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125.

ON THE THEORY OF GROUPS, AS DEPENDING ON THE
SYMBOLIC EQUATION @"=1.

[From the Philosophical Magazine, vol. VIL (1854), pp. 40—47.]

Ler 6 be a symbol of operation, which may, if we please, have for its operand,
not a single quantity z, but a system (z, ¥,...), so that

0(z, y,...)=(«, Y5 o)
where &/, o/,... are any functions whatever of #, y,..., it is not even necessary that
«, o, ... should be the same in number with #, ¥, .... In particular &/, y/, &. may
represent a permutation of z, y, &ec., § is in this case what is termed a substitution;
and if, instead of a set =, #, ..., the operand is a single quantity #, so that Oz =2 = f,
0 is an ordinary functional symbol. It is not necessary (even if this could be done)
to attach any meaning to a symbol such as 6 +¢, or to the symbol 0, nor con-
sequently to an equation such as =0, or @ + ¢ =0; but the symbol 1 will naturally
denote an operation which (either generally or in regard to the particular operand)
leaves the operand unaltered, and the equation #=¢ will denote that the operation
0 is (either generally or in regard to the particular operand) equivalent to ¢, and
of course §=1 will in like manner denote the equivalence of the operation € to the
operation 1. A symbol 6¢ denotes the compound operation, the performance of which
is equivalent to the performance, first of the operation’ ¢, and then of the operation
0; 6¢p is of course in general different from ¢f. But the symbols 6, ¢, ... are in
general such that 6.¢y=0¢.y, &c, so that Opy, Opyw, &c. have a definite signi-
fication independent of the particular mode of compounding the symbols; this will
be the case even if the functional operations involved in the symbols 6, ¢, &e.
contain parameters such as the quaternion imaginaries 4, j, k; but mnot if these
functional operations contain parameters such as the imaginaries which enter into the
theory of octaves, &c.,, and for which, eg. a.By is something different from aB.y,
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124 ON THE THEORY OF GROUPS, [125

a supposition which is altogether excluded from the present paper. The order of the
factors of a product O¢y ... must of course be attended to, since even in the case
of a product of two factors the order is material; it is very convenient to speak of
the symbols 6, ¢ ... as the first or furthest, second, third, &c., and last or nearest
factor. 'What precedes may be almost entirely summed up in the remark, that the
distributive law has no application to the symbols 6¢ ...; and that these symbols are
not in general couvertible, but are associative. It is easy to see that 6°=1, and
that the index law 6™.6"=@m+™ holds for all positive or negative integer values,
not excluding 0. It should be noticed also, that if €=¢, then, whatever the symbols
a, B may be, aff =a¢pB, and conversely.

A set of symbols,
Ul e < s
all of them different, and such that the product of any two of them (no matter in
what order), or the product of any one of them into itself, belongs to the set, is
said to be a group'. It follows that if the entire group is multiplied by any one
of the symbols, either as further or nearer factor, the effect is simply to reproduce
the group; or what is the same thing, that if the symbols of the group are multi-
plied together so as to form a table, thus:

Further factors

1 a B

1 1 a B

jg.: a a a? a
3 B
S 8 B aB B

that as well each line as each column of the square will contain all the symbols
1, a, B,.... It also follows that the product of any number of the symbols, with or
without repetitions, and in any order whatever, is a symbol of the group. Suppose

that the group
, T T
contains n symbols, it may be shown that each of these symbols satisfies the equation
on=1;

so that a group may be considered as representing a system of roots of this symbolic
binomial equation. It is, moreover, easy to show that if any symbol a of the group

1 The idea of a group as applied to permutations or substitutions is due to Galois, and the introduction
of it may be considered as marking an epoch in the progress of the theory of algebraical equations.
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125] AS DEPENDING ON THE SYMBOLIC EQUATION 6"=1. 125

satisfies the equation 6 =1, where r is less that m, then that » must be a sub-
multiple of n; it follows that when = is a prime number, the group is of necessity
of the form

I d L pvatst (@ = L)y

and the same may be (but is not necessarily) the case, when n is a composite
number. But whether n be prime or composite, the group, asswmed to be of the
form in question, is in every respect analogous to the system of the roots of the
ordinary binomial equation #®—1=0; thus, when n is prime, all the roots (except
the root 1) are prime roots; but when n is composite, there are only as many prime
roots as there are numbers less than n and prime to it, &e.

The distinction between the theory of the symbolic equation 6"=1, and that of
the ordinary equation #™—1=0, presents itself in the very simplest case, n=4. For,
consider the group

1’ a’ B) 7}
which are a system of roots of the symbolic equation

6 =1.

There is, it is clear, at least one root B, such that B*=1; we may therefore
represent the group thus,

L' a8, aB, {(Br="1)
then multiplying each term by a as further factor, we have for the group 1, @ aB,
@*3, so that a®* must be equal either to B or else to 1. In the former case the
group is

3 I A e D
which is analogous to the system of roots of the ordinary equation 2*—1=0. For

the sake of comparison with what follows, I remark, that, representing the last-
mentioned group by

l, a, B) b
we have the table
1 a, B, b
1 1 a B v
a a B v 1
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126 ON THE THEORY OF GROUPS, [125

If, on the other hand, @*=1, then it is easy by similar reasoning to show that we
must have a8 =Ba, so that the group in the case is

L, a B a8 (=1, B2=1, a3 =pa);
or if we represent the group by

1, a B, v,
we have the table
1 a B %
|
i 1 a B Y y
a a 1 v B

v v B a 1

or, if we please, the symbols are such that
a2 = Bz = ryz = 1’

a =By=98,
B =ya=ap,
vy =af =pa;

[and we have thus a group essentially distinct from that of the system of roots of
the ordinary equation z*—1=0].

Systems of this form are of frequent occurrence in analysis, and it is only on
account of their extreme simplicity that they have not been expressly remarked. For
instance, in the theory of elliptic functions, if » be the parameter, and

ct+n aiy V(X +n)
e S T 1

am)=2 Bm)=

then a, B, 4 form a group of the species in question. So in the theory of quadratic
forms, if

a(a, b c)=(, b, a)
B(a, b, ¢)=(a, —b, c)
v (a, b, ¢)=(c, b, a);
although, indeed, in this case (treating forms which are properly equivalent as identical)

we have a=p, and therefore y=1, in which point of view the group is simply a
group of two symbols 1, «, (a*=1).
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125] AS DEPENDING ON THE SYMBOLIC EQUATION 6"=1. 127

Again, in the theory of matrices, if / denote the operation of inversion, and tr
that of transposition, (I do not stop to explain the terms as the example may be
passed over), we may write

a=1 B=tr, g=I tr=tr. 1l
I proceed to the case of a group of six symbols,

1) a, B} ?, 8’ e’
which may be considered as representing a system of roots of the symbolic equation

=1,

It is in the first place to be shown that there is at least one root which is a
prime root of #=1, or (to use a simpler expression) a root having the index 3. It
is clear that if there were a prime root, or root having the index 6, the square of
this root would have the index 3, it is therefore only necessary to show that it is
impossible that all the roots should have the index 2. This may be done by means
of a theorem which I shall for the present assume, viz. that if among the roots of
the symbolic equation 6"=1, there are contained a system of roots of the symbolic
equation =1 (or, in other words, if among the symbols forming a group of the order
there are contained symbols forming a group of the order p), then p is a submultiple
of n. In the particular case in question, a group of the order 4 cannot form part
of the group of the order 6. Suppose, then, that 5, 8 are two roots of €*=1, having
each of them the index 2; then if ¢8 had also the index 2, we should have 48=28y;
and 1, 4, &, &y, which is part of the group of the order 6, would be a group of
the order 4. It is easy to see that o8 must have the index 3, and that the group
is, in fact, 1, 48, &y, v, 8 &y, which is, in fact, one of the groups to be presently
obtained ; I prefer commencing with the assumption of a root having the index 3.
Suppose that a is such a root, the group must clearly be of the form

1, a, @ ¢, ay, a¥y, (®=1);

and multiplying the entire group by & as nearer factor, it becomes v, ay, a%, o
ay?, a*y®; we must therefore have 4*=1, « or . But the supposition ¢*=a* gives
y*=a*=a, and the group is in this case 1, v, o o% o4 o°(y*=1); and the suppo-
sition o*=a gives also this same group. It only remains, therefore, to assume o*=1;
then we must have either ya=ay or else ya=a%. The former assumption leads to
the group

1, a, &, v, ay, oy, (as=1’ y=1, 7a=a'}’)s
which is, in fact, analogous to the system of roots of the ordinary equation 2*—1=0;
and by putting ay=X\, might be exhibited in the form 1, A, A% A% A4 N5, (A*=1),
under which this system has previously been considered. The latter assumption leads
to the group

1, a o, v, ay, &, (a*=1, y*=1, ya=ay),
and we have thus two, and only two, essentially distinct forms of a group of six.

If we represent the first of these two forms, viz. the group

1, a, @& v, ay, a¥y, (=1, o*=1, ya=ay)
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128 ON THE THEORY OF GROUPS,

by the general symbols

1, a B, v 9, ¢
we have the table

1, a, B, b2 3,
| 1 a B v )
a a B v ) €
B B v ) € 1
v v 8 € 1 a
) ) € 1 a B
€ € 1 a B v

while if we represent the second of these two forms, viz. the group
1, a, @, g, ay, a¥y, (=1, o*=1, ya=a%y),

by the same general symbols

1’ a, /3) Y £ 8; €,

we have the table

1 | a B v )
1 1 a B v )
a a B 1 € Y
B B 1 a 8 €
v v ) € 1 a
) B € v B 1
¢ € v 8 a B
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125] AS DEPENDING ON THE SYMBOLIC EQUATION £"=1. 129

or, what is the same thing, the system of equations is
l1=Ba=a8=p =81 =¢
a =3 =08y =ed =1,
B=a* =ey =8 =8,
o =0 =¢B =B8=ae
8 =ca =yB=ay = e
€ =ya=08B=LBy=ad.

An instance of a group of this kind is given by the permutation of three letters;

the group
1’ al B’ 'y) 87 €

may represent a group of substitutions as follows:—

abe, cab, bea, ach, cba, bac
abc abc abc abc abe abe.

Another singular instance is given by the optical theorem proved in my paper
“On a property of the Caustic by refraction of a Circle, [124].”

It is, I think, worth noticing, that if, instead of comsidering a, B, &c. as symbols
of operation, we consider them as quantities (or, to use a more abstract term, ¢cogi-
tables’) such as the quaternion imaginaries; the equations expressing the existence
of the group are, in fact, the equations defining the meaning of the product of two
complex quantities of the form

w+ax+bB+...;
thus, in the system just considered,
(w+aa+bB + oy +d8 + ee) (W + a'a+ VB + 'y + &'+ de) = W + Aa+ BB+ Oy + Dd + Ee,
where
W =ww'+ab’ +a'b+cc’ +dd + ee,
A =wa' +w'a+ b + dc’ + ed + cé,
B =wb' +w'b+ad’+ec’ +cd + de,
C =wc +w'c+dad + el + bd' + ae,
D =wd +w'd+ea + cb’ + ac’ + be/,
E =we +we+ca +db +be +ad.
It does not appear that there is in this system anything analogous to the
modulus «?+a*+ %+ 2%, so important in the theory of quaternions.

I hope shortly to resume the subject of the present paper, which is closely
connected, not only with the theory of algebraical equations, but also with that of
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130 ON THE THEORY OF GROUPS, &C. [125

the composition of quadratic forms, and the ‘irregularity’ in certain cases of the
determinants of these forms. But I conclude for the present with the following two
examples of groups of higher orders. The first of these is a group of eighteen, viz

1: a) Bv 'Y: aB) Ba’ a% 'Ya) B’Y’ 'YB, a:B'Y: B'Ya) 'Y“/Sa GBG, B’YB: 'Ya'Y’ QB’YB, B’YB“;
where
=1, g=1, *=1, Byy=1, (ya=1, (@BF=1, (aBy)*=1, (Bya)’=1, (yaB)y=1;

and the other a group of twenty-seven, viz.

1, a, @, v, o qa, ay, ya’, o'y, y'a, ay’, ¥, oy
aya, ay'a, aya, adlyta, ayd’, ay’@®, alydd, atyiad, qayl, qaky?, ofay, ofaty, ofayad, yayled,
where

@=1, P=1, (yf =1, (yaf =1, (@f =1 (Pe¥=1

It is hardly necessary to remark, that each of these groups is in reality perfectly
symmetric, the omitted terms being, in virtue of the equations defining the nature
of the symbols, identical with some of the terms of the group: thus, in the group
of 18, the equations a®*=1, B =1, ¢*=1, (aBy)*=1 give aBy=q9Ba, and similarly for
all the other omitted terms. It is easy to see that in the group of 18 the index
of each term is 2 or else 3, while in the group of 27 the index of each term is 3.

2 Stone Buildings, Nov. 2, 1858.
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