions to specific problems illustrated the methods is proposed. 

l. Formulation of the problem 

The basic system of equation for a dynamic axially-symmetric plane stress has the form 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

1 
v,,.(2a9 -a,.) = v,-(2a,.-a1), 

I 1 
-h (h ,+vh ,.)+v ,.+ -v = 0. . , , , r 

The state of stress is determined by the radial a,. and the circumferential a, components, 
while two magnitudes - the radial velocity fJ and the thickness of the wall h describe the 
kinematics of deformation. (} and k are material constants, connected with the density and 
the yield locus in shear. In the introductory analysis a perfectly-plastic material (k = const) 
will be assumed. The constitutive equation (2.3) associated with the yield condition (2.2) 
and the condition of incompressibility together with the equation of motion (2.1) constitute 
the system of four equations in four unknowns. 

The yield condition (2.2) can be automatically satisfied when the stresses a,. and a, 
are expressed by the function w 

(2.5) ;,} ~ 2kcos(w+ : ). 

Thus the system of equations reduces to three non-homogeneous partial quasi-linear 
differential equations in three unknown functions, w, h and v in two independent 
variables, r and t: 
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ITERATIVE METHODS IN 111E ANALYSIS OF DYNAMIC PROCESSES OF PLAmC FORMING OF METALS 587 

(2,7) 1 
2cos(ro- i-) -cos(ro+ i-) 

'V, = -'V ( ) ( ) ' ' r 2 COS CO + ~ -COS CO- ~ 

1 'V 1 
-h· h ,+-h h ,+v, = --v. , , , r (2.8) 

According to Courant's classification [15] this system is not entirely hyperbolic. Along the 
characteristics of three families, a double one t = const and the other dr-vdt = 0, 
only two differential relations can be established 

fort= const 

(2.9) 
dv 1 2cos(ro-:) -cos(ro+:) 
- = -f)---=-------__:_ ____ _;_ 

dr r 2cos(ro+:) -cos(ro-:) 
and for dr-vdt = 0 

(2.10) ~ = _!!_[2cos(w-!H-co•{w+i-) +I]. 
dr r 2cos{ro+:) -cos(ro-:) 

The lack of the third relation along the characteristics does not allow to apply the standard 
technique used in problems which are described by hyperbolic sets of equations. Thus, 
we propose iteration procedures for solving the dynamic problems of the plane axially
symmetric state of stress. 

3. Itentive method of characteristics 

Two basic iteration procedures will be distinguished, depending on the choice of the 
first approximation: 

a) a method, when we begin with the functions obtained from the dynamic solution, 
in which the Tresca yield condition and the flow law associated with it were assumed, 

b) a· method, when we begin with the values of all functions obtained from the quasi
static solution, (v,, +oo,, = 0). 

In the first case the basic system of equations contains: the equation of motion (2.1 ), 
the Tresca yield <;ondition 

(3.1) 

the associated flow rule 

(3.2) 

a,-fl6 = 2k for a,a6 ~ 0, 

fl8 = 2k for fl,a6 ~ 0, 

'V 
'V,+-= 0 for a,fl6 ~ 0, , r 

v,, = 0 for fi,C1 6 ~ 0 

and the incompressibility condition (2.8). 
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Solutions of this syste01 (or particular boundary and initial value problems in the two 
cases of the linear yield condition (3.1) have been presented in the book [12]. 

The second method consists in neglecting in the first appro·ximation the substantial 

derivative ( ~ +v ~) which appears in Eq. (2.6}. Such a simplified system (2.6}-(2.8) 

describes the quasi-static flow, in which the inertia forces are disregarded. The quasi-static 
problems have been analysed in Ref. [3], and the equations of characteristics for the first 
approximation have the form 

fort = const 

(3.3) dw . ( n ) 1 dh ( n ) 1 · 0 y,sm w-6 -hdrcos w- 6 -,-smw = , 

2 cos (w - !!._) -cos (w + !!._) 
dv 1 .. 6 6 

dr = rfJ ( n ) ( n ) 2cos w +6 -cos w - 6 

(3.4) 

and for dr-vdt = 0 

(3.5) 

In most practical problems the dynamic flow is defined by the kinematic boundary 
conditions, when the velocity of the tool or velocity of the material at certain sections is 
given. In such cases it is reasonable to expect that the flow velocities v(r, t ), and thickness 
distribution h(r, t) obtained from the solution of the system (2.1), (3.1), (3.2), or of the 
system for the quasi-static formulation, will only slightly differ from those resulting from 
the solution of the basic system (2.6)-(2.8). The iteration procedure will be based on this 
observation. By substituting the values of the functions v(r, t) and h(r, t), which are ob
tained from the first approximations computed according to the first or the second method, 
into the equation of motion (2.6), we get the lacking second differential relation for the 
function w(r, t) which has to be satisfied along the characteristics t .= const 

(3.6) dw.( ") ( ")(1 \ 1. (! - sm w -- = cos w -- - h I + - sm w-- (v 1 + fJfJ ) 
dr 6 6 h ·' r 2k · · ·' · 

The expressions (}h,,) and (v,. +fJfJ,,) are assumed to be known from the foregoing 

approximation. If in the first approximation Eqs. (3.1) and (3.2) are used, we obtain 
simple analytic expression for v(r, t) and h(r, t). In the successive approximations we 
solve subsequently (3.6), (2.9), (2.10), introducing at each subsequent iteration into (3.6) 
the values of the functions v and h as obtained from the previous iteration. This procedure 
is repeated until two consecutive approximations give sufficiently close results. 

A similar iterative procedure can · be used in problems where the static boundary con
ditions are given. In such cases the tractions exerted by the tool on the plastically-deformed 
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material are usually known. We may expect that an appropriate stress field chosen in 
advance will have a decisive influence on the efficiency of the iteration procedure. The 
equations written according to the sequence of computations have now the form 

fort= const 

(3.7) 
2oos (w .,...!!--)- -cos (w+.· .n. ) 

dv v ( 6· 6 \ 
{if= r · ( n) · -"·-.--( ·;;-)I 

2cos wo+~ -cos w- 6 
and for dr- vdt = 0 

dh h 2cos(m-(: )-cos(ru+:) 
(3.8) - = --( . +1\ 

dr ' 2cos(w +:) -eos(ru- :) 1 

and fort = const 

(3.9) dw sin(w-!!_)+_!_sinw-cos(w-!!_)!I_. h ) = --.g_(v +vv ). 
dr 6 r 6 \ h ·" 2k ,t ·' 

The expressions in angular brackets should be computed on the basis of the foregoing 
approximation. We begin the iteration procedure by solving. the system of equations (2.1), 
(3.1) and (3.2) for the dynamic problem with the Tresca yield criterion, or the system for 
the quasi-static problem, depending on which method of computation [a) or b)] has been 
chosen. Now, we introduce the obtained function w(r, t) into Eqs. (3.7), (3.8), and compute 
the next approximation of the velocity· v(r, t) and the wall thickness h(r, t). Substituting 
them into (3.9), we find the second approximation of the function w, and so on. We stop 
the computations when the difference between the consecutive approximations is sufficiently 
small. 

If the velocity of deformation is very high the differences between the consecutive 
approximations may be too large. In such cases we may gradually increase the value of 
the velocity at the boundary for each approximation until the prescribed value is reached. 

4. Expanding of a flat ring 

Consider now the operation of expanding of a flat ring loaded by pressure applied at 
the inner rim (Fig. I). An analogous quasi-static problem has been examined in [3]. Now, 

Fro. 1. 
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the dynamic problem for the Huber-Mises yield criterion will be solved by the iteration 
procedure. As the first approximation we will assume the dynamic solution for the Tresca 
yield criterion (3.1 ). 

The radial stress is compressive and the circumferential stress is tensile. Thus we have 
the case"'"'~ 0 and the Tresca yield criterion is described by the first expression in (3.1). 
The velocity v(r, t) and the thickness h(r, t) are determined by the first equation in (3.2) 
and by (2.4). The following initial value condition 

(4.1) h(r, 0) = h0 = const 

and the boundary condition 

(4.2) 

have to be satisfied. 
The value of the radius of the inner rim at any arbitrary instant is 

(4.3) 

I 

r0 (t) = a+ J v(T)dT, 
0 

where a = r 0 (0). Thus, we finally obtain 
t 

(4.4) fJ(r, 1) = f10 (t)-}(a+ j f1o(T)d+ 

(4.5) h(r, t) = h0 • 

Introducing ( 4.4) and ( 4.5) ·into (3.6) we obtain 

(4.6) 

dru 1 { . t!V~ [ 1 ]} 
(ii" = . ( n) smru- 2k 1-72 (a+v0 t) . 

rsm ru--
6 

Equation (4.6) together with (2.9) and (2.10) constitute a set of three equations in three 
unknowns ru, v, h, from which the first iteration can be computed. Since the outer rim R0 

is assumed to be stress-free (f1, = 0), we obtain from (2.5) the boundary condition for 

(4.7) 

Solving numerically ( 4.6) and then (2.9) and (2.1 0) with the conditions ( 4.1 ), ( 4.2) and 
(4.7), we obtain the first approximation for ru and the second approximation for v and h. 

Now, introduce the obtained approximation of the functions v(r, t) and h(r, t) into 
(3.6), from which the second approximation for ru can be computed. Then, from (2.9) 

and (2.1 0), the third approximation for v and h can be found, and so on. 
The numerical example shows that the iteration procedure is quickly converging. The 

difference between the second and the third approximations is less than 1 per cent. The 
velocity of the inner rim was assumed to be constant and equal to v0 = 10 m/sec. Figure 2 
shows the net of characteristics for the third approximation as calculated for the following 
data: k = 13.3 kp/cm2 (mild steel), a= 20 mm, b = 40 mm. In Fig. 3 we see the distrib-
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592 J. BIAI.KIEWICZ 

ution of the radial stress a,, and in Fig . . 4 the variation of the wall thickness. Continuous 
lines represent distribution · Along the radius for given instants t :;: const. Broken lines 
indicate how the radial stress and thickness change at a given particle of the ring. The 
:solution can be extended for arbitrarily large deformations. It has, however, physical sense 
until the decohesion or loss-of stability occurs. -

The influence of the velocity v0 on the radial stress at the inner rim is presented in Fig. 5. 
·Computations have been carried out by means of the iteration procedure b)- (see Sect. 3). 
As the first approximation we took the quasi-static solutiGn for the Huber-Mises yield 
condition [see Eqs. (3.3)-(3.5)]. In the consecutive approximations the velocity v0 was 
-assumed to have consecutively the values v0 :;: 10, 30, 50 and 100 mfsec. Results for the 
velocity v0 :;: 10 m/sec are very close to those shown in Fig. 3. Thus the two iteration 
methods lead to the same results. In further considerations the iteration procedure a) will 
be used. 

ro(t)[mm} 
32 36 "10 

FIG. 5. 

It is seen that inertial effects are sign~ficant for velocities gteater than v0 :;: 50 m/sec. 
One can expect that for smaller veloci~es the effect of the increase of the resistance of ma
terial to deformation will be more visible wi~h _an increasing rate of defoi'mation. 

5. Solutions for the dynamic yield condition 

A yield condition in which both the strain-hardening effect and strain-rate sensitivity 
of the material are accounted for will be called a dynamic yield condition. The dynamic 
yield criterion based upon the classic Huber-Mises condition takes the form (see [11)) 

(5.1) 
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where J2 arid/~ stand for the invariants of the stress deviator and strain rate tensor · respec• 
tively. For the axially-symmetric plane ·· state of· stress they . are expressed as follows: 

1 1 
J2 = TStjSij = J(O':-O'ro'6+0'~), 

(5.2) 
p l 1(2 2 2 12 = 2e11eu = T Er +e6 +eh). 

In expression (5.1) " is~the strain-hardening parameter, and y Is the: viscosity parameter. 
The·yield function ·l/J (F) for a linear isotropic hardening has the fomi 

(5.3) l/J(F) = y J2 -I. 

" 
Now, instead of (5.1) we can:write 

(5.4) a: -a,a, +a: = 3"2 (I+ ~r -v ·~ + ~ -1,<:~ r 
For the sake of brevity let us introduce the parameter 1X(r, t) of the strain rate sensitivity 
of the material 

(5.5) ( ) _ 1 .1 V. e:+ei+e~ 
IX r, t - + Jly 2 . , 

where the components of the strain rate tensor are defined as follows 

(5.6) 

The yield condition (5.4) will be satisfied identically if the stresses are expressed in the 
following way 

(5. 7) :: l = 2""cos( aq: :) . 
Now, the problem reduces to the solution of the system of equations (2.1); (2.3)and.(2.4) 

complemented by the dynamic yield condition (5.4). Finally, we arrive at the system of 
equations 

( 5.8) sin (w - !!...) w - (__!_ 11 + _!_" + __!_ h ) cos (w - !!...) 6 ,r IX ,,r " ,r h ,r 6 

e ( ) 1 . + -
2
- V t+VV r = -smw, 
IX" • • r 

(5.9) 
1 2cos(ru- :)-cos(ro+ :) 

V,r =-V , 

r 2cos(w+:) _ccos{w-:) 
(5.10) 
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In the limit case, when y = oo, or equivalently a.(r, t) = 1, one obtains plastic flow with 
isotropic strain-hardening only. In the other case, when the strain-hardening parameter 
is constant and equal to the yield locus in pure shear, only the strain rate sensitivity of 
the material is accounted for. For a.(r, t) = 1 and "(r, t) = k we obtain a case of perfectly 
plastic material. 

The problem can be solved by means of the method of successive approximations. As 
the first approximation of the velocity v(r, t) and wall thickness h(r, t) functions one can 
take those obtained from the solution of the system (2.1 ), (3.1 ), (3.2) and (2.4) for a dy
namic flow, or- of the system (3.3)-(3.5) for a quasi-static flow. Further approximation 
can be computed by means of the equations of characteristics of the system (5.8)-(5.10) 

along the characteristics t = const 

(5.11) 
dw 
(if= 

(5.12) 

. ( 
1 

") [( ~ «.,+ > .. + ! h,,) cos(w-:) 
SID w- 6 

~nw e ] + -,-- 2(a.") ('V,t + 'VV,,) ' 

drJ 1 2co+-i)-cos(w+i) 
di = r" 2cos(w+:) -eo+-:) 

and along the characteristics dr- v dt = 0 

(5.13) 
~ = _ !!__ [2cos(ru-i)-cos(ru+i) +I]. 
dr r 2cos(w+ :) -cos(ru- :) 

By computing a consecutive approximation we substitute the foregoing approximation 
for the expressions in angular brackets. 

As a working example let us consider the expansion of a ring caused by traction 
applied at its outer rim (Fig. 6). A quasi-static solution to this problem with isotropic 
strain-hardening has been given by W. SzczEPI:NSKI [3]. As a first approximation, we assume 
the solution of the system of Eqs. (2.1), (3.1), (3.2) and (2.4). Since both stresses are evi
dently of the same sign (u,u8 > 0) the second relation in (3.2) holds. Thus, solving (3.2) 
and (2.4) with the conditions 

(5.14) h(r, 0) = h0 = const, v(R0 , t) = v0 (t), 

we obtain 
(5.15) v(r, t) = v0 (t), 

t 

(5.16) h(r, t) = h0 (1-+ J Vo(t')d-r) 
0 

Assume a linear relation for a strain-hardening parameter 

(5.17) "(r, t) = k(l +e1), 
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which approximately corresponds to mild steel. The intensity of strain e1 can be computed 
from the relation 

(5.18) e1(r,t) = J V~ <e:+•:+<l) dt. 

The integral must be computed along the characteristics dr- fJdt = 0, representing the 
trajectories of material particles in the r, t-plane. 

t[ms] 
~, c 2.0 I :o . I. I. 4>~ro -'.I 1.6 4'2Ro 

t2 

0.8 

0.4 

A 
ZJ flf at 32 36 -10 "'" 48 52 56 60 

r[mm] 

FIG. 6. 

Assume that the velocity of the outer rim (r = R0 ) is constant f10 {t) = 10 m/sec. 
Thus instead of (5.17) and (5.5) we can write 

(5.19) "(r, t) = k( I+ "; t}. 

(5.20) 
fJo V
-

cx(r,t)=1+ ry' 

where t is the time measured from the beginning of the process. Now, introducing (5.15), 
(5.16) and (5.19), (5.20) into (5.11) we can compute the second approximation for ro, fJ 

and h, by solving numerically the system (5.11)-(5.13) with the conditions (5.14) and 

(5.21) 
5 

ro(r0 , t) = T'" 

Having found the second approximations of all magnitudes in that manner we can 
compute the next approximation and so on. 

The iteration procedure proved quickly converging. The difference between the second 
and third approximations is found to be smaller than 1 per cent. Figure 7 illustrates 
how the radial stress at the outer rim changes with time for four variants of the solution. 
The parameter y and the constant k were assumed to be equal y = 200 sec-1

, k = 13.3 
kp/cm2 , respectively. 
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lt is clearly seep. that· the influence of the. viscous: properties . of the material is. significant. 
Figure 8 shows the variation of the wall thickness of the ring. Continuous .lines · represent 
the solution for a perfectly-plastic material, while broken lines correspond to the solution 
in which strain-hardening and strain-rate Sensitivity have been taken into account. 

0 Q"' Q8 ~2 16 2.0 
t[ms] 

FIG. 7. 

24 28 32 36 40 
r[mm) 

52 56 60 

FIG. 8. 

6. Rotationally symmetric shells 

Consider now a certain class of processes of the plastic forming of thin-walled rotation
ally symmetric shells, in which only one. side of the material is in contact with the tool. 
Since the contact pressure between the tool and the defonned material is small (provided 
the radii of the curvature of the shell are sufficiently large as compared with its thickness) 
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the plane state of stress may be assumed with a ~ sufficient degree of ~ccuracy. The ,equatioa 
of motion oi the deformed material takes the form (Fig. 9) 

l . 1 • p,p . 
u,,,+u,-h h,,+ ~(a,~u,)- ,__._.___h: ·. . ri. -.ev :z; ·O, 

T . COS 
(6.1) 

(6.2) 
p a, u,- . . 

0 ---- --esmacv = , 
h ee e~~. 

where p, is the coefficient of friction, and e,, e, are the radii of curvature. The dot in the 
term v denotes the substantial derivative. · 

I 

~2ro 

FIG. 9 . FIG. 10. 

. As an example let us consider the expansion of -a tube .on a conical mandrel (Fig. 1 0)~- 

Now; the equation ofmotion .(6.1) maybe writtenin the form 

Assumein (5.1) the function C/J(F)'in the form C/J(F}= F6
, where <5 is a constant. Condition: 

(5.1) takes the form 

(6.4) 
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In this case also expression (5.7) satisfies identically the condition (6.4). The parameter 
a(r, t) is now expressed as follows: 

1 

-1 [ 1 ] 2(c'+1) 
{6.5) a(r, t) = 1 +y'+ 1 2(e::+ei+e~) . 

Thus the system of governing equations is similar to the system (5.8)-(5.10). Instead 
of (5.8), we have now the equation 

(6.6) w.,sm{w-: )-{~a.,+ ! ... ,+ ! h .• )eo+-: )- -}[sinru 
-eos(w- :) pctgp] + 2:..-(l + pctgp) (fl.,+rm.,)"' 0 

obtained from (6.3). 
Thus the dynamic problem of the expansion of a tube is determined by the equations 

(6.7) ;: = sm(wl-i) [(~a.,+! h.,+! .... )eos(ru- :) 

+ -}(sinru-cos{w- :) pctgp)- 2(:,_) (l+pctgp) (fl.,+rm.,)]. 
do 1 2cos(ru- :) -cos{w+ :) 
- = - ()--::...__-.....!...... __ ::...__ _ _.:,_ 

dr ' 2cos{ru+:) -cos{w-:) 
(6.8) 

which hold along the characteristics t = const, and 

(6.9) 
dh h [2cos(w-f)-cos{ru+i) l 
dr =- r 2cos(w+:) -eo+-:)+ I 

valid along the characteristics dr-vdt = 0. Note that v represents the radial velocity com
ponent. These equations will be solved by the procedure of successive approximations. 
Computing the n-th approximation we substitute in the expressions in angular brackets 
the magnitudes found in the (n-1)th approximation. As the first approximation we can 
take a dynamic solution for the perfectly-plastic material and the Tresca yield condition 
with the associated flow law. 

Numerical example have been solved for the velocity v0 = 5 m/sec and for the partic
ular values of the constants ~ = 3 and i' = 240sec-1 • The net of characteristics is shown 
in Fig. 11. Along the characteristic AB corresponding to the free edge of the tube, we have 

a, = 0 and, consequently, ro = ~ n. Along the vertical line AC(r = r0), corresponding 

to the initial radius we have v(r0 , t) = v0 tanp and h(r0 , t) = h0 = const. Computations 
have been performed for p, = 0.1 and k = 13.3kp/mm2

• 
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Figure 12 shows variation of the wall thickness. Continuous lines indicate how the 
thickness is distributed along the radius at the fixed instants of the process. Dashed lines 
show the deformation history of different elements of the tube. 

7. Final remarks 

All examples presented above indicate that the iterative methods are converging very 
quickly. This is rather obvious, since the differences between the velocity fields obtained 
from quasi-static and dynamic solutions are small, if the same kinematic boundary condi
tions are assumed. Thus, the methods have been proved effective and may be used in the 
analysis of more advanced practical problems, when the velocities at the edges change 
according to any law v0 (t). 

2 Arch. Mech. Stos. nr 4n6 
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