17.

EQUATIONS IN MATRICES.

[Johns Hopkins University Circulars, III. (1884), p. 122.]
I have been lately considering the subject of equations in matrices. Sir William Hamilton in his Lectures on Quaternions has treated the case of what I call unilateral equations of the form $x^{2}+p x+q=0$, or $x^{2}+x p+q=0$, where we may, if we please, regard x, p, q as general matrices of the second order. He has found there are six solutions, which may be obtained by the solution of an ordinary cubic equation. In a paper now in print and which will probably appear in the May number of the Philosophical Magazine, I have discussed by my own methods the general unilateral equation, say

$$
x^{\omega}+p x^{\omega-1}+q x^{\omega-2}+\ldots+l=0
$$

where $x, p, q \ldots l$, are quaternions or matrices of the second order, and have shown, by a method satisfactory if not absolutely rigorous, that the number of solutions is $\omega^{3}-\omega^{2}+\omega$, that is to say, the nearest superior integer to the general maximum number of roots $\left(\omega^{4}\right)$ divided by the augmented degree $(\omega+1)$.

But after I had done this it occurred to me that there were multitudinous failing cases of which neither Hamilton nor myself had taken account, as for example $x^{2}+p x=0$, besides the solutions $x=0, x=-p$, will admit of a solution containing an arbitrary constant, I think; but that is a matter which I shall have to look further into before committing myself to a positive assertion about it. I have only had time to pass in review the more elementary case of a unilateral simple equation, say $p x=q$, where p, q are matrices of any order ω.

If p is non-vacuous there is one solution, namely, $x=p^{-1} q$; but suppose p is vacuous: what is the condition that the equation may be soluble?
(1) Suppose $q=0, p$ being vacuous has for its identical equation $p P=0$, and consequently we may make $x=\lambda P$ where λ is an arbitrary constant.
(2) Suppose q is finite and that $x=r$ is one solution, then obviously the general solution is $x=r+\lambda P$.

We have now to inquire what is the condition that r may exist. I find from the mere fact of x being indeterminate (and confirm the result by another order of considerations) that the determinant of $q+\lambda p$ must vanish identically; so that for instance when p, q are of the second order and $\begin{aligned} & b^{\prime} c \\ & d e f\end{aligned}$ are the parameters to the corpus (p, q), we must have when $d=0$, which is implied in the vacuity of $p, f=0$ and $e=0$. The first of these conditions is known \grave{d} priori immediately from my third law of motion; but not so, without introducing a slight intervening step, the intermediate one (I mean the connective to d and f, namely) $e=0$.

So in general in order that $p x+q=0$ may be soluble, that is, in order that $p^{-1} q$ where p is simply vacuous may be Actual and not Ideal, q must satisfy as many conditions as there are units in the order of p or q, all implied in the fact that the determinant to $p+\lambda q$, where λ is an arbitrary constant, vanishes identically. When these conditions are satisfied $p^{-1} q$ becomes actual but indeterminate. (This, by the way, shows the disadvantage of calling a vacuous matrix indeterminate, as was done in the infancy of the theory by Cayley and Clifford-for we want this word as you see to signify a combination of the inverse of a vacuous matrix with another which takes the combination out of the ideal sphere and makes it actual.)

So in general in order that $p^{-1} q$ where p is a null of the i th order (that is where all the $(i+1)$ th but not all the i th minors of p are zero) shall be an actual (although indeterminate) matrix, it is necessary and sufficient that $p+\lambda q$, where λ is arbitrary, shall be a null of the same (ith) order. What will be the degree of indeterminateness in $p^{-1} q$, that is, how many arbitrary constants are contained in the value of x which satisfies the equation $p x=0$ remains to be considered.

The law as to the conditions is an immediate corollary to my third law of motion, for if $p x=q$ then $p+\lambda q=p(1+\lambda x)$; consequently $p+\lambda q$, whatever λ may be, must have at least as high a degree of nullity as p. Q.E.D.

