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Are there any stagnation points of an ideal fluid 
within a three-dimensional toroidal geometry? 

E. MARTENSEN (KARLSRUHE) 

THE VELOCITY vector of an ideal fluid within a toroidal (i.e., double connected) three
dimensional region, the boundary of which has a continuous curvature, is defined 
uniquely by well-known theorems of potential theory, when its normal component 
vanishes on the boundary and its circulation has a fixed non-vanishing value. An open 
question which recently arised and got some actuality especially in magneto-hydro
dynamics is whether this velocity field may have stagnation points (zeroes) or not. 

LET n c R 3 be a toroidal, i.e., double-connected, bounded open set and let the 
boundary an of n have at least a continuous curvature. Then, by well-known theorems 

of potential theory [4], there exists an uniquely defined vector field v in the closure Q 

of n which is continuous in ti and harmonic (1) in n; furthermore v has vanishing nor
mal components on an and a fixed non-vanishing toroidal circulation. If we, for con
venience, assume the boundary an to be analytic, the harmonic vector V is analytic 

everywhere in n. 
The harmonic field v can be realised by the velocity of an (incompressible) ideal fluid 

within a torodidal geometry as well as by a stationary current-free magnetic field bounded 
by a toroidal supra-conductor. Now we shall deal with the question whether this to
roidal ideal fluid or the corresponding magnetic field has stagnation points, that is, zero
es or not. The latter version of the problem has been of some interest lately for sta
bility problems in magneto-hydrodynamics, which arose from the efforts on controlled 
nuclear fusion; here one hopes that the vector field has no zeroes (as a special con
sequence of this the minimum principle would be applicable to v, resulting from the 
fact that lvl- 2 is a subharmonic function, if v is a non-vanishing harmonic vector). 
If our toroidal geometry especially has cylindrical symmetry as, for instance, a circle 
torus has, we can give at once the required harmonic field v as a potential vortex field 
around the symmetry axis, and from this it follows that v cannot have any stagnation 
points. For arbitrary toroidal geometries in R 3 this however is an open question at 
present. But . as the analogous problem in R 2 could be solved a long time ago in the 
sense that there are no zeroes, it should be useful to discuss the methods in R 2 and see 
what they can do in R 3 • In order to simplify our problem in R 2 as well as in R 3 we shall 
restrict ourselves to the case where there are no zeroes on the boundary. 

In R 2 we have a double-connected bounded open set n the boundary an of which 

(1) This means that V is continuously differentiable and Satisfies the equationS diV V = 0, rot V = 0. 
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consists of two sufficiently smooth disjunct curves. If the vector field v = (vx, Vy) is 
continuous in Q and harmonic in !J, the complex function 

{I) 

is continuous in Q and holomorphic in !J. From our assumption w #= 0 on 8Q it follows 
that we can, at the most, have a finite number of zeroes P1 , ••• , P, e!J with positive 
orders m1 , ••• , m,; otherwise the zeroes would have an accumulation point in Q which, 
by a fundamental theorem of function theory, would lead tow= 0 in Q. Now, we shall 
describe three methods by which the problem in R 2 can be solved. 

I. Conformal mapping. As Q c R 2 by means of Riemann's mapping theorem can 
be mapped conformally on the closure of a circle-ring and as an ideal fluid with non

. -vanishing circulation within this special plane geometry obviously possesses no stagna
tion points, it follows by transformation of the complex velocity function (I) that the 
ideal fluid in n has no stagnation points either. 

2. The method of the logarithmic residue. If we assume 8Q to have continuous derivatives 
of the third order, the harmonic field v has continuous derivatives of the first order in Q. 
Then, for the complex function (1) we can write down the logarithmic residue theorem 

2~i J : dz = t 2~i J : dz, 
an V=1 anV 

(2) 

where !J1, ... , !J, c Q are sufficiently small vicinities of the zeroes P1, ... , P, eQ and 
the boundaries a!J' a!J1' ... ' a!J, are orientated in such a way that the corresponding 
sets Q' Ql' ... 'Q, lie to the left. As V lies tangential to a!J the logarithmic residue with 
respect to a!J may be computed in the well-known manner by counting the circulations 
of origin by the values of w; thus, with Eq. ( 1) we get 

1 ~ w' 
(3) 2 ni j w dz = - (1-p)' 

an 

where p is the first Betti number for Q, i.e., the number or topological invariant closed 
curves in !J, which cannot be contracted in a point of !J. Because of p = I in our case 
the logarithmic residue (3) and therefore the sum on the right hand side in Eq. (2) van
ishes. If we at last think of the logarithmic residues be1onging to 8Q 1 , ... , 8Q, to 
have the values m1 , • •• , m, of the orders of the zeroes, Eq. (2) reduces to 

~I Jw' ~ ~ 2n{ wdz = ~ mv = 0 
V=l (}QV 1'=1 

(4) 

and such all m1 , ... , m, must vanish. 
3. The method of the degree of mapping. Under the same assumption for 8Q as before 

we consider the harmonic field v as a continuous differentiable mapping Q -+ R 2 and 
are now interested in the degree d[v; Q, 0] of this mapping with respect to the value 0. 
If, furthermore, d[v; !J1 , 0], ... , d[v; !J,, 0] denote the local degrees of mapping belong
ing to the zeroes P 1 , •.• , P, E Q, the concept of the degree of mapping [3] gives the identity 

n 

(5) d[v; !J, 0] = ~ d[v; Qv, 0]. 
v=l 
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Using now Kronecker's integral representation for the degree 

(6) d[v; Q, 0] =_I_ J v)Cv.,-vyiJ;c ds, 
2n ao lvl2 V ,X2 + y2 

where x(t), y(t), [x(t)]2 + [.Y(t)]2 > 0, is a parameter representation for oQ, running oQ 

such that Q lies to the left, we find by a simple computation that d[v; Q, 0] is the 
negative real part of the logarithmic residue (3) and so we get 

{7) d[v; Q, 0] = I-p. 

Because of p = I and a same conclusion for the right hand side in Eq. (5) it follows 

n n 

(8) }; d [v; Qv, 0] = - }; mv = 0 
v=l v=l 

and from this the same result as before. 
If we now look for the situation in R 3 , we cannot exclude accumulation points of 

zeroes lying in Q as we did before in R 2 • But in R 3 we can exclude zeroes lying all over 
some surface S c Q. For if the harmonic field v were to vanish on S, it could be lo
cally represented as the gradient of a harmonic function q;, which has constant values 
and vanishing normal derivatives on S; thus, by the theorem of Cauchy-Kowalewski, 
it would follow that q; is a constant and v therefore would first vanish locally and then, 
as it is a harmonic vector, in the whole closure ti. 

Now, in R 3 we shall only discuss the case when there is, at the most, a finite number 
of zeroes P1 , ••• , Pn E Q of the harmonic vector v. If we further assume the surface 
an to have continuous derivatives of the third order, all occurrent derivatives will exist 
and be continuous. Now, looking back to the three methods which work in R2

, we see at 
once that we cannot make use of conformal mappings and complex methods based 
on the logarithmic residue. But for the degree of mapping [3] we also have in R 3 the 
identity 

n 

(9) d[v; Q, 0] =}; d[v; Qv, 0], 
11=1 

where Q 1 , ••. , Qn c Q are sufficiently small vicinities of P 1 , ... , Pn. Now, it can be shown 
in two ways that the degree d[v; Q, 0] vanishes. First, we use the homotopy character 
of the degree of mapping, which through this remains unaltered if we continuously 
turn the non-vanishing tangential vector v on 8Q into the direction of the exterior nor
mal of 8Q. The degree of mapping of the vector then obtained has the value of the 
Gaussian curvatura integra of 8Q divided by 4n and hence by a well-known theorem 
of differential geometry [1], we get 

{10) d[v; Q, 0] = I-p, 

where p denotes the first Betti number for Q. So, d[v; Q, 0] vanishes as we have p = 1. 
The second way to show this is a more formal one. Let the vector x(u1

, u2
) be a par

ameter representation for aQ where the surface parameters u1, u2 are orientated in such 
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a way that they form a positive system together with the exterior normal of 8Q and let 
furthermore, Kik, gik and bik be the first, the inverse first and the second fundamental 
tensor for aQ, where g:= det(gik) is positive, and lj resp. llj denote the partial resp. 
covariant derivatives by ui, i = I, 2. Besides this we will use Einstein's summation 
convention. Then, the degree of mapping can be expressed by Kronecker's integral 

(I I) 

where (v, vl 1 , vl 2 ) is the spat-product of v and its derivatives. Now, by means of the Mai
nardi-Codazzi equations of differential geometry [I] one can show by some calculations 
that the integrand in Eq. (11) is equal to the divergence expression 

(12) (v, vll' vj2) = ( b~v"~b~vi) ' b~ = giibi"' v = vix ji 
lvl 3 V g lvi lli 

and from this it immediately follows that the degree (I1) vanishes. 
Therefore in any case we get from Eq. (9) 

n 

(13) 2 d[v; Qv, 0] = 0, 
v=l 

in other words, the sum of the local degrees of mapping referring to the zeroes P 1 , .•• , Pn 
vanishes. Now, the question is what do these local degrees mean. Here we again leave 
the analogy to the plane since these degrees have no relationship to the order of the 
zeroes. We first note that in R 3 the local degree of mapping referring to an isolated zero 
of even order vanishes by reasons of symmetry. Furthermore an isolated zero of odd 
order m does not need to have the degree of mapping m or -m. For this we consider 
the harmonic vector field 

(14) v = grad { ! (xz + y2)2 - 6(xz + yz)zz + 2z•}' 

which has only one isolated zero of the third order in the origin. By some computation 
we find that the local degree of Eq. (14) has the value 1; replacing v by -v, we see that 
the degree -1 is possible, too. Recently, HALTER [2] showed, that an isolated zero of 
the third order in case of a harmonic vector can also possess the degrees ± 3 and ± 5. 

Bearing in mind the negative results just mentioned, Eq. (13) allows us to make 
only a few statements. There cannot be exactly one zero of the first order in Q because 
otherwise, according to the theorem on implicit functions, the mapping v in this point 
would have a non-vanishing Jacobian from which the local degree of mapping I or -1 
would follow [3]. There also cannot be at the most a finite number of zeroes in Q, when 
their local degrees of mapping differ from 0 with the same sign. We with finally should 
remark that these statements are only based on the fact that v does not vanish on aQ 
and has no normal component on 8Q; especially the harmonicity of v has not been 
used here. 
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