110.

NOTE ON THE TRANSFORMATION OF A TRIGONOMETRICAL EXPRESSION.

[From the Cambridge and Dublin Mathematical Journal, vol. Ix. (1854), pp. 61-62.]

The differential equation

$$
\frac{d x}{(a+x) \sqrt{ }(c+x)}+\frac{d y}{(a+y) \sqrt{ }(c+y)}+\frac{d z}{(a+z) \sqrt{ }(c+z)}=0
$$

integrated so as to be satisfied when the variables are simultaneously infinite, gives by direct integration

$$
\tan ^{-1} \sqrt{ }\left(\frac{a-c}{c+x}\right)+\tan ^{-1} \sqrt{ }\left(\frac{a-c}{c+y}\right)+\tan ^{-1} \sqrt{ }\left(\frac{a-c}{c+z}\right)=0
$$

and, by Abel's theorem,

$$
\begin{array}{lll}
1, & x, & (a+x) \sqrt{ }(c+x) \\
1, & y, & (a+y) \sqrt{ }(c+y) \\
1, & z, & (a+z) \sqrt{ }(c+z)
\end{array}
$$

To show $\dot{\alpha}$ posteriori the equivalence of these two equations, I represent the determinant by the symbol \square, and expressing it in the form

$$
\square=\left\lvert\, \begin{array}{ccc}
1, & a+x, & (a+x) \sqrt{ }(c+x) \\
: &
\end{array}\right.
$$

I write for the moment $\xi=\sqrt{ }\left(\frac{a-c}{c+x}\right) \& c$.; this gives

$$
\begin{aligned}
& \square=\left\lvert\, \begin{array}{cc}
1, & (a-c)\left(1+\frac{1}{\xi^{2}}\right), \left.\quad(a-c)^{\frac{3}{2}}\left(\frac{1}{\xi}+\frac{1}{\xi^{3}}\right) \right\rvert\,
\end{array}\right. \\
& =\frac{(a-c)^{\frac{5}{2}}}{\xi^{3} \eta^{3} \zeta^{3}} \left\lvert\, \begin{array}{lll}
\xi^{3} & \xi^{3}+\xi, & \xi^{2}+1 \\
: & &
\end{array}\right. \\
& =\frac{(a-c)^{\frac{5}{2}}}{\xi^{3} \eta^{3} \zeta^{3}} \left\lvert\, \begin{array}{ccc}
\xi^{3}, & \xi, & \xi^{2}+1 \\
: & &
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.=-\frac{(a-c)^{\frac{5}{2}}}{\xi^{3} \eta^{3} \zeta^{3}}(\xi+\eta+\zeta-\xi \eta \zeta) \right\rvert\, \begin{array}{ccc}
1, & \xi, & \xi^{2} \\
: &
\end{array}
\end{aligned}
$$

or, replacing ξ, η, ζ by their values, we have identically

$$
\begin{aligned}
& \left|\begin{array}{lll}
1, & x, & (a+x) \sqrt{ }(c+x) \\
1, & y, & (a+y) \sqrt{ }(c+y) \\
1, & z, & (a+z) \sqrt{ }(c+z)
\end{array}\right|= \\
& \left.-\frac{(c+x)^{\frac{3}{2}}(c+y)^{\frac{3}{2}}(c+z)^{\frac{3}{2}}}{(a-c)^{2}}\left\{\sqrt{\frac{a-c}{c+x}}+\sqrt{\frac{a-c}{c+y}}+\sqrt{\frac{a-c}{c+z}}-\sqrt{\frac{a-c}{c+x}} \sqrt{\frac{a-c}{c+y}} \sqrt{\frac{a-c}{c+z}}\right\} \right\rvert\, 1, \sqrt{\frac{a-c}{c+x}}, \frac{a-c}{c+x}
\end{aligned},
$$

and the equation

$$
\sqrt{\frac{a-c}{c+x}}+\sqrt{\frac{a-c}{c+y}}+\sqrt{\frac{a-c}{c+z}}-\sqrt{\frac{a-c}{c+x}} \sqrt{\frac{a-c}{c+y}} \sqrt{\frac{a-c}{c+z}}=0
$$

is of course equivalent to the trigonometrical equation

$$
\tan ^{-1} \sqrt{\frac{a-c}{c+x}}+\tan ^{-1} \sqrt{\frac{a-c}{c+y}}+\tan ^{-1} \sqrt{\frac{a-c}{c+z}}=0
$$

which shows the equivalence of the two equations in question.

