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Isothermal and adiabatic simple waves in a thin-walled tube 

Notations 

NGUYEN HUU VIEM (HANOI) (•) 

THE ANALYSIS is presented of isothermal and adiabatic simple waves propagating along the 
semi-infinite, thin-walled tube and produced by normal pressures and torques applied to its end. 
Several conclusions are drawn concerning the stress trajectories. A numerical example is given 
in which the stress trajectories are calculated for two temperature ranges, and the isothermal 
and adiabatic wave velocities are compared. It is shown that in the case of finite deformations 
the differences between isothermal and adiabatic slow wave velocities may be considerably 
great. 

Przedstawiono analiz~ izotermicznych i adiabatycznych fal prostych w p6lnieskoiiczonej cienko
sciennej rurze, wywolanych cisnieniem normalnym i momentem s~j~cym przylownym do 
brzegu. Wyci~gni~to szereg wniosk6w dotyc~cych trajektorii nap~ieii. Przedstawiono przyldad 
numeryczny, w kt6rym podano trajektorie napr~ieii dla dw6ch zakres6w temperatury oraz 
por6wnano pr~dkosci fal izotermicznych i adiabatycznych. Pokazano, ie w zakresie d\lZych 
deformacji r6i:nica mi~dzy wolnymi falami izotermicznymi i adiabatycznymi moi:e bye bardzo 
dui:a. 

llpe):{CTaBJieH aHaJIH3 H30TepMJNeCI<HX H a,m~a6amqecKHX npOCTbiX BOJIH B nony6ecKOHet.IHOH 

TOHI<OCTeHHOH Tpy6e, Bbi3Ba.HHbiX HOpMaJILHbiM ):{8BJieHHeM H Cl<pytnm810mHM MOMeHTOM, 

npHJio>KeHHbiM 1< rpaHH~e. CgenaH PJm BLIBogoa, KacaiOII.lHXCH TpaeKTOpHit HanpH>Kemrli. 

llpe):{CTaBJieH t{HCJieHHLIH npHMep, B I<OTOpoM npHBe):{eHbi TpaeKTOpHH HanpH>Kemdt AJU1 
):{Byx HHTepBaJIOB TeMnepaTYpLI, a TaK>Ke cpaBHeHbi CI<OpOCTH H30TepMJNecKHX H BAH&6a

mqecKHX BOJIH. lloi<838Ho, liTo B o6naCTH 6oJILmHX ge<l>opM~ pll3HHI..\8 Me>K,lcy cao6og

HbiMH H3orepMHtieCKHMH H a):{Ha6amqeci<HMH BOJIHaMH Mo>KeT 6LITL oqeHL 6oJILwoit. 

A·B A,B, or A,JBtb 
AD A,1B1 or A,1t,Bt, 

trA Au, 
1 unit tensor, 

1 
A A-J(trA)l, 

T 
A transpose of a sensor. 

1. Introduction 

IN THE PRESENT literature numerous solutions may be found concerning the problems of 
propagation of waves in complex states of stress (for one space variable and two-par
ameter loadings). The solutions are usually presented for two types of geometric objects: 

(•) At present a visiting research associate at the Institute of Fundamental Technological 
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450 NGUYEN Huu VIEM 

a semi-infinite space and a thin-walled tube. An extensive review on the literature con
-cerning such problems may be found in the papers by N. CRISTEscu [4], W. K. NowACKI 
[17], W. HERRMAN [10], E. H. LEE [12]. 

Three types of waves have been determined analytically in elastic-plastic materials: 
the acceleration waves, simple waves and unloading (or loading) waves. In the case of 
acceleration waves, practically all experiments show that all predictions based on such 
models are false [2]. On the other hand, simple wave processes expected to take place in 
these models are in a better agreement with the experiments performed on metallic rods 
and tubes. The available experimental results concerning the unloading waves do not 
.allow for drawing the suitable conclusions. 

Simple waves propagating in a thin-walled, semi-infinite tube made of elastic-plastic 
materials and produced by normal pressure and torques applied at the end of the tube, 
were subject to the analysis of several authors, to start with the known paper by CLIFTON 
[1]. The material considered in the paper was isotropic and characterized by isotropic 
hardening. Later on, LIPKIN and CLIFTON [14] considered a similar problem in the case 
·Of materials with kinematic hardening. GOEL and MALVERN [8] proposed a method ta
king into account simultaneous effects of isotropic and kinematic hardening. In [21] TING 
.derived the solution for all possible combinations of stepwise variable loading of the 
boundary at the time instant t = 0. He also obtained an explicit solution for the case of 
materials with linear hardening [23]. HAN-CHIN and HUAN-CHI LIN [9] solved the anal
()gous problem under the assumption of endochronic plasticity proposed by Valanis. 

FUKUOKA [5, 7], who treated the waves as moving singular surfaces, studied the cases 
4n which the states of material in front and behind the wave were the same or different. 
.Adiabatic simple waves travelling along a thin-walled tube were investigated by RANIECKI 
{19], PoDOLAK and RANIECKI [18]. The effect of energy dissipation on the velocity and 
profile of simple wave was also analyzed. 

In all the papers mentioned above, small deformations were assumed and two wave 
velocities were established: fast wave velocity C1 and slow wave velocity Cs, satisfying 
the inequality 

Cs ~ C2 ~ c, ~ C1 . 

Here C1 = y' E/e denotes the velocity of longitudinal elastic wave, and C2 = y' p,/e
the velocity of transversal elastic waves. The results were given earlier by CRAGGS [3] for 
.an infinite space. The case of C1 = Cs = C2 was considered by TING [22]. 

LIPKIN and CLIFTON [13, 14] established the existence of fast and slow simple waves. 
Some experimental data were given in paper [6]; experimental and theoretical results 
were compared by TING [22]. 

This paper will present the discussion on the propagation velocity of adiabatic simple 
waves of second order in a thin-walled tube, on the basis of the constitutive equations 
<lerived in [20, 16], valid in the range of finite deformations of isotropic metals. Elastic 
.distortions and voluminal plastic deformations will be disregarded. 
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IsoTHERMAL AND ADIABATIC SIMPLE WAVES IN A TillN-WALLED TUBE 451 

2. Fundamental equations 

It was shown in [16] that the set of fundamental equations in cylindrical coordinates 
(r, q;, z) consists of the following relations: 

(i) Continuity equations 

(2.1) 13 
( a v,. + v,. + __!__ a vlp + a v z ) _ P 

a,. r r ocp oz - ' 

in which {3 = eo/(!, eo and e are the respective densities measured in the reference con
figurations and actual configurations, according to the theory of elastic-plastic materials 
introduced by MANDEL [15]; V,., V91 , Vz are the Eulerian velocity components in coordi
nates r, q;, z. The material time derivative of an arbitrary physical parameter is calculated 
from the formula 

(2.2) 

(2.3) oCJ<p,. + __!__ oCJ9'1p + OCJq,z + 2 CJ,.~~ = _g_ _!!____ (r V ) , 
or r acp oz r r dt lp 

O(J zr 1 O(J z<p O(J zz (J zr V ar+-,:-aq;-+az-+-,- = e , 

where CJ,.,., CJ9'1p • •• are the physical components of Cauchy's stress tensor CJ. 

(iii) Constitutive equations 

(2.4) 1:--(w+~)-r+-r(w+~) = LD- ~ (iii· D)m. 

Here 't' = {3a- Kirchhoff's stress tensor, D = ~ (grad v+ grad Tv)- strain rate 

tensor, w = ~ (gradv- grad Tv)- spin tensor. Matrix ~ has the components 

(2.5) 

L 11., = p(.5,,.5;r+ .5, ~;.)+ ( K'-
2
; }<~11 .5,, K' = P(K-p), p = - ";' -mean pressure, 

K- bulk modulus, p.- Lame constant. 
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The Mises-Huber condition is assumed in the form 

(2.6) f = ;r. ;r-2k2(ct, 0) = 0, 

where a = WP is the power of plastic deformation, and (J temperature. 
Function f is normed in the following manner: 

(2.7) 

so that 

of _ _ 
0 a-r = m' tr m = ' iii· m = 1, for f = 0. 

The hardening function H in isothermal processes has the form 

(2.8) H1 = 2~ { ~ + I) where h = - :~ (T · iii) 

and in adiabatic processes - the form 

(2.9) w = 2~ { ~ +l+q.mo). 
where qtJ is the thermal coefficient of energy dissipation 

(2.10) 
1-n __ 

qd= -c m·'t, eo e 

dqy(ct) 
n = eo -d-=-ct-

NGUYEN Huu VIEM 

p- specific stored energy which may be measured experimentally. In most metals n 
assumes the values from 0.02 to 0.1. Ce- specific heat at constant deformation, m, = 

= - 2~ ro -thermal softening coefficient. 

Eqs. (2.4) describe both the isothermal and adiabatic processes; the difference be
tween them consists only on the fact that H1 =F H 11

, provided certain minor coupling effects 
are disregarded (heat of elastic deformation and thermal expansion produced by the dissi
pation energy). 

(2.11) . {1 ]= 
0 

if f= 0 
if f < 0 

3. Formulation of the problem 

and iii· D ~ 0 
or f = 0 and iii· n < o. 

Let us consider a thin-walled, semi-infinite tube made of isotropic elastic-plastic ma
terial with isotropic hardening (Fig. 1 ). Axis z coincides with the axis of the tube, its mean 
radius being denoted by r. The tube is loaded at its end by normal pressure and a torque; 
it is assumed to be thin enough to secure a uniform distribution of stresses along the 
axis. In view of symmetry of the problem, the stress tensor contains only three non
vanishing physical components 
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lsonfERMAL AND ADIABATIC SIMPLE WAVES IN A THIN-WALLED TUBE 4S3 

FIG. 1. 

a, r being functions of z and t. From the assumptions it follows that V, v,, Vz, {J are 
independent of r, tp and are functions of z and t. On disregarding the radial inertia forces, 
elimination of Vr from the fundamental equations yields: 

(3.1) 

• ( 1 av, av% ) {J = {J- --{Jr-+-' 
2~ az az 

aT • az = eVtp, 

aa . 
az = eV., 

[
- {Ja ( __ 1 {JT av,) 

2p, az 

2{J av% 3/1 av,] + (J-- + T-- ' az rz 

[-{Ja(- _1 {Jr av,) 
2p, az 

2{J va% 3/1 av,] + a--az+ r-az , 

. ( a a ) where A = at + Vz Tz A. The remaining equations are identically satisfied (approxi-

mately). 
The system (3.1) contains the following unknowns: {J, v.,, Vz, a, r, being functions 

of z and t. It was shown in [16] that in the case of small deformations the system of equa
tions is reduced to the set given by CLIFfON [1], (in isothermal processes), or to the set 
derived by RANIECKI [19] (in adiabatic processes). In these papers two particular cases 
were also discussed: pure tensiDn and pure torsion. 
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4. Simple waves in thin-walled tubes 

Simple waves represent a solution depending on z and t through a certain function 
TJ(z,t): 

(4.1) T = T(TJ), a= a(TJ), Vz = Vz(TJ), VIP = VIP (TJ), {J = fJ(TJ) 

and, hence, they are constant at surfaces TJ = const, moving in the medium. It was shown 
in [I 6] that simple waves propagate at the same velocity as the transversal waves. 

Let us consider the system (3.1) assuming the material to be in the plastic state U = 1). 
We have then 

d{J • {J ( 1 {J dVIP dVz ) 
dTj TJ = - 2/-l T {bJ TJ.z+ d1} TJ,z , 

d-r eo dVIP • 
dTj 1],: = pdf}TJ' 

(4.2) 
da eo dVz • 
dTj 1J.z = p(b}TJ' 

({J 
d-r d{J ) _ 1 dVIP dVIP 
dTJ + T dTJ TJ- 2 {Jadf} 'YJ. z = p, d1} TJ. z 

- 6!~. [PT( ~= +3) c::; 1J,,+2P" a;, '1 .• ] . 

- (p da d{J. ) • {J dVIP dVz 
ex dTJ +a dTJ TJ + T df}TJ• z = 2p, d1}1J. z 

- s!~z [PT( ~= +3) a:; 1J.,+2P" a;· '1 •• ] 

with the notation 

_ 2(3K' +p,) 
ex= 9K' · 

Let us multiply Eq. (4.2h,3 by 1}, and Eq. (4.2)4 , 5 by TJz; substitute the first two equations 
into Eqs. (4.2)4 , and take into account (4.2)1 • The system (4.2) is then reduced to the 
set of two following equations 

(eoaD2 +iX"P-2!l+ ~~::) v: + [- a~:T +PT+ g;;k: ( ~= +3)] v: = 0, 

where, in this case, Q = W ~Vz is the local velocity, and W is the motion velocity of the 

V* _ dvz * _ dviP 
wave, z - dTJ , VIP - dTJ . 

Equation (4.3) makes it possible to determine the velocity of simple waves; the con
dition of existence of the solution requires the principal determinant to vanish. It may be 
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verified that, in the case of small deformations, Eqs. (4.3) are of the form given by RANIEC

KI in [19]. 
In view of considerable complexity of the problem let us now assume that the mean 

pressure is not very high. This assumption makes it possible to use the ordinary values 
of elastic coefficients taken from the tables (instead of K'), what means that the elastic· 
deformations are small. Due to the theory presented here, the voluminal components 
of plastic deformations have been disregarded so that the material may be assumed to 
be perfectly incompressible: e = (!0 , {J = 1. Under such assumptions the systems (3.1) 
and ( 4.3) take the following form 

aT . a(] . 
az = (!V, Tz = f!Vz, 

(4.4) 

Here (!, p,, K are the material constants, 

T, 0', v~~'' Vz are functions of z and t, and 

TO' * ( !J2 0' 
2Hk2 Vz + (! -p,-2+ 

(e.02
-E+ 6:;~2 }v: + ~; (I+ 

(4.5) 

In the case of elastic deformations H -+ oo we obtain the elastic wave velocities 

e.02 = p+ ; = p (I+ 
2
:) z p, e.02 = E, (E- Young's modulus). 

Velocities of simple waves may be found by equating the determinant of Eqs. (4.5) to 
zero, 

(4.6) 

where e!J2 =X. 
The above equation may be written in the form 

(4.7) 

Y1 = Y2, 

Y1 = (X-E)(X-p- ; ). 

Y2 = A(Xo-X), 
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where 

(4.8) A= 
T2+a2 

> 0, 
2Hk2 

Xo = 
3k'(p+ ; ) 

T2+a2 
(4.9) 

In the last two expressions the relation E = 31' (incompressible material) is taken into 
account. 

It may be shown that for stresses much smaller than the elasticity modulus "'' the 
inequality holds 

(4.10) 

The geometric interpretation of Eq. (4.6) is shown in Fig. 2. It is seen that the simple 
waves may be propagated at two possible velocities: 

y 

which satisfy the inequality 

(4.11) 

eDJ = X1 (fast waves), 

eD: = X, (slow waves), 

~~ 

" ' T=Oj !al=tt 
FIG. 2. 

X 

Here e.!Jf• = E and e!J~l = 1'+ ; • In Fig. 2 are shown the graphs of functions Y1 , Y2 

satisfying the conditions (4.7), (4.8), (4.9). Point X0 lies in the interval [,.+ :, E]. 
The equation of simple waves velocities ( 4.6) may be solved in certain particular cases 

(for instance, in the cases of pure shear and torsion), [16]. 
Analysis of Eq. (4.6) and relations (4.7)-(4.9) leads to the following conclusions: 
a) Velocity of fast waves is equal to that of the longitudinal elastic waves if and only 

if a = 0. The sufficient condition holds true if the ratio of the stress to the Lame constants 
p, is much less than unity, while the necessary condition is always true. 
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b) The velocity of fast waves is equal to that of the transversal elastic waves if and 
only if T = 0 and lal ~ a, the value Of a being found from the equation 

E 
( 4.12) 2p,H/T=~ = ( ) . 

a=a E- p,+_!!_ 
2 

c) The velocity of slow waves is equal to that of the transversal elastic waves if and 
only if T = 0 and lal < a. 

The proof of (a) is based on the analysis of the condition X0 = E, and the proofs 

of (b) and (c)- on the relation X 0 = p,+ _!!_and on the comparison of slopes of the 
z 

line Y2 = 0 with the slopes of the line tangent to curve Y 1 = 0 at point p, + ; . 

5. Stress trajectories 

Let us consider the possible stress trajectories in the plane 0'- T connected with simple 
waves; multiply Eq. (4.5)1 by a, Eq. (4.5h by T and sum the results up. After simple trans
formations we obtain 

(5.1) 
da 
d-r = 

( 
0' 3-r2) e!J2-p,--- - - a 
2 20' 

(e!J2-E)-r 

where, for an incompressible material, E = 3 p,. Equation (5.1) differs from the equation 
of the stress trajectory at small deformations by the last two terms in parentheses of the 
numerator. The velocity of simple waves e!J2 = X is obtained by solving the Eq. (4.6), 

0' 0'2 + T2 _ 
41-l + 2 - 2Hk2 ± V L1 

(5.2) X1.2= 
2 

, 

where 

(5.3) 

X1 = e!J}, X2 = e!J;. 

It is easily seen from Eq. (5.1) that in the region a > 0, -r > 0, the angle of inclination 
of the stress trajectory of fast waves is negative; in the case of slow waves, this angle is 
positive. In contrast to the case of small deformation, orthogonality of the stress trajec
tories cannot be established here. 

6. Numerical example 

As an example, let us consider simple waves propagating in a thin-walled tube made 
of pure zirconium. This metal was tested by KEELER [ 11 ]. The corresponding stress-strain 
curves were obtained for pure, annealed zirconium tested at temperatures from -195°C 
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to 370°C and velocities ranging from 0.005 em/min to 5 em/min. The following function 
describes the relation between the actual stress a, logarithmic plastic strain eP and tempe
rature 0°C = 0°K- 273 (in tension): 

(6.1) 

Relation (6.1) describes fairly well the results obtained by Keeler in the range of tem
peratures from -195°C to 25°C and from 200°C to 300°C. The following values of con
stants Ch a, b1, X are obtained: 

(i) In the range from -195°C to 25°C: 

b = 0.01, X= 0.25, 

a = 2.8 · 10- 3 1rc, C1 = 4.76 · 108N/m2
• 

(ii) In the range from 200°C to 370°C: 

b=0.01, X=0.25, 

a = 8.37 · 104 1rc, C1 = 3.95 · 108 N/m2
• 

Moreover, we obtain for zirconium 

(! = 6440 kg/m3
, p, = 3266,73 · 107 N/m2

, 

Ce = 284.84 J/kg°C. 

In Keeler's experiments the temperature was controlled and kept constant, so that 
the relation between the hardening parameter~, stress a and temperature 0 may be evalu
ated from the equation 

(J 

(6.2) a= J 
where ur = C 1 (1- aO)bf is the initial yield limit at eP = 0 and eP = eP( a, 0) is the solu
tion of Eq. (6.1) with respect to eP. Let us integrate Eq. (6.2); we obtain 

1 x+ 1 x+l 

(6.3) "'= (x+lfj/C,(l-aO) {u x -ur x )· 

On the other hand, during the process of loading the temperature equation assumes 
the form 

• qd - -
0 = 2p,H (m. D), 

On comparing this result with the equation of evolution we obtain 

(6.4) 0 = 1-n(a) ~. ' 
(!oCe 

Assuming that n = 0.1 we arrive at the result 

(6.5) 
1-n 

0-00 =--IX. 
(!oCe 
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Hence, in the interval of temperatures from -195°C to 25°C 

(6.6) () 0.9 
+195 =--(X 

(!oCe 

and for temperatures from the interval (200°C, 370°C) 80 = 200°C and 

(6.7) 

The set of Eqs. (6.3), (6.6) or (6.7) may be solved for a and 8; substitution of kJI3 for a 
yields the function k = k(cx, 8). In the adiabatic process, the hardening function may 
thus be calculated from the formula 

, 1 ( h ) 1 ( k ok k I-n ok) 
<6·8) H = 2p, 2p, +I +q4 m8 = 2p, /i ocx +I+ /i (!oCe 7fO · 

In the isothermal process it is assumed that () = 80 and a = k Jl3. From Eq. (6.3) it 
follows that k = k(a.), so that the hardening function H 1 is of the form 

(6.9) H' = _I_(~ ok + 1). 
2p, fl ocx 

Qs(m/s) 

12 10 
500 \ff 
400 

300 

200 

-;{N/m2) !1 
z a 5 10 l(N/mt) 

10 4 107 

15 

12 

0 5 10 15 

F10. 3. 

13• 

http://rcin.org.pl



460 NGUYEN Huu VIEM 

The results of calculations made according to the Runge-Kutta method are shown 
in graphical form. In Figs. 3 and 4 are plotted the stress trajectories and the velocities 
of slow waves as functions of the stress component -r for the isothermal process at 00 = 
= 200°C and 00 = -195°C; similar diagrams for an adiabatic process and temperatures 
ranging from 200°C to 370°C and from -1956C to 25°C are shown in Figs. 5 and 6. 
The ratios of velocities of slow waves taking place in both the processes and in two tem
perature ranges are demonstrated in Figs. 7 and 8. 

Q5 (m/s)! 

1000 
g 

BOO \ 8 

'~ 
600 

400 

_.!_ (N/mz) 1 200 
107 1 2 ..... 

8 12 16 2D 24 2B.I_ (Njm 2 ) 
28 107 

24 

20 

16 

12 

8 

4 

.... 
0 4 8 12 16 ZD 24 28 32 36 -;(N/m2) 

10 
FIG. 4. 

Analysis of these processes makes it possible to draw the following conclusions. 
(a) No substantial differences may be observed between the stress trajectories in the 

adiabatic and isothermal processes. Also the velocities of fast waves in both the pro
cesses are almost the same. 

(b) From the previous analysis it followed that the stress trajectories of slow and 
fast waves were not orthogonal. This fact is not observed from the graphs. 

(c) The velocities of fast waves decrease in the directions indicated in Figs. 3 and 4 
from the value of the longitudinal elastic wave velocity (at the -r-axis) to the value of the 
transversal elastic wave velocity (at the a-axis). In the present case, the latter velocity 
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~00-370°C 

12 

n 2 4 6 

FIG. 7. 

A 
Qs ' ~ 

1.0 
g 8 7 6 5 4 3 2 

0.8 

0.6 

0.4 

0.2 

0 

FIG. 8. 

assumes the value of-v (.a+ ~ ) /I! instead of Jl' .all! , like in the case of small deforma

tions. This difference, however, is also small. 
(d) In the case considered here, the root of Eq. (4.12) does not exist, and condition 

T = 0, lal ~ a (cf. Eq. (4.12)) is fulfilled for each lal ~ O'y, O'r denoting the initial yield 
stress at tension. 

(e) The velocity of slow waves decreases in the direction shown in Figs. 3 and 4. 
(f) A considerable difference is observed between the velocities of slow waves in the 

adiabatic and isothermal processes. The slow wave velocity in adiabatic processes tends 
rapidly to zero at relatively small stresses, what means that the energy dissipation at finite 
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deformations exerts a considerable influence on the process. It is seen from Eqs. (5.2), 
(5.3) that D11 = 0 if 

1 
f' = 2H0 

and so from Eq. (2.9) it follows that the term qa.mo is then equal to -h/2 p,. 
Dashed lines in Figs. 5, 6 denote the loci of points at which the velocities of adiabatic 

slow waves are zero. 
Similar conclusions were found to be true in the case of small deformations in [19] 

(except for (b) and (f)). The method presented here cannot be used in the cases of arbit
rary boundary conditions; it may be applied only in the case of constant stresses at the 
boundary of the tube. The method of solution of the initial-boundary-value problem 
was discussed by CLIFTON [I]. 
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