136 [24

24.

ON THE INVERSE ELLIPTIC FUNCTIONS.

[From the Cambridge Mathematical Journal, t. 1v. (1845), pp. 257—277.]

THE properties of the inverse elliptic functions have been the object of the
researches of the two illustrious analysts, Abel and Jacobi. Among their most remarkable
ones may be reckoned the formule given by Abel (Fuwres, t. 1 p. 212 [Ed. 2, p. 343]), in
which the functions ¢a, fa, Fa, (corresponding to Jacobi’s sinam.a, cosam.a, Aam.aq,
though not precisely equivalent to these, Abel’s radical being [(1—c¢%?) (1 + ¢%*)]¢, and
Jacobi’s, like that of Legendre’s [(1 —a?) (1 —k%*)];), are expressed in the form of fractions,
having a common denominator; and this, together with the three numerators, resolved
into a doubly infinite series of factors; ie. the general factor contains two independent
integers. These formul® may conveniently be referred to as “Abel's double factorial
expressions” for the functions ¢, f, F. By dividing each of these products into an
infinite number of partial products, and expressing these by means of circular or
exponential functions, Abel has obtained (pp. 216—218) two other systems of formule for
the same quantities, which may be referred to as “Abel’s first and second single factorial
systems.” The theory of the functions forming the above numerators and denominator,
is mentioned by Abel in a letter to Legendre (@uwres, t. 1L p. 259 [Ed. 2, p. 272]), as
a subject to which his attention had been directed, but none of his researches upon
them have ever been published. Abel’s double factorial expressions have nowhere any-
thing analogous to them in Jacobi's Fund. Nova; but the system of formule analogous
to the first single factorial system is given by Jacobi (p. 86), and the second system
is implicitly contained in some of the subsequent formule. The functions forming the
numerator and denominator of sinam.wu, Jacobi represents, omitting a constant factor,
by H (u), © (u); and proceeds to investigate the properties of these new functions. This
he principally effects by means of a very remarkable equation of the form

O (u)=%Aw+ Bf,du. [, dusin®am u,
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24] ON THE INVERSE ELLIPTIC FUNCTIONS. 137

(Fund. Nova, pp. 145, 133), by which © () is made to depend on the known function

sinam.u. The other two numerators are easily expressed by means of the two
functions H, .

From the omission of Abel’s double factorial expressions, which are the only ones
which display clearly the real nature of the functions in the numerators and denomi-
nators; and besides, from the different form of Jacobi’s radical, which complicates the
transformation from an impossible to a possible argument, it is difficult to trace the
connection between Jacobi’s formule; and in particular to account for the appearance
of an exponential factor which runs through them. It would seem therefore natural to
make the whole theory depend upon the definitions of the new transcendental functions
to which Abel’s double factorial expressions lead one, even if these definitions were not
of such a nature, that one only wonders they should never have been assumed & priors
from the analogy of the circular functions sin, cos, and quite independently of the
theory of elliptic integrals. This is accordingly what I have done in the present paper,
in which therefore I assume no single property of elliptic functions, but demonstrate
them all, from my fundamental equations. For the sake however of comparison, I retain
entirely the notation of Abel. Several of the formulz that will be obtained are new.

The infinite product

where m receives the integer values +1, +2,...+ 7 converges, as is well known, as
r becomes indefinitely great to a determinate function sin 7%6 of #; the theory of which

might, if necessary, be investigated from this property assumed as a definition. We are
thus naturally led to investigate the properties of the new transcendant

me + nvt,

u=oIIII (1+ ——”—> ................................. @) :

m and n are integer numbers, positive or negative; and it is supposed that whatever
positive value is attributed to either of these, the corresponding negative one is also
given to it. ¢=4/(—1), ® and v are real positive quantities. (At least this is the
standard case, and the only one we shall explicitly consider. Many of the formule
obtained are true, with slight modifications, whatever  and v represent, provided
only  : vi be not a real quantity; for if it were so, mw+nvi for some values of
m, n would vanish, or at least become indefinitely small, and % would cease to be
a determinate function of .)!

Now the value of the above expression, or, as for the sake of shortness it may
be written, of the function

w=aIITI {1 a* (Zzw_’n)} ................................. (3),

1 I have examined the case of impossible values of w and v in a paper which I am preparing for Crelle’s
Journal. [The paper here referred to is [25], actually published in Liowville’s Journal].

C. 18
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138 ON THE INVERSE ELLIPTIC FUNCTIONS. [24

depends in a remarkable manner on the mode in which the superior limits of m,
are assigned. Imagine m, n to have any positive or negative integer values satisfying the
equation

o) SRR e il ol (4).

Consider, for greater distinctness, m, n as the coordinates of a point; the equation
¢ (m?, n*)=T belongs to a certain curve symmetrical with respect to the two axes
I suppose besides that this is a continuous curve without multiple points, and such
that the minimum value of a radius vector through the origin continually increases as
T increases, and becomes infinite with 7. The curve may be analytically discontinuous,
this is of no importance. The coadition with respect to the limits is then that m
and n must be integer values denoting the coordinates of a point within the above
curve, the whole system of such integer values being successively taken for these
quantities.

Suppose, next, u’ denotes the same function as u, except that the limiting condition is
P A )6 Tiapas < niind s b« i s novanky (5).

The curve ¢’ (m? n®)=T" is supposed to possess the same properties with the other
limiting curve, and, for greater distinctness, to lie entirely outside of it; but this last
condition is nonessential.

These conditions being satisfied, the ratio »’ : w is very easily determined in the
limiting case of 7' and 7" infinite. In fact

—_nn{1+( , )} ................................. ),
o’ x
or l {& = EEl {1 + m} ................................. (7),
the limiting conditions being
N S ML SN R e W (8),
¢ (m?, nt) < T
z a? ‘
Now l {1 i (m, n)} (Wn) -3, m C RS S R O 9),
l— =2, 22( 320 . 33— (m n)’ .................. (10),

or, the alternate terms vanishing on account of the positive and negative values
destroying each other,

l—=—1}x’ =3 ), -3a. 3% ——

(m n)

(m,

In general

ISy (m, n) = [ (m, n)dmdn+ P . ..o, 12),
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24] ON THE INVERSE ELLIPTIC FUNCTIONS. 139

P denoting a series the first term of which is of the form CWr (m, n), and the remaining
ones depending on the differential coefficients of this quantity with respect to m and n.
The limits between which the two sides are to be taken, are identical.

In the present case, supposing 7' and T’ indefinitely great, it is easy to see that

the first term of the expression for l; is the only one which is not indefinitely

small: and we have

l%=—1}Aaﬁ, of el it Rl (13),
where 3
& f f o md” = f f (mi"fzw)z ......................... (14) ;
the limits of the integration being given by
7R e A e IR T e S (T (15),

¢ (m?, n?)< T

Some particular cases are important. Suppose the limits of «’ are given by

WD B L (16),
and those of u, by
ARl MROM TR e F S s S e (L7)s;
we have
dmdn
f f o A — (18),
__lfd { 3 1 AN }
i TH+nv J(T2- n’v“)+'nvz TN =)+ =T+
2 4 N (T* —n*?

B, 2 Gl 2 :
--2 _lde{m_ Va-of == Z@-m=0:

or, in this case,

T i il NG YR SR W Sl R e (19)
Again, let the limits of u’ be
MO < B Dt S S R R (20),
and those of
miew® < Rﬂ, iR I L L (21)
dmdn
W f f 7y SRR i S R e (22),

—fd 1 1 1 5 }
el {R’+nm R+nm+—R+nv’b — R+’
18—2

www.rcin.org.pl



140 ON THE INVERSE ELLIPTIC FUNCTIONS. [24

where the limits are n2?<S" for the terms containing R/, n*v*< 2, for the terms
containing R,

2 R+8% R—-% ‘ 23
= a)w,lR' Fe TR e e (23),
it P S e 1
=—E)(7x-)»), 1f7x-tan1R,, )\.-—tan‘R
the arcs A, A’ being included between the limits 0, 4w. Hence
Mg RPN S s (24)
. SRS S S S b/ S
i (L ) = —_— = _— ,= —*M' _— = -—=1,
In particular if =R YW= If ¥ % 0, ye 1, v =ue :Taf =% R
u'=uetP”: where 8= —, for which quantity it will continue to be used.

We may now completely define the functions whose properties are to be investi
gated. Writing, for shortness,

/T T o R TR S 0, SRV T 4),
(m, n) =(m+13%) o +nuvi,

(m, n)=mo+ (n+3%) v,

(m, 7) =(m+ %) @+ (n+3) vi;

we may put

ya = 2IITT {1 & (mf” n)} ................................. (B),
o= WL {T+ %}
G HET {1 + (mf”ﬁ)} ,

the limits being given respectively by the equations
“mod.(m, n)< T, mod. (m, n) <T, mod.(m, 7)< T, mod. (@, 7)< T,
T being finally infinite. The system of values m =0, n=0, is of course omitted in 2

The functions ya, go, Gz, @iz, arc all of them real finite functions of @, possessi
properties analogous to that of w. Thus, representing any one of them by Jz, we hav

Jw:e*&ng.]ltp.’lf ....................................... (C)v
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24] ON THE INVERSE ELLIPTIC FUNCTIONS. 141

where Jigz is the same as Ja, only for Jgz the limits are given by mPw® or

(m+3)?w® < R, n2? or (n+3)2v2< S, (R, S, and % infinite), and for J gz, by the same

formulee, (R, S, and o infinite). It is to this equation that the most characteristic

R
properties of the functions Jz are due.

The following equations are deduced immediately from the above definitions:

y(—2)=—qx, g(—a)=g92, G(—2)=CGx, Gi(—2)=C=......... (D),
v(0)=0, g(0)=1, G0)=1, &(0)=1,
v (0)=1.

Suppose v.z, gy@, Gy, @y, are the values that would have been obtained for yz, gz, Gz, Cix
by interchanging @ and v,—then changing « into a4, and interchanging m and n, by
which means the limiting equations are the same in the two cases, we obtain the
following system of equations:

Rl e e R e e R e (B),
g1 (a2) = G,
G, (x1) =gz,
&, (20) = Gix;
or otherwise,
ol gy e et S e e S, e &),
g (.’L"L) = Gz,
G () =iz,
& (2) = Gz,

equations which are useful in transforming almost any other property of the functions J.

The functions Jga are changed one into another, except as regards a constant
multiplier, by the change of # into z +%. This will be shown in a Note, or it may
be seen from some formule deduced immediately from the definitions of the functions
Jew, which will be given in the sequel’. Observing the relation between Jz and Jgz,
we have in particular

v <w + %’) N et PN SRS R N (@),
g (w + g) = e}vF% Byg
G (w + %’) = e¥Boz Oz,

(453 <w - a_2)> = etfuz DGy,

! Not given in the present paper. [The Note was given, see p. 154, and the formule referred to must have
been the formule (1) p. 144.]
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142 ON THE INVERSE ELLIPTIC FUNCTIONS.

where 4, B, C, D, are most simply determined by writing =0, B=—2

mw

the same time e =e? =¢q,7,

whence also

no

[24

Putting at

Similarly, the functions J_gz are changed one into the other by the change of z to

z+4w. We have in the same way
y (a: 3 %) = e 4P 4Gy

Whence

v

where €' =e® =¢. It is obvious that the relation between ¢ and ¢, is lg.lg=—"7"

We obtain from the above
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24] ON THE INVERSE ELLIPTIC FUNCTIONS. 143

Also, by making w=tg in the expression for (w+ g) and w=g .in that for

w
y<w+ §), we have

() vt v () y
7(@)9(‘2"):_@‘7(5) G(§> .............................. (27),
and the same or an equivalent one would have been obtained from the functions g, @, €.

By combining the above systems, we deduce one of the form

Y (w + % + 1;_@) =tk Bg Or WA O T L LIS T (K),

g (a: + %’ + lg) = ¢}fs i) B’ (g,

G(w+ g—{-lg edfe Gt Oilgn,

& (w + %’ +v§1,) = e}fe v JY'oyge;

and, observing the equation ef«i = ¢ = (—1), with the following values for the coefficients,

A”=(—1)é.q(§) g (‘g .................................... (L),
B (<1t amtn (%) o (2).
=10 a(3)8(5)

D' =—(— 1)*.g‘*.0§<;)—)+fy<;—i>.

Collecting the formulae which connect v <§)’ v (vg Sk these are
g (g) S e (L bis),

www.rcin.org.pl



144 ON THE INVERSE ELLIPTIC FUNCTIONS. [24

And by the assistance of these
B+ A" = BD +AC®m0D+AB=~1 ... ... Lo (28),

AR +CD =—A"B' +C"D' = —op (”g) 2 ('g)
A"C"+ B D' =—A'C +BD = (g) @ (3

( 4 / / ’ 2] 2 Ui . l'i
AD+B0 ==Y SG S 7<‘§°)—G(-“3 =—'y'<§>—.—gz(§>,
which will be required presently.

It is now easy to proceed to the general systems of formule,
6 = (—{)"NeRL I o AR D i 0 e e i A (M),
7 {o+ (m, m)}=(— 1™, Ona,
gz+ (m, n)}=(=1)™ .Ogz ,
G &+ (m, n)j=(-1* .OG=,
& {z + (m, n)} Oz

b= ( s l)n (m+3) eﬁz[(m+}) w—nvi] ql—}mz—}m q—}n‘-"

v {z+ (M, n)}=(—1)y"" OAgz ,

o+ (@, m)}=(~1)" .®Bya,
G o+ (@, n)=(—1p .OCGs,
&G (o + (W, n)}= dDGa.

=(- 1)"" m+1) B2 [Mo— (1 +]) vi) ql_5m2 q—%"Li“

v {&+ (m, 7)} = (= 1)™" VA’ Ge,
g z+(m, n)}=(-1)" . YBGz,
&+ (m, )

)} =(—

{fx+ (m, n)}=(-1) .QB"Gx,
}=(=1) ..QCz ,
}

(@ + (m, n)} = QD yz.
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9 4] ON THE INVERSE ELLIPTIC FUNCTIONS. 145

Suppose =0, we have the new systems,
O, ORI SHNIT I o i < RN e s el v s (M us).
v (m, m) =0, v (m, n)=(-1y""@,
g (m, m)=(-1)"@,,
G (m, n)=(-1)O
&G (m, n)= O,
D= (—1)rm+d g—bm—im g—ims

¥ (M, n) = (—1)™" @4,

g (m, n)=0, g (m, n)=(—1)y" DB,
G (M, n)=(—1)»D,C,
& (m, n) = d,D.

W, = (= Lymnth g—im? g—ini—in
Y (m, %) = (= 1™ ¥, 47,
g(m, #)=(-1" ¥ B,
G (m, 7) =0, G (m, &)= (=1 ¥,
G (m, 7)) = v,D.

Q= (= 1)ymnt+imtin g —4mi—im g—jn—}n,
v (@, B)=(—1)m+n Q4"
g (m, n) =(—1" Q,B",
G(m, 7)=(-1" 00",
& (m, 7) =0, &' (m, n) = Q,D".

We obtain immediately, by taking the logarithmic differentials of the functions
vz, gz, Gz, €z, the equations
va&+ 9z =33 (z—(m, n)}", m=0, n=0 admissible, ...... (IV),

Gz+ Go =33, a:—(m )},
Gz + &G =33, (v — (m, n)}7,

the limits being the same as in the case of the factorial expressions.

{ }
gz + gz =33 (z — (m, n)}7,
{ }

Consider an equation

92 Gz +yx (rp =33, (A z—(m, n)]+B {z— @, 7)}7]...ooeee (29),
o8 19
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we have BA=g(m, n)G(m, n)+o (m, )T (m, n)=1...ccccccrviiriiiinniinnn (30),
B=g (7, 7) G (m, 7)+ vy (@, 7) & (@, 7) =B"C"+A"D"'=—1... (31).
(The application of the ordinary method of decoxﬁposition into partial fractions
which is in general exceedingly precarious when applied to transcendental functions, is
justified here by a theorem of Cauchy’s, which will presently be quoted) We have thus
ga2Gz + yalie = (v'x + yz) — ('z + Cha),

and similarly

geGiz+qr Ge=(yz + yo)—(GFz+ Gr), ..cocvvereen. (0),
Goliw +qw goe=(vYe + o) —(go+ ga),
~byaliz+ge Go=(gz + gr)— ((a+ Ga),
eye go+ GoGie=(G'z + Q) - (@w+ &),
cyale + Ga go = (&'s + Ga) — ( gz + ga);

in which we have written

O L MBS s o s gt i r et (33),
g’w - G’m i b"y’w
&'z—gx c’ry’J:
:l&s(i((liing these equations, b*=e¢*+¢?, or b=y (e24 &), in which sense it will continue to b
Also, gz =@, _ e T BT UL SR AL ‘. bs (AR
o Ty +ey'x
Suppose
Pr=ve o 7R o T S P 0 SR O SR R (@),
Sz =ga < G
Fe=@Q, r
then = Giz,
2 —
s i A A ..cai DRI 8. O ®),
Fe=lqy Edir
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24] ON THE INVERSE ELLIPTIC FUNCTIONS. 147

and also (oot =S 7 A SRR R R R e e O S),
Sf'e =—c*¢pz Fu,
Fo= ddafo .
Hence, putting for fx, Fr, their values,
¢’z
Il . D
V(1= ¢z (1 + edr) sai
or writing ¢z =y, and integrating,
bz dy
— = = . iceeececserssstitiincaens U )
i fo JA =) (1 + ey @)
e dy
P el foJ(l—c’y“)(He”z/”)’

which shows that ¢ is an inverse elliptic function.

The ‘equations which are the foundation of the theory of the functions ¢, f, F, are
deduced immediately from the equations (S). (Abel, Guvres, tom. 1 p. 143 [Ed. 2,
p. 268.]) These are

_dzfy Fy+ ¢y fe Fz

¢ (m + y) = 1+ ed ¢2x ¢2y ........................... (V),
_Jafy—c ¢z py Fz Fy

f("” L y) L4 1 +6202 ¢2m ¢2y 2

_FeFy+edadyfufy,
S i o

so that from this point we may take for granted any properties of these functions.
We see, for instance, immediately,

¢(5)-E 9(9)-

bl S UL
T R s T

whence

2 (W),

$ 1
2= dy N dy TR g
2 -[0 \/(l—czy’)(1+e2y2), i 2 '[0 \/(1+02y2) (l_ezyz) """ ( ))

which give the values of w, v in terms of ¢, e¢; values which may be developed in
3 variety of ways, in infinite series. We may also express ¢ <§>, &c., and consequently

4 B.. &, by means of the quantities ¢, ¢ We have only to combine the equations

0-8@)-1 o(5)-6¥-L 06 ()2 o)) 00
9—2

[y
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148 ON THE INVERSE ELLIPTIC FUNCTIONS. [24

with the former relations between these quantities, and we have

v(3)=ttedgh o (‘g) B S0 el S 7),
e aerer
G¢(3)=Beigt & (‘-’2-’) =0,
G (3)=tdg & (’-g) bt gt

A=btctg3 A'=idtetqt A"=(—1lcHeitq gt , ..(2)

B=—b*c’}ql"§ 5 B’=b§e‘§ q_‘l x B":—(_ 1)‘}ic§e—}ql—*q“}’

C=bcigt, '=—ibbeiqg?, O =(-1icltedg gt

D=btehgt, I =bteqgt , D'=—(—1tictetqg gt ,
which are to be substituted in any formule into which these quantities enter.

The following is Cauchy’s Theorem, (Ewzercises de Math. t. 1. p. 289).

“If in attributing to the modulus » of the variable

s2=7r{cosp+4/(—1)8INP} ceevirriiiniiniiiiiiiniiinens (35),
infinitely great values, these can be chosen so that the two functions
J2+f(—2) [fe—f(=2)
5 4 P 0L ¥ IR e T (36),

sensibly vanish, whatever be the value of p, or vanish in general, though ceasing to
do so and obtaining finite values for certain particular values of p; then

_ ¢ ) ‘
Je=§ AL IR (37),
the integral residue being reduced to its principal value.”

To understand this, it is only necessary to remark that the integral residue in
question is the series of fractions that would be obtained by the ordinary process of
decomposition; and by the principal value is meant, that all those roots are to be
taken, the modulus of which is not greater than a certain limit, this limit being
afterwards made infinite.

Suppose now fz is a fraction, the numerator and denominator of which are monomials
of the form (yax)!(ga)™..., I, m... being positive integers, and of course no common
factor being left in the numerator and denominator.

Let N be the excess of the degree of the denominator over that of the numerator |
Suppose the modulus 7 of (z) has any value not the same with any of the moduli of

(m, )5 ), W ), IR S SR (38).
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Then we have
r(cosp+isinp)=mo +nvi+6....coviiniiiiiiiiiinn. (39),

¢ being a finite quantity, such that none of the functions J@ vanish. m and n are
the greatest integer values which allow the possible part of # and the coefficient of
its impossible part to remain positive. We have therefore

TR e R R e AR SR e (40),

M being finite; or when r 1is infinite, at least one of the values m, m is infinite.
The function fz reduces itself to the form

gt e ot BGOSR TR S IO (41),
where F is finite. Hence ¢, and ¢ being always less than unity, fz, and consequently
both % {fz+f(—2)} and 2% {fz=f(—2)} vanish for r=00, as long as A is positive.

In the case of A=0, the conditions are still satisfied, if we suppose fz to denote

an uneven function of z: for when A =0, the index of exponential in the above
expression vanishes, or fz is constantly finite. But fz being an odd function of ¢,

fo+f(—2=0. And 212 {fz—f(—2)} vanishes for z infinite, on account of the z in

the denominator: hence the expansion is admissible in this case. But it is certainly
so also, in a great many cases at least, where fz is an even function of z; for these
may be deduced from the others by a simple change in the value of the variable.
For instance, from the expansion of @ + gw, which is an odd function, by writing

;c+v§z for x, we obtain that of Gz -+ €&z, which is even.

A case of some importance is when the function is of the above form, multiplied
by an exponential e}%*+z  Here writing z = me + nvi + 6, the admissibility of the
formula depends on the evanescence of

SV B I L LR RN B (42);

or, if @ =h + ki, this becomes, omitting a finite factor,

cphrt OB=hNE R nl OB M skmn ay gk s il S oS g (43),

which vanishes if % + k<A@, ie. the modulus of @ is less than AB. The limiting
case 18 admissible when the series is convergent.

We obtain in this way a very great variety of formule. For instance,
W . gy = 33 [(— 1)-mn—m—n gha m. M+ om, 1) g dmt g fgp — (g, M)} ...l 4,
dosein 1 g = — b omh SE[( — 1)-nmin e nHEm gh it g g — (i, )}
@b - Qp — bt et 33 [(_ 1)—4nn—}m—” eha m, m2+d m, 7) qlim’ qi m+})? {az 24 (m, 1-1)}—1],

0z . O =got et S (= 1)—-(m+f}) m+}) b (1, 7)2+b (M, 7) qlé (m+;)2q% n+h)? {a: -~ (m, ﬁ)}—x]’
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150 ON THE INVERSE ELLIPTIC FUNCTIONS. [24

in which the modulus of @ must not exceed 8: in the limiting cases, for a=g, b
must be entirely impossible, and for a=—48, b must be entirely real. The formul for
yx are

AT oy =T (= 1)y g ™M [z — (m, R)} ............ (44),

e BHIe . yp = 5 (— 1)mn gt S o (m, )]

and for b=0,
@b =33 (—1)"™ g™ {&—(m, B)} i (45),

e g =33 (= 1) g™ (o — (m, n)}~

Next the system,
Gorqe =22 (=1 e —(m, B)] 2 «covreerriiisecsnannnaes (B).

ge+ gz =3 (- 1™ |- (m, n)}7,
Gr+yx =33 (-1)" {|o— (m, )}
ye+ge =—b1 e E (- 1) [z — (m, n)},
Gz + gz =—c* I (= 1)y {2 - (m, n)]7,
Giz+ge =—=b 23 (- 1)™ |z —(m, n)}™
yx+ Ge =—b1e? I3 (- 1™ {z — (m, A)}7,
gz+ Gz = e ZZ (= 1)y (g — (m, )},
Gz+Gr= W13 (-1) [z—(m, B}
yx +Grz=ic"l¢ I3, (— 1)™*+" (@ — (i, 7)]~
gr+Ga= ¢ ZZ(-1)™ [(¢-(m, @),
Gz +Gz= ic? X (=1)* |z— (m, )],
which is partially given by Abel.

1
]

We may obtain, in like manner, expressions for the functions

wlgm, ??1@5 , .. (six terms of this form).................. (©)
;f—;;: i (Awalvdh L J a8 s e e (D),
%’ |y e R gl o N v e (B,
m Bty ny Ao oy e o s ),
%, C) " IS MRS R S AR e @),
m,... (71 0% A gt Ll MR STy e (H');
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each of them, except (E'), (the system for which, admitting no exponential, has already
been given,) multiplied by an exponential e#%*+%% the limits of a being +28, 18,
+B, +38, +2B, +4B. For the limiting values, b must be entirely impossible for the
superiox\‘ limit, and entirely possible for the inferior one.

Thus the last case is
i

ORI R ¥ g
'ngwaQE'wea SRRl BT R A IR I e (H),
— 22 [eia (m, n)2+b (m, n) qlgmﬂ q.mz {w v (m’ n)}—l]
o3 22 [e}a (m, n)%4b (m, n) qlg m+3)? qw {.ﬁ e (ﬁ, n)}—l]
+ 2 [deonditden® gamt - ool (o (m; 7))

}

— 33, [éta m. w2+ m. ) g mH* gt (g — (m, 7)}];
in particular
m M= BT - [o— (m, n)) R0 (46),
— 33 g, emt? (g — (M, )}
+3Z¢™ {z— (m, B)}
+23 0" e — (m, W},
or the analogous formula obtained by changing B, ¢,, m into —f, ¢, n.

The function ¢z, which is even, and for which A= 0, cannot be expanded entirely
in a series of partial fractions: but (z—a)¢%» may be so expanded. Multiply by
(z—a), the second side has for its general term

(z — a)(Mz+ N) {&— (m, 7)}72,
equivalent to
K + (M'z+ N') {z— (m, n)}™%

Summing all the K”s, we have an equation of the form

¢z=A+33[L {z— M, 7))+ Mz — (M, B)} 7] .coreeennnnn (47).

To determine the coefficients as simply as possible, change z into z +}o + nws,
—e2c2(px) 2= A+ 3Z[L{z — (m, n)}*+ M {&— (m, n)}]......... (48),
L=—ec?[{g—(m, n)P(¢x)],x=(m, n) oo (49),

M=—e"c?0,[[z—(m n)}*($2)"],

Or writing @+ (m, n) for , and therefore #=0 in the values of L and M,

L=—e2c2{a(Pa) =€ 0 eiiiiinniiiniiiniinnes (50),
M=—-e2c¢20,{a*(px)?}=0;
Vhence P e P RS e A L (51).
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Integrating this last equation twice,
fodz [ dz gz =4Aa* + e 2 c2 23 (@ — (M, A)} «ovvneenennnnnnn. (52)
or iz = AT+ [ G [ B o (53),
an equation from which it is easy to determine the coefficient A. '
Suppose for a moment ¢z=[ip'wds, ¢,2=fipade; then, since ¢*(z +w) i~
$,@+0)~go=dp, b,(@+0)-pz=g,0+sp0.
But similarly ¢*z —¢?(w —2)=0; whence
$pz+ e (0-2a)=¢w, ¢z-¢,(0-2)+pw=0p0;

whence, writing z =

3

LIRS

b0 =2¢, ((:7)) , ¢,0 =0, (—203) , or ¢, (z+e)—¢x=0, (g) (2z + ).

Hence 0k (z + o) = e 19" {4-dwd, Qo)) 0zt Qg .. ................. (54).
But Fz+o)=2q iGr=edf tzta) @iy ................. (55);
or, comparing these,
2 © .
— e {A -2 ¢, (i)} S T (56),
e'c’ ®
—%e’c’A=1}B—;—¢,(§> ........................... (57),
or writing
2 e
Ko 3 Lonllidon lop B Mithiseifisn (58),
@ Jo
then Chz = ¢ B—M2*+etct fodzfodad®e | . I}

which is the formula corresponding to the one of Jacobi’s referred to at the beginning
of this paper. Analogous formule may be deduced from it by writing a;+%’, or x+%‘_

@

or a;+2

+g, instead of .

The following formule, making the necessary changes of notation, are taken from
Jacobi. We have

¢ (z+ a) &= ¢2 ($ ¥ 5 a) = 43“{(2252%#;?:1;1;” .................. (59),
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hok L@+ a)— ¢ (@ — a)) do= ?% .................. (60),
the first side of which is

Ja @+ a)da— [o ¢ (x— @) dz—2 [ip?ada .................. (61).

Hence, multiplying by e and observing the value of €hz,
Qg(”“)— G- g pEu ok Fadadty | (62).

(z+a) € (x—a) Cha 1+ ecdpad’e
If in this case we interchange z, ¢ and add,

%+gg‘:-%i—g=eﬂcwa dibdi (o PP AT I (63).

[By subtracting, we should have obtained an equation only differing from the above
in the sign of a.]

Integrating the last equation but one, with respect to a,
1 (z + a) + 1€k (z — a) — 20z — 210ia = | (1 + Ecp*eda),
the integral being taken from @ =0. Hence
& (24 a) & (z — a) = Fali’a (1 + EcP*xd®a) ............ (64);

or & (2 + a) & (z — a) = G2ali’a + ey ay’a,
whence also
y@+a) y(@—a) = yolia— va @,
g(@@+a) g(z—a)=golha—cga G,
Q(z+a) G(z—a)=@2l+Falie,

© v
=

these equations being obtained from the first by the change of # into « + 3 Ct+5

x+g +v§1,' They form a most important group of formule in the present theory. By

integrating the same formule with respect to x, and representing by TI(z, a) the
— ¢ pa fo Fo dp*xdx

integral R B T O Jacobi obtains
' G @—a), @a
H(JC, a)—%lqﬁ_—(x—_*_—a)'*'x@a

an equation which conducts him almost immediately to the formule for the addition
of the argument or of the parameter in the function IL This, however, is not very

ok 20
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closely connected with the present subject. For some formulee also deduced from (63),

@ (o) G y—0) G (@+y +a)
by which Qﬁ(m+a)ﬂi(y+a)eﬁ(w+y—a)
Jacobi.

NotE.—We have

is expressed in terms of the function ¢, sece

s =111 (1 % ~‘”—)

(m, n)
gez= TIII <l+ (;i-’w—;)),
the limits of n being +g¢, and those of m being + p, in the first case, and p, —p—1,
in the second case. Also §= .

We deduce immediately

m+9
HEERAT I (e | BTRER R Y

(paying attention to the omission of (m=0, n=0) in sz, and supposing that this
value enters into the numerator of the expression just obtained, but mnot into its
denominator). This is of the form

"8 (w+£2’)=AI'IH<1+(ﬁ,Ln));

but the limits are not the same in this product and in gs#. In the latter m assumes
the value —p — 1, which it does not in the former; hence
® z

and the above product reduces itself to wunity in consequence of all the values
assumed by = being indefinitely small compared with the quantity (p + 4); we have
therefore

Y8 (w + 9’2-) T P R (65),

and similar expressions for the remaining functions. To illustrate this further, suppose
we had been considering, instead of g, the function y_ga, given by the same formula,

but with 1(;: 0, instead of %) =ow. We have in this case also

’ © ! il »al z

A’ different from A on account of the different limits. The divisor of the second side
takes the form

{.z‘-—(p+%)m}H(l+u%zﬁ>+(_p+%)wn<l_*_(P:v%;)w),
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where the extreme values of n are infinite as compared with p. This may be reduced to

—sin%{wa(p+a})m}—:—sin(p+1}) o,

TUp+ho-a1 | Tlp+hel_ T
=€ +€ev =e Y,
neglecting the exponentials whose indices are infinitely great and negative. Observing
the value of B this becomes ¢ “f% and we have

Y-8 (w+ %’) =efe® v Alg gz
a result of the form of that which would be deduced from the equations y_gz = ey,
()]

g-_px = €Fgp, g (w+ 2)=Agp z. It is scarcely necessary to remark that y_gz has the

same relations to the change of z into a:+321 as ygz has to that of z into a:-i—%.
20—2
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