
51.

ON HAMILTON’S NUMBERS.By J. J. Sylvester and James Hammond.
[Philosophical Transactions of the Royal Society of London, CLXXVIII.(1887), pp. 285—312; clxxix. (1888), pp. 65—71.]Introduction.In the year 1786 Erland Samuel Bring, Professor at the University of Lund in Sweden, showed how by an extension of the method of Tschirn- hausen it was possible to deprive the general algebraical equation of the 5th degree of three of its terms without solving an equation higher than the 3rd degree. By a well-understood, however singular, academical fiction, this discovery was ascribed by him to one of his own pupils, a certain Sven Gustaf Sommelius, and embodied in a thesis humbly submitted to himself for approval by that pupil, as a preliminary to his obtaining his degree of Doctor of Philosophy in the University*.  The process for effecting this reduction seems to have been overlooked or forgotten, and was subsequently rediscovered many years later by Mr Jerrard. In a memoir contained in the Report of the British Association, for 1836, Sir William Hamilton showed that Mr Jerrard was mistaken in supposing that the method was adequate to taking away more than three terms of the equation of the 5th degree, but supplemented this somewhat unnecessary refutation of a result known a priori to be impossible, by an extremely valuable discussion of a question raised by Mr Jerrard as to the number of variables required in order that any system of equations of given degrees in those variables shall* Bring’s “Reduction of the Quintic Equation” was republished by the Rev. Robert Harley, F.R. S., in the Quarterly Journal of Pure and Applied Mathematics, vol. vι, 1864, p. 45. The full title of the Lund Thesis, as given by Mr Harley (see Quart. Journ. of Math., pp. 44, 45) is as follows : “B. cum D. Meletemata quaedam mathematica circa transformationem aequationum algebraicarum, quae consent. Ampliss. Facult. Philos, in Regia Academia Carolina Praeside D. Erland Sam. Bring, Hist. Profess. Reg. & Ord. publico Eruditorum Examini modeste subjicit Sven Gustaf Sommelius, Stipendiarius Regius & Palmcrentzianus Lundensis. Die xιv Decemb., mdcclxxxvi, L.H.Q,S.—Lundae, typis Berlingianis.” 
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554 On Hamilton's Numbers [51admit of being satisfied without solving any equation of a degree higher than the highest of the given degrees.In the year 1886 the senior author of this memoir showed in a paper*  in Kronecker’s (better known as Crelle’s) Journal that the trinomial equation of the 5th degree, upon which by Bring’s method the general equation of that degree can be made to depend, has necessarily imaginary coefficients except in the case where four of the roots of the original equation are imaginary, and also pointed out a method of obtaining the absolute minimum degree M of an equation from which any given number of specified terms can be taken away subject to the condition of not having to solve any equation of a degree higher than Mf. The numbers furnished by Hamilton’s method, it is to be observed, are not minima unless a more stringent condition than this is substituted, namely, that the system of equations which have to be resolved in order to take away the proposed terms shall be the simplest possible, that is, of the lowest possible weight and not merely of the lowest order; in the memoir in Crelle, above referred to, the author has explained in what sense the words weight and order are here employed. He has given the name of Hamilton’s Numbers to these relative minima (minima, that is, in regard to weight) for the case where the terms to be taken away from the equation occupy consecutive places in it, beginning with the second.Mr James Hammond has quite recently discovered by the method of generating functions a very simple formula of reduction, or scale of relation, whereby any one of these numbers may be expressed in terms of those that precede it: his investigation will be found in the second section of this paper, and constitutes its most valuable portion. The principal results obtained by its senior author, consequential in great measure to Mr Hammond’s remarkable and unexpected discovery, refer to the proof of a theorem left undemonstrated in the memoir in Crelle above referred to, and the establishment of certain other asymptotic laws to which Hamilton' s Numbers and their differences are subject, by a mixed kind of reasoning, in the main apodictic, but in part also founded on observation + It thus
[*  Above, p. 531.]+ For instance, an equation of not lower than the 9O5th degree may be transformed into another of that degree, in which the 2nd, 3rd, 4th, 5th, 6th, 7th, terms are all wanting, by means of the successive solution of a ramificatory system of equations, of no one of which the degree exceeds 6, whereas by the Jerrard-Hamiltonian method this transformation could not be effected for the general equation of degree lower than the 6th Hamiltonian Number, namely, 923. So for the analogous removal of 5 consecutive terms the inferior limit of degree of the equation to be transformed would be 47 by the one method, but 44 (the lowest possible) by the other. In the case of 4 consecutive terms Hamilton could not avoid being aware that 11, the 4th number which I have named after him, might be replaced by 10, as the lowest possible inferior limit of the equation to be transformed.+ In the 3rd section, communicated to the Society after the 1st and 2nd had gone to press, the empirical element is entirely eliminated, and the results reduced to apodictic certainty. 
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51] On Hamilton's Numbers 555became necessary to calculate out the 10th Hamiltonian Number, which contains 43 places of figures. The highest number calculated by Hamilton (the 6th) was the number 923, which comes third in order after 5 (the Bring Number), 11 and 47 being the two intervening numbers. It is to be hoped that some one will be found willing to undertake the labour (consider­able, but not overwhelming) of calculating some further numbers in the scale.The theory has been “ a plant of slow growth.” The Lund Thesis, of December 1786 (a matter of a couple of pages), Hamilton’s Report of 1836, with the tract of Mr Jerrard therein referred to, and the memoir in Crelle, 
of December 1886, constitute, as far as we are aware, the complete biblio­graphy of the subject up to the present date.

§ 1. On the Asymptotic Laws of the Numbers of Hamilton and
their Differences.Consider the following Table :—

Any line of figures, say p, q, r, s,t, ... θ, in the Table being given, to form the subsequent line q1, r1, s1, t1, ... θ1, we write
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556 On Hamilton's Numbers [51If we call the nth term of the mth line [m, n], the general law of deduc­tion may be expressed by the formula 
where Bik means the coefficient of zi in (1 — z)-k.The negative term — Bn+1 ([m, 1] — 1), it may be noticed, arises from decomposing the first term of [m + l, n], as given by the original formulae, into two parts, of which it is one. Thus, for example, 
is changed into

The numbers in the hypothenuse of this infinite triangle, namely, 
are what I call the Hamiltonian Differences, or Hypothenusal Numbers*;  and their continued sums augmented by unity, namely, 
are what I call the Hamiltonian Numbers. The two latter of these have been calculated by means of Mr Hammond’s formula, presently to be mentioned, and the corresponding Hypothenusal Numbers deduced from them by simple subtraction. Their connection with the theory of the Tschirnhausen Transformation will be found fully explained in my memoir on the subject in Vol. c. of Crelle. My present object is to speak of the numbers as they stand, without reference to their origin or application +.* The other numbers of the “triangle,” whose properties it may be some day desirable to investigate, may be termed co-hypothenusal numbers of order measured by their horizontal distance from the hypothenuse—their vertical distance below the top line denoting their rank. In the sequel the development is given of the half of a hypothenusal number (of the first order) in a descending series of powers (with fractional indices) of the half of its antecedent, the coeffi­cients in the principal part of such series being (not, as might have been the case, functions of the rank, but) absolute constants. These may be termed the hypothenusal constants. The values of the first four of them are shown to be 1, 4/3, 11/18, 10/81.+ The reader will be disappointed who seeks in Hamilton’s Report any systematic deduction of the numbers which I have called after his name. He treats therein the more general question of finding the number of letters sufficient for satisfying any system of equations of given degrees by means of a certain prescribed uniform process whereby the necessity is obviated of solving any equation of a higher degree than the highest one of the given equations, and among, and mixed up with, other examples considers systems of equations of degrees 1, 2, 3; 1, 2, 3, 4; 
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51] On Hamilton’s Numbers 557The question arises as to whether it is possible to deduce the Hamiltonian Differences, or to deduce the Hamiltonian Numbers, directly in a continued chain from one another without the use of any intermediate numbers. Mr James Hammond has shown that it is possible, and has made the remarkable discovery that it is the Numbers of Hamilton, and not the Hypothenusal Numbers, which are subject to a very simple scale of relation. These being found, of course the Differences become known. This is contrary to what one would have expected. A priori, one would have anticipated that the determination of the Hypothenusal Numbers would have preceded that of their sums.I leave Mr Hammond to give his own account of his mode of obtaining the wonderful formula of reduction, which, by a slight modification, I find, may be expressed as follows:—Using Ei to denote the (i + l)th Hamiltonian Number augmented by unity, so that E0=3, E1 = 4, E2=6, E3 = 12, E4=48,...; 
1, 2, 3, 4, 5; 1, 2, 3, 4, 5, 6; for which the minimum numbers of letters required to make such process possible (when the equations are homogeneous) are 5, 11, 47, 923, respectively. Accord­ingly he has no occasion to employ the infinitely developable Triangle which gives unity and cohesion to the problem which deals with an indefinite number of equations of all consecutive degrees from 1 upwards. This triangle, which plays an important part in the systematic treat­ment of the problem, first appears in my memoir on the subject in the 100th volume of Crelle.It is proper also again to notice that what I call the Numbers of Hamilton (at all events those subsequent to the number 5) are not the smallest numbers requisite for fulfilling the condition above specified. Smaller numbers will serve to satisfy that condition taken alone ; but when such smaller numbers are substituted for Hamilton’s the resolving equations will be less simple, inasmuch as they will contain a greater number of equations of the higher degrees than when the larger Hamiltonian numbers are employed. This distinction will be found fully explained in the memoir cited, and the smallest numbers substitutable for Hamilton’s are there actually determined for r equations of degrees extending from 1 to r for all values of r up to 8 inclusive.I have added nothing (for there is nothing to be added) to the fundamental formula of Hamilton expressed by the equation[λ, μ, v, ... π]=l + [λ-l, λ + μ, λ + μ + v, ..., λ+μ+v+... +π],where, supposing the letters λ, μ, v, ... π, to be i in number, [λ, μ, v, ... π] means the number of letters required in order that it may be possible to satisfy, according to the process employed by Hamilton (in conformity with a certain stipulation of Jerrard), a system of λ equations of degree i, 
μ equations of degree i-1, v equations of degree i-2, ,.., π equations of the degree 1, without solving any single equation of a degree higher than i. This formula, applied λ times successively, will have the effect of abolishing λ and causing [λ, μ, v, ...π] to depend on [μ', v', ... π'], where 
μ', v', ... π' are connected with λ, μ, v, ... π by means of the formulas given at the commence­ment of the present paper, but where instead of the letters λ, μ, v, ... I have used the letters p,q, r,...It is presumable that the reduced Hamiltonian numbers would be found much less amenable to algebraical treatment than the Hamiltonian numbers proper ; for numerical equalities and inequalities have to be taken account of, in determining them, which have no place in the deter­mination of the latter numbers. Hamilton, as already stated, expressly alludes to the reduction of 11 to 10, but with that exception has avoided the general question of finding the absolutely lowest number of letters required in order that a system of equations (expressed in terms of those letters) of given degrees may admit of being satisfied without the necessity arising to solve any equation of a higher degree than the highest of the given ones.

www.rcin.org.pl



558 On Hamilton's Numbers [51and βim to signify the coefficient of ti in (1 + t)m; then, for any value of i greater than unity,
Or in other words, writing β0Ei=1, β1Ei-1=Ei-1, and replacing i—1 by i, 

for all values of i greater than zero.This is eminently a practical formula, as all the numerical calculations made use of to obtain any E are available for finding the E which follows. Dispensing with the symbol β, we may deduce all the values of E succes­sively from those that go before by means of the equivalence 
which, by equating the powers of t on the two sides of the equivalence, gives 

and so on.I use the term equivalence and its symbol in order to convey the neces­sary caution that the relation indicated is not one of quantitative equality; for, although the series on the left-hand side of the symbol converges for all positive values of t less than 2, it is never equal to the expression on the right-hand side except when t = 0. Thus, for example, when t is unity the two terms of the equivalence are 0 and — 1, and when t = 1/2 they areand 0, respectively;and for all values of t within the limits of convergence the value of the left­hand side is in excess of the value of the right-hand side of the equivalence by a finite quantity which decreases continuously as t decreases from 2 to 0, and which vanishes when t= 0*.In a word, the generating equation is not an equation in the usual sense of the term. Conceiving each term of the series S to be expanded in ascending powers of t, and like powers of t to be placed in columns under and above* Of the truth of the statement that the excess never changes sign, and continually decreases, I have scarcely a doubt, but it requires proof. Mr Hammond remarks that 
where Fn (t) is positive for all positive values of t. Probably a proof of the point in question might be deduced from this expression, but I have not thought it necessary to investigate the matter. 

www.rcin.org.pl



51] On Hamilton's Numbers 559each other, the double sum may be taken as a vertical sum of line-sums or as a horizontal sum of column-sums, and, although for licit values of t each sum has a finite value, the two finite values are not identical, just as a double definite integral may undergo a change of value when the order of its inte­grations is reversed *.I have noticed [see above, p. 542] that the value of any Hamiltonian Difference divided by the square of the preceding one was always greater than 1/2, and stated as morally certain, but “awaiting exact proof,” that this ratio ultimately becomes 1/2. By aid of Mr Hammond’s formula for the numbers, I shall now be able to supply this proof, and at the same time to show that the ratio of a Hamiltonian Number to the square of its antecedent (which, of course, converges to the same asymptotic value 1/2) is always less than that limit +.We must in the first place prove that in the series the absolute value of each term is greater than that of the one which follows it.In proving this, I shall avail myself of the property of the Hypothenusal Numbers disclosed in the process of forming the triangle given at the outset of the memoir, namely, that Ei — Ei-1 is greater than (Ei-1 — Ei-2)2/2.Let us suppose that the law to be established holds good for a certain value of i. For the sake of brevity, I denote Ei, Ei-1, Ei-, Ei-3, ... by 
N, P, Q, R, ....We have then

* Professor Cayley has brought under my notice a not altogether dissimilar, but perhaps less striking, phenomenon, pointed out by Cauchy, that, although the series 
is convergent, its square 
that is, is divergent.+ The fortunate circumstance of the two ratios in question being always respectively less and greater than the common asymptotic value of each of them enables us to find the value of the constant in the expression c2x, which is asymptotically equivalent to the half of the xth Hamil­tonian or Hypothenusal Number by a method exactly analogous to that of exhaustions for find­ing the Archimedian constant correct to any required number of decimal places. See end of this section [p. 566, below].
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560 On Hamilton's Numbers [51If, then, the law to be proved is true for all the consecutive terms of the upper series it will obviously be true for the second series, abstraction being 
made of its first term, provided that no antecedent is less than its consequent in the series 
which is true a fortiori if 
continually decrease, as is obviously the case, inasmuch as form a descending series.In order, then, to establish the necessary chain of induction, it only remains to show that is positive.Now is positive for a reason previously given.And, if in the series 3, 4, 6, 12, 48, 924, ... we make exclusion of the first three terms, we have always 
and consequentlyAnd, since under the same condition and a fortioriis positive if 12P — Q2 is positive, which is the case, since P > 9Q2∕32.Hence, since the theorem to be proved is true for the several series

* The proof that the ratio of each term of the series 4, 6, 12, 48, 924, ... to its antecedent continually increases is too easy and too tedious to be worth setting forth in the text.
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51] On Hamilton's Numbers 561it will be true universally; for in all the succeeding series the term we have called R will be higher than the term 6 in the scale 3, 4, 6, 12, 48, ....HenceFor the initial values of Q, P, (namely, 3, 4)
(When P represents any term beyond the first it is very easy to prove, but too tedious to set out the proof, that the sum of all the terms after the first in the series equated to P — 1 will be less than — 2; so that, except in the case stated, P < 1/2 (Q2 — Q).)For the series 12, 48, 924, ... we have seen that P > 9Q2∕32.Hence, for the series 48, 924, ...,
But
HenceHence, when P, Q, are at an infinite distance from the origin, 
Hence, also, , ultimatelywhich proves the theorem left over for “exact proof” in the memoir referred to.It is convenient to deal with the halves of the sharpened*  Numbers of Hamilton, which may be called the reduced Hamiltonian Numbers, and denoted by h with a subscript, or, when required, by p, q, r, ... (the halves of P, Q, R, ... respectively).We have then 

or
* Numbers increased by unity may conveniently be denominated sharpened numbers, and numbers diminished by unity flattened numbers.

s Iv. 36
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562 On Hamilton's Numbers [51We may find a closer superior limit to p in terms of q as follows— 
in which inequality it may be shown by inspection up to a certain point, and after that by demonstration, the tedium of writing out or reading which I spare my readers and myself, that P may be substituted for its flattened value P — 1.We have thenLet us suppose that S, R, are not lower in the scale of the E's than 12, 48, respectively; so that P is not lower than E6, which is 409620.Then, as we have previously shown,

Moreover, we have whence it follows thatand, a fortiori,Similarly andNow 

that is,This result, expressed in terms of the reduced numbers p, q, takes the form 
and we have previously shown that 
at all events when P is not lower in the scale than E6.The fraction 128/81 arises from our having substituted for R3 the inferior value (32/9 Q)5/2; but, the higher we advance P in the scale, the nearer R2 approaches to 2Q, and is ultimately in a ratio of equality with it. But, if we had written (2Q)3/2 for R3, the coefficient, which now stands at — would 
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51] On Hamilton's Numbers 563have been —2/3. In like manner, as P and Q are travelled on in the scale, R2 and S4 become indefinitely near to 2Q and (2R)2, that is, 8Q, so that the coefficient of Q in the superior limit approximates indefinitely near to 
and the two limits of p which have been obtained become 
where ultimately ϵ and η are infinitesimals*.Hence it follows that the ultimate value of 
that is,Let λ, μ, v, ... represent the halves of the Hypothenusal Numbers in the triangle given at the commencement of the paper, that is, the differences of the numbers which we have called p, q, r, ....Since

Obviously, therefore, as a first approximation when λ, μ, are very ad­vanced terms in the hypothenuse,
Let us writefor a second approximation.Then or, neglecting terms of lower dimensions than r3,
ThereforeConsequentlyThus, then, for the consecutive Hypothenusal Numbers λ, μ,

Letor say where ηx is the xth term in the series 1/2, 1, 3, 18, ....* As a matter of fact, it will be found that, as soon as q and p attain the values 6, 24, q2- 2/3q3/2 may be taken as a superior limit. It may be noticed also, to prevent a wrong inference being drawn from the above expressions, that, as will hereafter appear, η is an infinitesimal of the order 1/q1/4, when q is infinite.
36—2
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564 On Hamilton's Numbers [51The successive values of px and their differences are given in the annexed Table.

The decimal figures following those given in p8, required for ulterior purposes, being 5795.An examination of the column of differences for x= 5, 6, 7, 8, shows that the ratios of each to the rest go on decreasing somewhat faster than their squares: this makes it almost certain that p8 — p9 will be between the 400th and 500th part of 000280, and that accordingly the value of p9 will be 6111111, &c. I believe it is beyond all moral doubt that the ultimate value of p is exactly and, indeed, it was the conviction I entertained of this being its true value, when I had calculated p7, that led me to undertake the very considerable labour of ascertaining the 10th Hamiltonian Number in order to deduce from it the value of p8. This being taken for granted*, we may proceed to ascertain a further term in the asymptotic value of nx+1 expressed as a function of ηx.For, callingwe have
neglecting decimals.

Thus
The value ofand of * It is reduced to certainty in the supplemental 3rd section.
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51] On Hamilton's Numbers 565we may feel tolerably certain, from the Law of Squares, that (δq)8 — (δq)9 will be somewhere in the neighbourhood of the tenth part of 0035, and accordingly that (δq)9 is about .1234, so that the probable value of (δq)∞ is 1234 ....Thus we have found 
the only moral doubt being as to the degree of closeness of propinquity of the coefficient of ηx 3/4 to the decimal .1234 ...*.For the benefit of those who may wish to carry on the work, I give the following numerical results which have been employed in the preceding arithmetical determinations:—

Finally, it is interesting to find the asymptotic values of hx and ηx (the halves of the sharpened Hamiltonian and of the Hypothenusal Numbers), which are ultimately in a ratio of equality to each other, in terms of x.* The exact value of the coefficient of nx3/4 left blank in the text, is proved in section 3 to be 10/81, that is, the recurring decimal ∙123456790.
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566 On Hamilton's Numbers [51Obviously each of these is ultimately in a ratio of equality with M2x, where 
M is a constant to be determined.LetThen, for finite values of x, remembering that (in the preceding notation) 
ux must be intermediate between the corresponding terms of the two series

By means of this formula, writing for ux corresponding values of η and h, and retaining so much of the two corresponding determinations of a as is common to both, we can find a precisely to any desired number of places of decimals, as shown in the following Table, in which 18 and 24 are taken as the terms of place zero in the respective series :

Hence, if we now change the origin, taking 1/2 and 2 as the zero terms, we have approximately 
andwhich givesAs a verification, since 23 = 8, (l.46544)8 should lie between 18 and 24; and, as a matter of fact, a rough calculation gives 
which is about midway between the two limits.—J. J. S.

§ 2. Proof of the Formula for the Successive Determination of each in 
turn of Hamiltons Numbers from its Antecedents.Let

* See Note 1, p. 578 [below].
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51] On Hamilton's Numbers 567where the coefficients of the various powers of x are the numbers set out in the triangular Table at the commencement of this paper.If, in general, we write 
the coefficients of Fn+1(x), expressed in terms of those of Fn(x), are as follows:—

Now when multiplied by 
gives

Comparing this with 

we see that the difference of the two expressions is 

which is equal to
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568 On Hamilton’s Numbers [51ThusMultiplying this equation by (1 — x)8n+1, where we obtain 
which gives, when we write successively n— 1, n — 2, n— 3, ... 0 in the place of n,

Hence, by addition of these n equations, we find 
where it has been assumed that it is possible to assign to s0 (previously un­defined) such a value as will make the last of the above n equations, namely, 
identically true. That this can be done is obvious; for, if in that equation we write for F1 (x) Fo (x), and s1 their values, namely, 
then, on making s0 = 0, the equation becomes

Thus the general value of Fn (x) is given by the equation 
which is equivalent to 
where, α0, a1, a2, a3, ... being the Hypothenusal Numbers 1, 2, 6, 36, ... we have 

that is, the successive values of sn+2 are the Hamiltonian Numbers3, 5, 11, 47 .... * See Note 2, p. 578 [below].
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51] On Hamilton" s Numbers 569Now Fn(x) = anxn + ..., so that the coefficient of xn in (1 — x)8n Fn (x) is the same as the coefficient of xn in Fn (x), namely, an. Consequently, equat­ing coefficients of xn on each side of the equation just obtained, we find

Remembering that an + sn = sn+1,if we call the Hamiltonian Number sn + 2, Hn, the above relation may be written thus :

To obtain Professor Sylvester’s modification of this formula given in the preceding portion of this memoir, we multiply the equation from which it was obtained by 1 — x before proceeding to equate coefficients. Thus we have to equate coefficients of xn on both sides of
Or, writing we equate coefficients on both sides of
This equation is easily transformed into 

from which, as Professor Sylvester has pointed out in this memoir, by equating coefficients of all powers of x from 0 to n, we can obtain the succes­sive values of En.The general formula 
arises from equating the coefficients of xn.—J. H.** See Note 3, p. 578 [below].
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570 On Hamilton's Numbers [51

§ 3. Sequel to the Asymptotic Theory contained in § 1.The relation previously obtained supplies only the two first terms of the remarkable asymptotic development 
where i is any assigned integer and ≡ is of a lower order of magnitude than the lowest power of q in the series which precedes it. This may be easily established as follows :—By the scale of relation proved in the preceding section we have

=q2-2/3r3+  terms whose maximum order is that of r2.Let, now, thereforeand
Therefore 

that is, and thus as was to be shown*.* This theorem may be rigorously demonstrated, and reduced to a more precise analytical form, as follows :—For the sake of brevity, we may call-p∣q + q the relative deficiency of p, and denote it by Δ. First it may be noticed that, if in the equationwe write log q=k, 
which is always convergent.Moreover, the value of F (q) may be calculated for any given value of q within close limits. For, if we call U the right-hand branch of the series in q, beginning with z-z-1 the terms of U will easily be seen to lie between those of two geometrical series of which z-z-1 is the first term, and of one of which 1/2, and of the other (z1/2+ z-1/2)-1, is the common ratio.Hence U is intermediate between 2 (z2- l)∣z and (z2-1) (z + l)∣z (z -z1/2 + l).
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51] On Hamilton's Numbers 571It is interesting to notice that the formula apparently remains arith­metically true for finite values of p and q, provided that q is not less than
The difference between these limits, it may be parenthetically observed, is

which, when z is nearly unity (the limit to which q(1/2)8 converges), is nearly equal to 1/16 (z-z-1)3; that is, if z=1 + τ, the difference between the limits (for τ small) is very near to τ3∕2.Now on p. 575 (post) it is shown that √q - r+ s - 2/3√r = ε, and that, when the rank of q is taken indefinitely great, ε converges to 1/4. Hence ε always lies between finite limits.For, in general, x being any one of a series of increasing numbers, and ψ (x) a function of x which is always finite for finite values of x, but ultimately converges to c, by taking for x a value of L sufficiently great, we make the series of terms for x>L intermediate between c + δ and c-δ, where δ is any assigned positive quantity; and consequently, if μ, v, are the greatest and least values of ψ (x) when x does not exceed L, the greater of the two values, c+δ, μ, and the lesser of the two, c — δ, v, will be superior and inferior limits to the value of ψ (x) for all values of x.Hence, writing
we obtain, by summation,
and, consequently,where p is always a finite quantity lying between determinable limits. But again (p. 573)—
where θ (whose ultimate value is ⅜) is always a proper fraction. Hence

Hence, from what has been shown above,
In this equation we may write

(x-3 equations),
where k1, k2, k3, ... are all of them finite (and, as a matter of fact, of no consequence for our immediate object, positive proper fractions). For, ultimately,
and consequently the finiteness of each k is a direct inference from the general principle previously applied in the case of the ε,s.Applying this result to the equation previously given, it follows that(where υ is finite)
where z lies between 1 and 2.The series of negative powers of q is obviously less than x, and the z-series, which follows it, is less than the finite quantity 2 (z- 1∣z), that is, <2(2-1/2). Hence 3/2Δ=F (q) + θx, where θ is
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572 On Hamilton's Numbers [5124, when we replace each term in the formula by its integer portion, and in the series on the right stop at the term immediately preceding the first term for which
Thus, when we have andSo also, when 

andBut, if we had included the term Eq1/16, the result would have been
a number lying between fixed limits, and x, the rank of q, is of the same order of magnitude as log log q. This equation contains as a consequence the asymptotic theorem to be proved; for, using i to denote any positive integer,

Hence, remembering that x is of the same order of magnitude as log log q, and that 
which is of a lower order of magnitude than q(1/2)i+1 , it follows that 3/2Δ - ∑1iq(1/2)i for all values of 
i is ultimately in a ratio of equality with q(1/2)i+1,  which is the theorem to be proved.We have thought it desirable to obtain the formula 3/2Δ = Fq + θx for its own sake, but, so far as regards the proof in question, that might be obtained more expeditiously from the expression given for 3∆∣2-υx without introducing the series Fq.It is easy to ascertain the ultimate value to which θ converges. In the first place, the series of fractions 1∣q1/2 + 1∣q1/4 + 1∣q⅛ + ... to x-2 terms (where x is the rank of q) may be shown to be always finite, and consequently, when divided by x, converges to zero.For we know that (p- q)>(q- r)2> (r - s)4 ... > (6 - 3)2x-2. Hence the last term of the series q1/2, q1/4,q1/8... (namely, q(1/2)x-2)>3. Hence the finite series 1∕q1/2 + 1∣q1/4 + 1∣q⅛ +... for a double 
a fortiori reason is less than the infinite geometrical series 1/3 + 1/9 +1/27+ ... < 1/2.In fact, from § 1 (p. 566) it may easily be shown that the last term of the series 
so that the sum is really less thanHence, retracing the steps by which θ has been obtained, and observing that ρ' differs from p by a finite multiple of 1 ∣x, we have ultimately θ = υ = k - 3p' = k - 3p = k - 3e = 1/6 - 3/4= - 7/12. If, then (using ux to denote the half of the sharpened xth Hamiltonian number), we write 
ux - 1∣ux=vx, and understand by G (t - 1/t) the infinite series 
it is easily seen that the principal part of √(vx+1), regarded as a function of vx and x, is
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51] On Hamilton's Numbers 573Again, when 

and
We will now proceed to consider afresh the asymptotic development of any Hypothenusal Number p — q in terms of its antecedent q — r, and to reduce to apodictic certainty results which in the first section were partly obtained by observation. It has already been shown in that section that 

when p is not lower than 204810 in the scale 2, 3, 6, 24, 462, 204810, ..., that is, when q is not less than 462.Hence or, since 34/81q3/2 — 3/2q is a positive quantity, 
at all events when q = or > 462.It will be found also on trial that this formula remains true for all the values of q inferior to 462.Thus

Hence, universally,But we know thatWe may therefore write where θ is some quantity between 0 and 1.Similarly, 
where θ1, θ2, ... are also positive fractions.* The authors must be understood merely to affirm the possibility of the theorem being true, and to offer no opinion on the strength of the presumption raised that it is so.+ Had this inequality been true only for values of q sufficiently great, it would have been enough for the purposes of the text.
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574 On Hamilton's Numbers [51When p and q become infinite.
Hence the ultimate value of θ is 1/3. Similarly, θ1, θ2, ... all of them converge to the value 1/3.This agrees with the result previously demonstrated (p. 563), and is the starting point of all that follows.We know that letters p, q, r, s, ..., being used to denote the halves of the augmented Hamiltonian Numbers, they are connected by the scale of relation

whereand T stands for the remaining terms, involving
Consideringto be of the orderwe may reject the term 1/2, which is of zero order, and write
Hence, rejecting terms of order less than 3/2 (which have, however, to be retained in obtaining the subsequent approximations),

that is, when q is infinite.Again, writing for $ its expanded value, namely,
we have Order
rejecting the terms q -3/2r3, q -5/2 r4, ... in the expansion of (q-r)3/2 because the order of none of them is superior to zero.
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51] On Hamilton's Numbers 575We now write so that
Hence Order
Since  (ultimately),the terms of Order 1 (which are the only ones with which we have to do at present) are ultimately equal to

or, giving θ1 its ultimate value 1/3, to 11/18q, or to the same order of approxima­tion to 11/18 (q — r).Hence, ultimately,
We use this result to obtain a closer approximation to √q than r— θ1√r, and to find the relation between the general values of θ1 and θ2.Thus, assuming we have, ultimately,
Consequently, as r becomes indefinitely great, k converges to the value
Now ultimately;and similarlyHence, ultimately, ultimately.
We may therefore write (where ultimatelyButand therefore* As previously obtained by observation in § 1 (p. 563). It will, of course, be understood that in the above and similar passages the sign = is to be interpreted to mean “is in a ratio of equality with.”
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576 On Hamiltons Numbers [51Moreoverwhence it follows that (where ϵ = 1/4 ultimately).Resuming the development of (p - q) in terms of (q — r), we haveOrder

The terms of order inferior to 3/4 are of no value for present purposes, and are only retained for the benefit of those who may wish to carry on the work.To reduce the terms of Order 1, we write, in succession,

Thus

Order
Hence Order
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51] On Hamilton's Numbers 577Here the terms of Order 3/4 are ultimately equal to 
which, when θ1 and ϵ receive their ultimate values, 1/3 and 1/4, becomes

From this it follows immediately that (rejecting terms of an order of magnitude inferior to that of (q — r)3/4)
The law of the indices in the complete development is easily deduced from the relation
The terms carrying the arguments 

furnish the indices which, arranged in order of magnitude, become
Thus, calling p — q and q—r y and x respectively, the expansion for y in terms of x will be of the form 

where n has all values from 0 to ∞ , and 2m + 1 does not exceed n + 2, that is, m has all positive values from 0 to n/2 or 1/2 (n + 1), according as n is even or odd.But, besides this expressed portion of the development of a Hypothenusal Number, say ηx+1, as a function of its antecedent, ηx, there will be another portion, consisting of terms with zero and negative indices of ηx having functions of x for their coefficients, which observation is incompetent to reveal, and with the nature of which we are at present unacquainted. The study of Hamilton’s Numbers, far from being exhausted, has, in leaving our hands, little more than reached its first stage, and it is believed will furnish a plentiful aftermath to those who may feel hereafter inclined to pursue to the end the thorny path we have here contented ourselves with indicating, which lies so remote from the beaten track of research, and offers an example and suggestion of infinite series (as far as we are aware) wholly unlike any which have previously engaged the attention of mathematicians.J. J. S. and J. H.* Agreeing closely with what had been previously found by observation in § 1 (p. 563).s. IV. 37
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Note 1, p. 566.It is easy to see that, if δM and δα are corresponding errors in the values of M and α respectively,
Hence, δa being intermediate between Ό000003 and Ό000006,
The value of M (the base of the Hamiltonian Numbers) is thus found to be 1.465443 ..., correct to the last figure inclusive.—J. J. S.

Note 2, p. 568.This equation may be obtained more simply from the fundamental formula of Hamilton (middle of above note). It follows from the law of derivation there given that, if we write 1Fn = (1 — x)-1 Fn- xn, and, in general, j+1Fn = (1 — x)-1 jFn — xn, then Fn+1 = anFn; and, consequently,
Note 3, p. 569.It is curious to notice the sort of affinity which exists between a form of writing the scale of relation for Bernoulli’s Numbers and that given at p. 569 for Hamilton’s.If we write 

then, using βκ in the same sense as at p. 558, we shall find the scale of relation between the B’s (Bernoulli’s Numbers) is given by the equation
provided i is odd.On striking out the i which intervenes between βκ and Gi-k, so as tomake the former operate on the latter, the equation becomes that given at p. 569 for the E’s, the sharpened numbers of Hamilton.—J. J. S.
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51] On Hamilton's Numbers 579

§ 4. Continuation, to an infinite number of terms, of the Asymptotic 
Development for Hypothenusal Numbers.

“ This was sometime a paradox, but now the time gives it proof.” 
Hamlet, Act III., Scene 1.In the third section of this paper [above, p. 575] it was stated, on what is now seen to be insufficient evidence, that the asymptotic development of p — q, the half of any Hypothenusal Number, could be expressed as a series of powers of q — r, the half of its antecedent, in which the indices followed the sequence 

It was there shown that, when quantities of an order of magnitude inferior to that of (q — r)3/4 are neglected, 
but, on attempting to carry this development further, it was found that, though the next term came out 88/1215 (q — r)5/8, there was an infinite series of terms interposed between this one and (q — r)1/2, namely, as proved in the present section, between (q — r)3/4 and (q — r)1/2 there lies an infinite series of terms whose indices are 
and whose coefficients form a geometrical series of which the first term is 88/1215 and the common ratio 2/3.We shall assume the law of the indices (which, it may be remarked, is identical with that given in the introduction to this paper as originally printed in the Proceedings* , but subsequently altered in the Transactions') and write

The law of the coefficients will then be established by proving that
If there were any terms, of an order superior to that of (q — r)1/2, whose indices did not obey the assumed law, any such term would make its presence felt in the course of the work; for, in the process we shall employ, the coefficient of each term has to be determined before that of any subsequent[*  See footnote, p. 584, below.]+ In the text above θ represents some unknown function, the asymptotic value of whose ratio to (q - r)1/2 is not infinite.

37—2
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580 On Hamilton s Numbers [51term can be found. It was in this way that the existence of terms between 
(q — r)5/8 and (q-r)1/2 was made manifest in the unsuccessful attempt to calculate the coefficient of (q — r)1/2. It thus appears that the assumed law of the indices is the true one.It will be remembered that p, q, r, ..., are the halves of the sharpened Hamiltonian Numbers En+1, En, En-1, ..., and that consequently the relation 
may be written in the form

The comparison of this value of p with that given by (1) furnishes an equation which, after several reductions have been made, in which special attention must be paid to the order of the quantities under consideration, ultimately leads to the determination of the values A, B, C,..., in succession.Taking unity to represent the order of q, the orders of 
will beHence, after expanding each of the binomials on the right-hand side of (1) and arranging the terms in descending order, retaining only terms for which the order is superior to 1/2, we shall findOrder

Again, retaining only those terms of (2) whose order is superior to 1/2, we have
Order
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51] On Hamilton’s Numbers 581From (3) and (4) we obtain by subtractionOrder

Changing p, q, r, ... into q, r, s, ... respectively, equation (4) becomes
so that, if we assume q = r2(l — a), the order of a will be the same as that of 
r-2 s3, namely, — 2/2 + 3/4 = — 1/4.Hence, if we substitute r2 (1 — α) for q in (5), neglecting in the result quantities of the order 1/2, we shall find

while at the same time, since the order of r 3/2 a does not exceed 1/2, we have
and in like manner and so on.Thus equation (5) becomesOrder

whereorderLetthenwhere terms as far as, but not beyond, — 7/16 (which is the order of s -3u5) have been retained.
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582 On Hamilton’s Numbers [51Now p consists of terms whose orders are
Thus the order of a' is —1/4 and in the above expression all terms of α' superior to — 1/2 have been retained, and consequently (rejecting the square of α' whose order is —1/2) in the first line of (6) we may write
In the second line of (6) we may reject the whole of α', since its order is —1/4, and write
After substituting their values for the terms in (6) which contain a, and at the same time dividing throughout by 2/3, we shall obtainOrder

We now write 
where, observing that the values of β and β' can be immediately deduced from those of α and α' by changing r, s, t, ... into s,t,u,..., it is evident that β and β' are both of the order — 1/8; for α and a' are both of the order — 1/4. Thus (neglecting quantities whose order is equal to, or less than, 1/2) we have

Order
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Order
and so on.Hence (7) becomesOrder

Dividing this throughout by 2/3s, and then writing
we obtain in exactly the same manner as before, merely altering the letters in the previous work,
Orderwhere quantities of the order 1/4, or less, are now neglected.Similarly
Order
and so on.Thus (8) becomesOrder
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584 On Hamilton's Numbers [51Now the terms of the highest order in this equation must vanish when we write t = u2, and therefore 2/9— 1/3 + 2/3 A — 7/135= 0, which gives A = 11/45. Substituting this value for A, we findOrder 

which is a mere repetition of equation (8), with all the letters moved forward one place. Hence it is evident that, if we treat this equation as we treated (8), we shall find B = 11/45, arriving, at the same time, at another equation which will be merely a repetition of (8), with all its letters moved forward two places; and this process can be continued as long as we please.Thus we arrive at the result— 
and the asymptotic development for Hypothenusal Numbers 
is established.Comparing this with the corresponding formula for Hamiltonian Numbers, 
given at the beginning of the third section [p. 570], it will be noticed that each of the two developments begins with an irregular portion consisting respectively of four and one terms, followed by a regular series. In the one case the regular portion is 11/45 (q — r)1/2, multiplied by a series whose general term is 2n/3n(q- r)(1/2)n, in the other it consists of a series of terms of the form 
q(1/2)n multiplied by — 2/3q.

[To p. 579, footnote*. The reference is to Proceedings of the Royal Society, Vol. 42 (1887), pp. 470, 471, where is printed an Abstract identical with the Introduction to this paper (pp. 553- 555 above) save for the insertion after the word “ scale', (p. 555 above) of the words “in order to establish or disprove conclusively the presumptive law of the asymptotic branch of the series connecting any two consecutive semi-differences ηx, ηx+1 of the Hamiltonian Numbers, viz.: —
There is also a paper, Proceedings of the Royal Society, Vol. 44 (1888), pp. 99—101, containing what is here given on p. 579 and the first half of p. 580.]
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