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On the stability of the boundary layer along a concave wall 

TH. HERBERT (FREIBURG) 

VARious approaches for investigating the linear stability of the laminar boundary layer along 
a concave wall with respect to Gortler vortices are compared concerning their order in the two 
small parameters, wall curvature and inverse Reynolds number, as well as the treatment of the 
curvature terms. Numerical results show separately the effects of wall curvature, streamline 
curvature and its finite extent on the neutral conditions. The influence of the growing boundary 
layer thickness on the stability characteristics is estimated and found to be of first order. 

Por6wnano r6zne metody badania liniowej statecznosci laminarnej warstwy przysciennej 
wzdluz wkl~slej sciany (wir6w Gortlera) ze wzgl~u na rz'ld dw6ch malych parametr6w: krzy
wizny sciany i odwrotnosci liczby Reynoldsa i uwzgl~dniania czlon6w z krzywizn'l. Wyniki 
liczbowe pokazuj'l odpowiednio wplyw krzywizny sciany, krzywizny linii prCldU i jej skonczo
nego wydluzenia na warunki neutralne. Opracowano wplyw wzrostu grubosci warstwy przy
sciennej na charakterystyk~ statecznosci i wykazano, ze jest pierwszego rz~du. 

Cpaaaeabi pa3H;hie rro.[{XO.[{hi K HCCJie.[{osamuo JIIlae:Hao:H ycTo:H~HBOCTH JiaMHH;apHoro rro
rpaH~rtJ:CI:>r:> CJDR: B.[{)Jib BJrayroif creHKH (BHXp;t repTJiepa) H3-3a fl)p;t[{Kl ABYX MaJibi!C fll 

paMeTp:>B: KpllBil3H;bi creHKH H o6paTao:H BeJIHttHH;bi ~HCJia Pe:HaoJIL.[{Ca H H3-3a ytteTa ~Jieaos 
C KpHBH3HOH. qHCJIOBbie pe3yJibTaTbl flOKa3biBaiOT COOTBeTCTBeH;H;O BJIWIH;He KpHBH3H;bl 

creHKH, KpllBH3Hbi JIIlHHH TOKa H ee KoH;e4H;oro YAJIHH;eaHR: aa aeYTpaJibllbie ycJIOBHH. 06cym
.[{eHo BJIHHHHe pocra TOJI~HH;bi rrorpaHHt{l{oro CJIOH Ha xapaKTepHCTHKY ycToHttHBOCTH H no

Ka3aHo, ~To oHa nepsoro nopH.[{Ka. 

1. Introduction 

THE OCCURRENCE of centrifugal instability in boundary layers along concave walls was 
first predicted theoretically by GORTLER[l] and is at present, well-established. The question 
of stability holds an important place not only within the context of heat exchange problems 
but also in studies of the transition region from laminar to turbulent boundary layer flow 
where experimental observations indicated vortex structures. 

Obviously, an intensified appearance of the counterrotating longitudinal vortices 
cannot directly lead to turbulence, without a coupling with time-periodic disturbances, 
such as Tollmien-Schlichting waves or oblique waves. Experimental studies in the non
linear region show, indeed, meandering or pulsating vortices before breakdown sets in. 
Theoretical investigation of this coupling process would be an interesting application 
of the non-linear stability theory. It turns out, however, that the basis provided by the linear 
theory is rather incomplete and, partly, not sufficiently reliable. 

Instability of the boundary layer flow along concave walls with respect to Tollmien
Schlichting waves has been studied by GORTLER [2]. He succeeded in extending the Rayleigh
Tollmien theorem to curved walls and found a slightly stabilizing influence of concave 
curvature. This seems to be the only investigation of time-periodic disturbances so that~ 
up to now, even the neutral curve is unknown. Insofar as oblique waves are concerned~ 
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1040 TH. HERBERT 

all attempts failed to extend Squire's theorem to the present configuration. ToLLMIEN 
and GROHNE [3] mention some unpublished work showing Squire's theorem not to be 
generally valid for concave walls. This result seems physically meaningful since a small 
deviation of the vortex axis from the streamwise direction should, by no means, change 
the stability limit in a radical way. 

The usual assumption that curvature is of minor importance with regard to the proper
ties of time-periodic disturbances is, therefore, not generally justified. 

Considering the longitudinal vortices we find that the various theoretical investigations 
disagree as to the details of the formulation of the problem and as to their conclusions 
even on fundamental properties. For illustration let us take Fig. 1 which shows a survey 
of various neutral curves taken from the literature. All these curves are presumed to be 
the boundary between regions of stability and instability of the· boundary layer flow with 
respect to Gortler vortices of wave number A, measured in terms of the Gortler number G. 
This survey is not at all complete. Some curves which resulted from inappropriate numerical 
treatment of the equations were left out. 

10 . r---------------------------------------~ 
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--A 
FIG. 1. Various neutral curves obtained with the parallel flow assumption. 

(1) GoRTLER (1), (2) HAMMERLIN [9), (3) ffiMMERLIN (10), (4) HAMMERLIN [12), (5) ScHULTZ·GRUNOW and BEHBAHANI [8), 
(6) KAHAWITA and MERONEY (14), and With the transverse velocity included (7) SMITH [11), (8) KAHAWITA and MERO· 

NEY [14). 

It is inevitable that progress in analyzing vortex instability of boundary layers can 
only be achieved by using strong assumptions without a strict mathematical justification. 
Apart from the simplifications regarding the curvature of the flow, the assumptions mostly 
used were those successfully applied in treating the resistive wave instability of the 
:fiat-plate boundary layer. The 1~.tter is essentially connected with local properties of 
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the basic velocity profile close to the critical layer. Vortex instability, however, is controlled 
by the more global balance of centrifugal forces with the other forces acting in the flow. 
Therefore, flow conditions outside the boundary layer must be carefully taken into account. 

It is the aim of the fo11owing work to discuss various assumptions and to compare 
neutral curves resulting from different approximations by using a highly accurate numerical 
procedure. An improved analysis is suggested including the growing thickness of the 
boundary layer as well as the downstream variations of the vortex shape. 

2. The governing equations 

We shall consider the flow of a viscous incompressible fluid along a concave-wall 
(Fig. 2). x represents the distance in the direction of the basic flow, measured along the 
wall from the leading edge, y ( ~ 0) the distance normal to the wall and z the orthogonal 
coordinate in the span wise direction. The velocity components in the directions x, y, z 
are u, v, w, respectively. k = 1fr0 is the curvature of the wall, which is a continuous 
function k = k(x) and is positive for concave walls. The equations governing the flow 
are the Navier-Stokes equations. In orthogonal curvilinear coordinates they are found 
([4], where k is negative for concave wa11s) to be 

OU 1 CU CU CU ku'V ] Cp 
(2·1) at+ l-ky uax- +vay+waz-- l-ky = --e(I-k.Y)ax 

[ 
1 o2u o2u o2u k ou k 2u 2k av 

+V (1-kyyz OX 2- + cy2 - + OZ 2 - -i-=ky Ty- (l-ky) 2 - (1- ky) 2 OX 

y dk Du I dk ] 
+ (l-ky) 3 cix--a_.;- (l-ky) 3 dx v ' 

FIG. 2. Boundary layer flow along a concave 
wall. 

p 
I 

X 

and two similar equations in v and w. Here, p, (! and v are respectively the pressure, density 
and kinematic viscosity. The continuity equation is 

1 au av kv aw 
---+---- - -+-=0. 
t-ky ax ay 1-ky az (2.2) 

In linear stability theory we consider, as usual, the flow as a superposition of a steady, 
two-dimensional basic flow and small disturbances in the form 

u = u0 (x,_y)+u 1(x,y,z, t), 

v = v 0 (x, y) + v 1 (x, y, z, t), 
(2.3) 

w = w1 (x, y, z, t), 

p = Po (x, y) + p 1 (x, y, z, t). 
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1042 TH. HERBERT 

Introducing Eq. (2.3) into Eqs. (2.1), (2.2) and linearizing in the disturbances yields two 
separate sets of equations respectively for the basic flow and the disturbances. 

2.1. The basic flow 

Even prior to the numerical analysis, the equations for the basic flow must be simplified 
by means of an order of magnitude analysis. The equations may be made non-dimension
al by substituting 

(2.4) 

x = x 0 X = RebX, y = bY, 

u0 = U0 U, V 0 = U0 V= U0 V/Re, 

b = (Yx0 /U0 )
112

, Re= U0 b/Y, 

k = K/b, 

Po = eUJP, 
E = 1/Re, 

where U0 is the free stream velocity, x 0 the distance from the leading edge, ()the boundary 
layer thickness (*) and Re the Reynolds number. The relative magnitude of the terms may 
then be estimated in terms of the parameters E and K which are both assumed to be small. 

With E ~ I, K ~ I, dK/dX ~ I, and E and K being of the same order of magnitude, 
the equations reduce to 

I au au K aP a2 u 
1-KYU-ax +V ay+ 1-KYUV=- I-KY -ax+-ay2-

K au ( K )
2 

+ -1-KY ay- 1-KY U, 

(2.5) 
K 2 aP 

-- 1-KY V =--aY, 

1 au av K 
1-KY ax + oY- 1-KY V= O, 

where all the neglected terms are of the relative order E
1 or less. A self-similar solution 

of these equations was found by MURPHY [5] and improved by ScHULTZ-GRUNOW and 
BREUER [6] for walls with K = const., i.e., with the radius of curvature proportional 
to the boundary layer thickness. 

In contrast to the foregoing, when K ~ E, all the curvature terms are of the relative 
order E1 or less and thus can be neglected without changing the order of the approximation. 
Equations (2.5) then reduce to Prandtl's equations and the basic flow is represented by the 
Blasius' flow. 

For K ~ 1, the solution of Eqs. (2.5) differs only slightly from Blasius' solution as far 
as boundary layer profile and momentum thickness are concerned. However, the potential 
flow outside the boundary layer introduced while solving Eqs. (2.5) is no longer a parallel 
flow. U tends to infinity as y approaches the center of curvature. 

2.2. The disturbance equations 

In order to simplify the disturbance equations, the conditions E ~ I, K ~ I and 
dK/dX ~ I, which were already applied to the basic flow, can be introduced without 
deteriorating the approximation. However, it can not be anticipated that the disturbances 

(*) The formal definition is chosen here since the physical boundary layer thicknessc:s may depend on 
curvature. 
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are limited to the boundary layer. The curvature terms which are negligible inside the 
boundary layer may well be important in the outer region. 

Another aggravating aspect is the growing thickness of the boundary layer which, up to 
now, cannot be included in the analysis in a satisfactory manner (cf. Section 5). Since the 
transverse velocity Vis small in comparison to U, the boundary layer flow is usually consid
ered as a parallel flow, thus neglecting terms of order e. A local stability analysis is then 
carried out using the Blasius' profile or the solution of Eqs. (2.5) at x = x0 as the basic 
flow. 

With the parallel-flow approximation the disturbances may be introduced in the form 
of longitudinal vortices which are independent of x and are amplified (or damped) in time 

u1 = u(y)cosazePt, 

v 1 = v(y)cos azePt, 

W1 = w(y)sinazeP', 
(2.6) 

p 1 = p(y)cosazeP', 

where a = 2n/ A is the wave number, ). the wavelength and fJ the amplification rate. 
After neglecting the small changes in curvature, dk fdx, the stream wise coordinate x 

is completely removed from the equations. 
By substituting Eqs. (2.4) and 

z = tJZ, a = AjtJ, fJ = Bv/tJ2
, 

u = Uou, v = U0v = U0v/Re, w = Uow, p = eU~p 
(2.7) 

the equations are made non-dimensional. Since no further use of the basic equations 
is needed, there should be no risk of confusion with the quantities defined in Eqs. (2.1), 

(2.2). The final set of disturbance equations is obtained after eliminating the pressure and 
the w-component of the velocity by using the continuity equation 

d
2
u K du [ 2 ( K )

2

] [ dU K ] _ 
dY2 - 1 - KY iy - _ r + 1 - KY u = Re dY - 1 - KY U v' 

d
4v K d

3v [ 2 2 ( K )
2

] d
2v 

(2·8) dY4 -
2 1 -KY dY3 - a + r + 3 1-KY dY 2 

[ 
2 2 ( K ) 

2

] K dv [ 2 2 ( 2 2 ) ( K ) 
2 

+ a + r - 3 1 - KY 1 - KY dy + a r + a + r 1-KY 

-3C-~Yf]v = -2Rea
2 ~-~Yuu, 

where r 2 = A 2 +B and a= A. Equations similar to Eqs. (2.8) were presented by BEH
BAHANI and SCHULTZ-GRUNOW-[7, 8], however, the right hand side of their second equa
tion is erroneous. 

The boundary conditions claiming that the disturbances must vanish at the wall can be 
restated by using the continuity equation as 

(2.9) 
dv 

u = v =- = 0 at Y = 0. 
dY 
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In the free stream the disturbances must decay. When using the boundary layer profile 
according to Eqs. (2.5) it follows 

(2.IO) 
U V K v __ I_dv=O 

I-KY U U dY 
at Y = I/K. u u 

For the Blasius' profile (U = I at Y = oo), these conditions reduce to the common form 

(2.11) 

2.3. Additional simplifications 

dv 
u =V= dY at Y= oo. 

In the set of disturbance equations originally presented by GORTLER [I], some addi
tional simplifications were introduced in view of the smallness of K and because the disturb
ances were assumed to exist almost inside the boundary layer (y ~ 5). In detail he was 
led to the following assumptions: 

(i) The curvature terms (1-KY)- 1 can be replaced by I. 
(ii) The terms multiplied by K can be neglected except those with the factor ReK. 

(iii) Inside tlie boundary layer, KU can be neglected in comparison with dU/dY. 
With (i) - (iii) one obtains from Eqs. (2.8) the system 

(2.I2) 

with the boundary conditions (2.9), (2.11), where p, = 2Re2K. The Blasius' profiles repre
sents the appropriate basic flow. The characteristic equation of this eigenvalue problem 
has the form 

(2.13) F( (J, r, p,) = F( A , B, G) = 0, 

thus providing an "universal" stability diagram. The parameters K and Re appear only 
implicit in the Gortler number 

(2.14) ( )

1/2 

G = ~ = ReK112
• 

Gm-tier solved the eigenvalue problem by means of integral equations using Green 
functions. In accordance with his assumptions, the integrations were carried out only 
inside the boundary layer. His result was the now well-known stability diagram, predicting 
the onset of instability at G ~ 1, and a wave number A~ 0.2. The neutral curve (B = 0, 
i.e., r = (J) is shown in Fig. 1. 

HXMMERLIN [9] resolved Eqs. (2.12); his improved analysis provided a minimum of the 
neutral curve at A = 0 where the vortices (2.6) disappear. At the same time he found the 
vortices at small A to reach far beyond the edge of the boundary layer and thus Gortler's 
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assumptions not to be valid for all wave numbers. Consequently, in [10] he dropped the 
assumption (iii) and obtained the equations 

d2u - -c2u = [ dU - Ku] v 
dY2 dY ' 

(2.15) 
d4v d2v 
-- - ( 0'2 + -c2) -- + a2 -c2v = - p,a2 Uu 
dY4 dY2 

instead of Eq. (2.12). The related characteristic equation is now 

(2.16) F(a, 1:, p,, K) = F(A, B, G, K) = 0, 

and the stability diagram depends explicitly on K. The equations (2.12) turn out to 
be the limit for K-+ 0. 

Apart from some asymptotic properties obtained for a simplified linear boundary layer 
profile, Eqs. (2.15) have never been solved numerically. 

2.4. Treatment of streamline curvature 

The crucial difference between the approximations (2.8) and (2.15) lies in the treatment 
of the curvature terms. Since the centrifugal forces drive the secondary vortex flow, it is 
obvious that the wall curvature K itself plays a less important role than the overall curvature 
of the flow field. 

Equations (2.8) are based on a curvature of the streamlines tending to infinity like 
(1-KY)- 1 as it is shown in Fig. 3a. All the terms multiplied by powers of K/(1-KY), 
must be retained in this case since they receive importance close to the singularity. Therefore 
the equations may be regarded as exact in some sense. However, the assumption of an 
infinite streamwise extent of the wall having a constant curvature K gives rise to some 
questions, especially in view of the local character of the theory. In practice, wall curvature 
is present only over a certain part of the wall and no singularity appears. Therefore, it seems 
justified to introduce more realistic properties of the flow far from the wall. 

FIG. 3. Various models for wall curvature and 
streamline curvature. 

a 

y 

b y 
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1046 TH. HERBERT 

The assumption (i) applied in Eqs. (2.12) and (2.15) implies the streamline curvature 
to be constant at any distance from the wall, as it is shown in Fig. 3b. 

Another model has been introduced by SMITH [11]. The terms (1- KY)-" are replaced 
by their series expansion and only the first terms (1 +nKY) are retained. Thus, the singula
rity at KY = 1 is removed to Y = oo. In a similar way one could replace (1 - KY) by other 
functions, for example by exp(KY). 

Such approximations are in effect equivalent to changes of the outer flow conditions 
and should already be taken into account while deriving the equations. This idea has been 
followed by HA.MMERLIN [12] using locally an outer flow which has the properties of the 
boundary layer flow along a wavy wall in the valley positions. There, streamline curvature 
decays like K exp(- CY) (Fig. 3c). The streamlines are utilized to construct a net of locally
orthogonal curvilinear coordinates. Starting from transformed basic equations, for disturb
ances of the form (2.6) and sufficiently small wall curvature the following disturbance 
equations are obtained: 

d 2u 2 _ dU 
dY2 - 7: u - dY V' 

d 4v d 2v __ ..... ( a2 + r2) __ + a2 r2v = _ p,a2 Uue-cr 
dY4 dY2 • 

(2.17) .. 

In this approximation the decay of the streamline curvature affects only the right 
hand side of the second equation. The additional term introduced in the first Eq. (2.15) 
has been dropped here since in the new coordinates dU/dY- KU vanishes in the potential 
flow. This condition, however, is not satisfied by the Blasius' profile which has been applied 
in HA.MMERLIN's [12] analysis. For C = 0, the Eqs. (2.17) as well as the outer flow reduce 
exactly to Gortler's formulation (2.12) 

Finally, an analysis has been carried out by ToBAK [13] for a wall having concave 
curvature only over a finite streamwise extent (described by the parameter d = ~D in 
Fig. 3d) and being plane elsewhere. Eliminating the variable X by means of Fourier trans
forms and introducing Gortler's assumptions (i)-(iii), the following set of equations 
is obtained: 

d 2u 
2 

_ dU 
dY2 - 7: u - dY V' 

d4v d2v 
--- (a2 + r 2) -- +a2r 2v = - p,a2Uu(1-e-AD) dY4 dY2 • 

(2.18) 

The finite extent of the curvature appears only as a multiplier to the Gortler number. Thus, 
after having solved Eqs. (2.12) with Eqs. (2.9), (2.11), the eigenvalues of Eqs. (2.18) can be 
obtained by a simple transformation without repeating the numerical analysis. The 
stability diagrams presented in [13] are derived from the results in [1] which were already 
subject to criticism. 

In spite of the shortcomings involved in the various approximations, a numerical 
evaluation of the equations (2.15), (2.17) and (2.18) seems valuable. It turns out that these 
equations are appropriate for studying separately the influences of wall curvature, decay 
of streamline curvature and finite extent of wall curvature on vortex instability. Improved 
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results of the disturbance equations (2.8) will be presented using the boundary layer 
profile (2.5) for curved walls. In addition, Eqs. (2. 12) will be solved since they provide 
the limiting values of all the other approximations. 

3. Method of solution 

Various methods are used to obtain numerically the solutions, i.e., eigenvalues and eigen
functions of the disturbance equations. GoRTLER [1] and HAMMERLIN [9] first transformed 
the differential equations to a system of integral equations which were solved numerically 
when the integrals were replaced by finite sums. SMITH [11] and others used Galerkin's 
method to calculate the eigenvalues. The resulting eigenfunctions, however, are subject 
to some criticism. The more recent investigations apply difference methods, such as the 
Runge-Kutta method, for the numerical integration of the equations within the boundary 
layer which are matched at the boundary layer edge to an outer analytical solution. The 
outer solution is constructed in the form of a fundamental system from the disturbance 
equations which are simplified after replacing U by the outer potential flow. According to 
the outer boundary conditions, only three of the initially six fundamental solutions have 
to be taken into account. 

Usually, inside the boundary the disturbance equations are treated as an initial value 
problem starting from the wall. Matching the numerical results at a position Y = Ym 
sufficiently far outside the boundary layer with a linear combination of the three fundamen
tal solutions provides the eigenvalue relation. In the present investigation the integration 
is, as in [14], carried out in the reverse direction, starting from Ym to the wall. The boundary 
conditions at the wall are satisfied by iterative improvement of an initially guessed eigen
value. The highly accurate difference scheme combined with conditional filtering which was 
applied here has already been successfully used in the numerical treatment of non-linear 
stability problems for the flat plate [15]. Since the parasitic fundamental solutions decay 
in the direction to the wall, the numerical stability of the procedure is improved; this 
makes the method more accurate and efficient. 

All the results presented in this paper were obtained with a stepsize of 0.125 starting 
at Ym = 10. The calculations were carried out on the UNIVAC 1106 of the University 
Freiburg. 

3.1. The outer solutions 

For sufficiently large Ym the Blasius' profile satisfies approximately 

(3.1) U = 1, ~~ = 0 for Y ~ Ym. 

Introducing this into the disturbance equations (2.12), (2.15), (2.17), (2.18) and eliminating 
u, one can easily find the related fundamental system for v in the form vi = YPexp(e1 Y), 
i = 1, ... , 6, where ei are the roots of the characteristic equations and p > 0 appears 
in the case of multiple roots. The ui can afterwards be derived from vi using the second 
disturbance equation. For the parameters of interest, only three roots with negative real 
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parts are obtained. The related solutions u1, V; satisfy the outer boundary conditions 
(2.11) and are continued from Ym to the wall by numerical integration. 

With regard to the disturbance equations (2.8) based on the improved boundary layer 
profile according to Eqs. (2.5), we consider here only the case of neutral disturbances 
(B = 0). Introducing the outer flow 

(3.2) 
v = Rev and the transformation 

(3.3) 
the equations reduce to 

(3.4) 

U = U0 /(1-KY), 

'YJ = (1-KY)A/K 

p, 2 
= --2 'YJU. 

K 

Apart from a mistake in the right hand side of the second equation, similar equations were 
already presented in [7, 8]. Obviously, the first equation is seen to be the modified 
Bessel operator with the solutions 

(3.5) u1 = 'YJll('YJ), u4 = 'Y}K1 ('YJ), 

where only u1 satisfies the boundary condition (2.10). The fundamental solutions v; are 
given in [7, 8] as power series in 'YJ· 

On the other hand, analytical solutions of the homogeneous second equation can be 
found in the form 

(3.6) Vz = 11('YJ), V 3 = 'Y}lo('YJ), Vs= K1 ('YJ), v6 = 1'}Ko(1'J) 

and as a particular solution constructed from u1 one first obtains 

(3.7) 

So far, onlyv2 and v3 satisfy Eq. (2.10). The singular behaviour of v1 at 17 = 0, however, 
can be removed through combination with Vs, v 6 , resulting in 

(3.8) v1 = c [ ~ 10 (rJ)-In1Jlt (rJ)-Kt (1J)-1}Ko(1J) l 
The three fundamental solutions to be continued to the wall are finally (u1 , v1), (0, v2), 

(0, v3 ). 

The advantage of using the analytical form of the outer solution is obvious since large 
values of 17 may arise from the small curvature K. Series expansions of the Bessel functions 
are useless for numerical evaluation in that case. The series provide numerical data with the 
required accuracy only in the case of large curvature (which contradicts the assumption 
of the theory), very small wave numbers (which may be of minor interest) or Ym close 
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to the singularity at Y = If K (thus increasing drastically the computational effort). The 
analytical form, on the contrary, simply allows the use of the asymptotic properties of the 
functions. However, even then care must be taken in order to maintain linear independence 
in the numerical representation of the funda~ental solutions and their derivatives at Ym. 

4. Results and discussion 

Although the computer program is written to calculate eigenvalues and eigenfunctions 
according to the various approximations for any parameters of practical interest, only 
neutral curves are presented here. In addition, the investigations are limited to the classical 
and most unstable mode. Higher modes, which may well be of physical importance, 
are discussed in [16]. 

The results of Hammerlin's equations (2.15), (2.9), (2.11) are shown in Fig. 4 and com
pared with the limiting curve obtained from Gortler's· equations (2.12). Apart from some 
slight differences caused by the underlying basic flow and the numerical method, the lowest 
curve agrees well with HXMMERLIN's result [9]. As to Eqs. (2.15), up to now only the asymp
totic property G"' K1

'
4A- 1 of the neutral curves for small A and for a simple linear appro-

If) 

If) 

N'ts~7Das~o~-2~2~3~4~5r6~7~BTsr=o-~1 -2r-13-.41516171Bsn-if~'2--3114-6~ 
WAVE NUMBER A 

FIG. 4. Neutral curves for various values of the wall curvature K (Eqs. (2.15)). 
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ximation to the boundary layer profile were given in [10]. With K = const., the relation 
G"' A - 1 is confirmed by the numerical results for the Blasius' profile too but the constant 
of proportionality depends on Kin a more complicated way. 

The critical conditions (marked with an index c) derived from the minima of the neutral 
curves vary with curvature K and are shown in Fig. 5. There is a considerable change in 
the wave number Ac, which is related to the selective occurrence of a preferred wave length 
in experiments. The critical value Ac of the wave-length parameter A = (J..f~)312G is also 
drawn in Fig. 5. The critical Gortler number Gc is slightly increased by increasing K. 
At the same time, the critical Reynolds number derived from Eq. (2.14) decreases to very 
low values, e.g., Rec = 12.2 at K = 0.01. Since the transverse velocity terms (of order 
e = Re- 1

) are neglected, only very small curvature is within the scope of the theory. 

FIG. 5. Critical values of the wave number Ac, Gortler number Gc, Reynolds number Rec and wavelengt 
parameter Ac versus wall curvature K (Eqs. (2.15)). 

Equations (2.17) were numerically treated by HXMMERLIN's [121 only for the fixed value 
C ~ 0.1. As it is shown in Fig. 6, by variation of C, i.e., the decrease of streamline curvature 
far from the wall, one can produce a stability diagram similar to that given in Fig. 4 without 
changing K. The wall curvature K appears only implicitly in G = ReK112 , thus the critical 
Reynolds number increases here with increasing Gc . The stabilizing effect of an increase 
in C can be explained by the smaller extent of the curved flow region (in y) and the related 
reduction of the driving centrifugal forces in the outer flow. 

A similar situation can be found on the basis of Tobak's equations (2.18). The results 
shown in Fig. 7 were obtained by transforming the data resulting from Eqs. (2.12). Even 
here, diminishing the (streamwise) extent of the curved flow region causes an increase 
of the critical Gortler number and Reynolds number. 

Since each of the approximations (2.15), (2.17) and (2.18) just excludes the influences 
introduced in the other two, Figs. 4, 6 and 7 show the three separate mechanisms producing 
independently about the same quantitative influence on the neutral curve in terms of the 
Gortler number. This is of particular interest while comparing theoretical and experimental 
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amplification rates. Apart from the difficulties in identifying neutral conditions with suffi
ciently small disturbances, an experimental verification of the theory requires a detailed 
specification of the underlying flow conditions; especially in the low (and critical) wave 
number region. The ascending branch at larger wave numbers does not change considerably, 
therefore BIPPEs' comparison with experimental data [17] may be regarded as conclusive. 

The difference between the theoretical and experimental results concerning neutral 
stability cannot be removed by using the approximation suggested by ScHULTZ-GRUNOW 
and BEHBAHANI [8]. Figure 8 shows the results obtained from Eqs. (2.8)-(2.10). Since 
curvature of the streamlines increases with increasing distance from the wall, the neutral 
curves run below the limiting curve according to Eqs. (2.12) in a wide range of wave 
numbers, and finally rise with decreasing A. This sudden rise and consequently, the critical 
wave number is strongly connected with the modified Bessel functions of second kind 
in the outer solution which comes into play at the edge of the boundary layer. This occurs 
at a fixed value of rJ and, therefore, Ac should be approximately proportional to K. As can 
be seen in Fig. 8, the calculations provide the estimate Ac ~ 3.5K, which may be extremely 
small when compared to the values shown in Fig. 5. Even Gc and Rec are smaller here 
due to the intensified centrifugal forces. 

1/) 

(I") 

FIG. 8. Neutral curves for various values of the wall curvature K (Eqs. (2.8)). 
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The neutral curves in Fig. 8 disagree essentially from those presented by ScHUL TZ

GRlNOW and BEHBAHANI [7, 8, 18]. Unfortunately, some mistakes in the notations used 
in tleir papers make it difficult to explain the discrepancy fully. Probably the results 
suff~ from the fact that the series representation of the outer solution are used without 
the tequired care.(!) 

Apart from this, the large values chosen for the wall curvature K might well be outside 
the ~ope of the theory, for they result in extremely small critical Reynolds numbers 
Rec < 10, where the disturbance equations as well as the boundary layer theory fail to 
prov.de a valid solution. At the onset of vortex instability, typical Gortler numbers are 
about G = ReK112 ~ 1. Thus, we find K ~ Re- 2 and the largest terms (of order ReK ~ 
~ R!- 1) introduced by the curvature to be comparable in magnitude with the neglected 
transverse velocity terms. It follows that an extension and improvement of the theory 
presented by HXMMERLIN [10] first requires the involvement of higher order terms in Re- 1 , 

not K. At the same time the influence of the growing thickness of the boundary layer 
on vJrtex instability must be expected to be of first order. 

5. The effect of the growing thickness 

All the approximations mentioned so far suffer from the assumption of the boundary 
layer to be locally a parallel flow. A first attempt to improve this situation has been made 
by SMITH [11] taking into account the transverse velocity in the boundary layer. Small 
streamwise changes in curvature were found to be of minor importance. In contrast to 
Eqs. (2.6), the vortices are assumed to grow with distance x, not time: 

(5.1) 

U1 = u(y)COS (J.ZefJx, 

V1 = v(y)COS(J.ZefJx, 

w1 = w(y)sin(XzePx, 

p 1 = p(y)cos (J.ZefJx. 

Starting from Eqs. (2.1 )-(2.3), the usual procedure leads to a set of equations which were 
further simplified replacing (1- KY)-" by its series expansion (1 +nKY + ... ) and linearizing 
in the small parameter K. For neutral disturbances the resulting equations are 

(5.2) 

d2u -(V+K) du - (a2- dV) u = (dU- KU)v 
dY2 dy dY dY ' 

d4v d3v ( 3 dV ) d
2
v ( 2 2 dV ) dv 

dY4 -(V+2K) dY3 - 2a + dY- KV dY2 + a V+2Ka +K dY -dY 

+a' ( a2 + ~~) v = - lla'Uu. 

Since V= Re VIs of the same magnitude as U, the terms introduced by the growing thickness 
cannot be regarded as small. It must be expected that the transverse velocity is of consider
able importance for vortex instability, especially in the low wave number region (a = 

et) Corrected results have been published in a Brief Report by D. BEHBAHANI, ZAMP, 26, 
493-495, 1975. 

22* 
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= A < 1). It is the lack of such terms, introduced by the boundary-layer growth, which 
accounts for the parallel-flow equations to fail for K = 0, where decaying vortices are 
expected to exist, and for their inadequacy in describing forced vortices as they are pro
duced by non-linear interaction of three-dimensional disturbances [15]. 

In spite of these qualitative conclusions, the numerical results presented by SMITH 
differ only moderately from those obtained with the parallel-flow assumption, (Fig. 1). 
However, the calculations carried out by KAHAWITA. and MERONEY [14] on the basis of 
Smith's equations with and without inclusion of the transverse flow terms (Fig. 1, curves 
(6) and (8) respectively) show a remarkable difference. With the V-terms included, no crit
ical value is obtained for G and the neutral curve seems to reach a limiting wave number 
of about A ~ 0.45 at G = 0. In tendency, this change in the stability characteristic agrees 
well with the results of HAALAND and SPARROW [19] for vortex instability of natural 
convection, where the accounting of the non-parallel nature of the basic flow has a first 
order effect. 

The reason for the discrepancy between Smith's result and that of Kahawita and 
Meroney can not be completely explained up to now. Some prelimin~ry investigations 
in this aspect tend to confirm the latter results. 

Kahawita and Meroney already suspected the physically strange stability characteristic 
to be due to an inaccurate mathematical description of the physical situation. Indeed, this 
is true, for in a growing boundary layer the amplification rate and, moreover, the shape 
of the vortices will depend on the streamwise distance x. An order of magnitude analysis 
shows the terms introduced by these streamwise changes of vortex shape to be of the 
same order as the transverse velocity terms: 

In the treatment of Tollmien-Schlichting waves, where the growing thickness turns 
out to be less important, some success has been reached by using perturbation methods 
(cf. [20]). In the present case, however, the difficulties in deriving a set of appropriate and 
accessible equations are not yet completely overcome. 
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