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Singular solutions in microcontinuum fluid mechanics 

H. RAMKISSOON (BARBADOS) 

THE METHOD of associated matrices is applied to obtain Galerkin-type representations for the 
equations of motion of two basic linear theories in microcontinuum fluid mechanics. The represen
tations are then utilized in constructing singular solutions for these theories. The results, wherever 
possible, are compared and are found to be in agreement with those of previous investigators. 

Zastosowano metode( macierzy stowarzyszonych do wyprowadzenia reprezentacji typu Galer
kina dla r6wnan ruchu dw6ch podstawowych teorii liniowych mikrokontynualnej mechaniki 
cieczy. Reprezentacje te wykorzystano nastC(pnie do skonstruowania rozwi~ osobliwych 
dla tych teorii. Wyniki zostaty, w miare( mo:inosci, por6wnane z wynikami uzyskanymi przez 
innych badaczy. 

llpHMCHCH MeTO~ npHCOC,lUfHCHHbiX MBTpHI( ,WUI BbiBO~a npe~CTaBJieHHH TUna raJiepKHHa 
WU1 ypaBHeHHH ,l:tBH>KeHHH J:tBYX OCHOBHbiX JIHHCHHbiX TeopHH MHI<pOKOHTHHYaJILHOH MeXaHHKH 
>KHJ:tKOCTeH. 3TH npe,~:tCTaBJieHHH HcnoJII>30BaHbi 3aTeM ,~:tJIH noCTpoeHHH oco6LIX peweHHH J:tJIH 
3THX Teopd. PeayJibTaTLI cpaBHeH&I, no Mepe B03MO>KHOCTH, c peayJibTaTaMH no~eHHhiMH 
,~:tpyrHMH HCCJie~OBaTeJIHMH. 

Notations 

d2 Laplace operator, 

I body force, 

F constant body force, 
I unit matrix, 

J body couple, 

L constant body couple, 
p dynamic pressure field, 
r position vector of an arbitrary point x with respect to an origin at y, 
r distance of x from origin y, 
u velocity vector, 

X, Y, Z matrices (2 • 1), 
t5(x-y) Dirac delta function, 

(y, /1, fJ, at, 0, T) material constants, 
2yp 

al 

(J (y-p) ' 
-2y 

.(f}+ T+fJ)' 

Q "inherent" angular velocity, 
V gradient operator, 

V2 Laplace operator. 
Subscripts 

8* 

k integer running over values 0, l, 2, 3, 
i, j, m, n integers running over values 1, 2, 3. 
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1. Introduction 

THE CONSIDERATION of couple-stress in addition to the classical Cauchy stress, has led 
to the recent development of theories of fluid microcontinua. This new branch of fluid 
mechanics has attracted a growing interest during recent years mainly because it possesses 
the mechanism to describe such rheologically complex fluids as liquid crystals, polymeric 
suspensions and animal blood. 

The many and diverse applications of microcontinuum mechanics to flow problems 
are well documented in a review article by ARIMAN et al. [1]. KLINE and ALLEN [2] studied 
blood flow based on a microcontinuum formulation by investigating the concentration 
effects in oscillatory blood flow. More recently with an improved microcontinuum model 
of blood, ARIMAN et al. [3] presented an encouraging comparison of the theoretical velocity 
and cell-rotational velocity profiles with the experimental data of BuGLIARELLO and 
SEVILLA (4]. 

In view of these findings it seems logical that further research work, both theoretical 
and experimental, will be undertaken in this area. With this in mind, the following work 
is presented as foundation material for possible use in future studies. 

This paper is concerned with finding the singular solutions for the slow steady field 
equations of two apparently different specialized theories of microcontinuum fluids -
Stokes' couple stress theory [5] which contains first and second order velocity gradients 
and the theory of asymmetric hydromechanics developed by AERO et al. [6] in which a new 
independent kinematic variable, the gyration tensor, is introduced. The method of associa
ted matrices which has been used by several authors [7, 8] in the study of elasticity and 
linear elastic dielectrics, is employed to construct Galerkin-type representations. With 
the aid of these representations, the required singular solutions are obtained. 

2. Basic results 

Let 

(2.1) 

be matrices with elements as real numbers. If d2 = Xf + X.i +Xi and the superscript "t" 
over a matrix denotes its transpose, then the following relations are easy to verify: 

X'X = d2, X'Y = 0, X'Z = d2X', 

YX= 0, y2 = -d2J+Z, YZ= 0, 
(2.2) 

ZX= d2X, ZY= 0, Z 2 = d2Z, 

XX'= Z. 
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Working in Cartesian coordinates (x 1 ' X 2' X 3)' let :.la = xi (i = 1' 2, 3); it then follows 
vXi 

that 

V2 = d 2
, V X V = YV, V V. V= zv, 

where V is a vector represented by the column matrix [V1 , V2 , V3 ]'. 

In order to construct the three-dimensional singular solutions in subsequent sections, 
we note that if 

(2.3) [V2 , V\ V2 +a~. (V2 +ai)(V2 +a~), (V2 +ai)(V2 +an(V2 +a~)]g 

= -<5(x-y)[1, I, 1, 1, 1], 

then the corresponding solutions are given by 

(2.4) 

where <5(x-y) is the Dirac delta function, ak (k = 0, 1, 2, 3) are arbitrary real constants, 
3 

x = (x1 , x 2 , x 3), r 2 = l\xi-Y;)2 and Ei = [(aJ-a!)(aJ-a~)]-I,j "#m"# n,j, m, n = 
i=l 

= 1' 2, 3. 
The matrix inversion technique shall now be illustrated by applying it to the Navier

Stokes equations and moreover we need the results for future reference. In the case of slow 
steady incompressible flow, an assumption that will be made throughout this work, the 
equations take the form 

(2.5) 
p,V2u-vp = -f, 

v·u = o. 
This system (2.5) is equivalent to the matrix equation 

(2.6) 

where the matrix A is given by 

(2.7) [
p,d2J -Xl 

A= X' oj· 
The solution of (2.6) is of the form 

(2.8) 

and so the problem reduces to that of finding the inverse matrix A-1 of (2.7). This is found 
to be 

(2.9) 
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Substitution of (2.9) into (2.8) produces the following Galerkin-type representations 
for u, p: 

(2.10) 

where ~' 1p satisfy the equations 

(2.11) 

Hence 

(2.12) 

u = V2 f-VV·f+Vtp, 

p = -~tV2V · f, 

~tV4(i; = -1-: 
V21p = 0. 

To determine u, p we need q,~ 1p; hence we must solve the system (2.11) assuming that the 

body force f is known. In the case of an arbitrary constant concentrated point force f = 

= Fd(x-y) applied at the point y(y1 ,y2 ,y3 ), the solution of (2.11) is given by 

- 1 -
(2.13) l/J = -

8 
-Fr, 1p = 0. 

"'fl 

Substituting this into (2.10), we obtain 

U= 8~,.[: +~/r]. 
1 - -( 1) 1 ff·-;: 

p=- 4nF·V r = 4n~' 

(2.14) 

where the gradient is evaluated at the point y. LAMB [9] gives similar expressions for a point 
force in the creeping motion approximation using an alternative approach. 

3. Stokes' couple stress theory 

Developed by STOKES [5] in 1966, this theory represents the simplest generalization 
of the classical theory which allows for polar effects such as the presence of couple stresses 
and body couples. But unlike ERINGEN's micropolar fluid theory [10] and the asymmetric 
hydromechanics of AERO et al. [6], this couple stress theory of fluids defines the rotation 
field in terms of the velocity field. In fact, the rotation vector is equal to one-half the curl 
of the velocity vector as is the case in Newtonian fluids. Second order gradient of the 
velocity vector, rather than the kinematically independent rotation vector of asymmetric 
hydromechanics, is introduced into the stress constitutive equations and consequently 
the theory yields only one vector equation to describe the velocity field. In the case of 
incompressible creeping flow, the field equations are [5]: 

(3.1) 
~tV2u-a.V4u-Vp = -b, 

V·u = o. 
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To obtain the singular solutions, we once again write (3.1) in the matrix form (2.6), i.e 

(3.2) 

where 

- [(pd2-r:td4)J 
A- xr -X] 

0 . 

The inverse matrix A- 1 is found to be 

z 
(3.3) 

Substitution of (3.3) into (3.2) leads to the following Galerk.in-type representations: 

u = - (V _x v x"f)+ V1p, 
(3.4) 

p = - (pV2
- r:tV4

) V. 4J + V2(p- r:tV 2)'1f', 

where~' 1p satisfy the equations 

V2 (p,V2 -r:tV4){i) = -b, 
V21p = 0. 

(3.5) 

If we take b = Fd(x-y) where F is once more an arbitrary constant vector, then the 
solution of (3.5) is given by 

- 1/li 
- Fr - (1-e-r «r) 

4> = 8np - r:tF 4np2r 

1p = 0. 
(3.6) 

Using (3.6) and (3.4), the singular solution of (3.1) is finally given by 

_ 1 [F (F·r) -] a - - - 1-e-. l/~, u = -- -+---- r +--VxVxF----
8np r r3 4np2 r ' 

(3.7) 
1 F·-;: 

P = 4n -,:J· 

We now make the following observations: 
(a) The pressure field is identical to that of the classical theory given by (2.14h. 
(b) The velocity vector u is decomposed in the form 

where Uc is the classical solution (2.14) 1 and u, is the contribution due to the couple stresses. 
As r:t ~ 0, u ~ Uc as expected. 

(c) BLEUSTEIN and GREEN [11] presented a theory of dipolar fluids with similar field 
equations in the linearized case. Hence the solutions obtained here will also be valid for 
such fluids. 
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4. Asymmetric hydromechanics 

By introducing the velocity field u, an "inherent" angular velocity field ti and a dissipa
tion function, AERo' et al. [6] constructed the equations of a fluid characterized by asym
metric hydromechanics with the aid of the rheologicallaws. The key point to note in the 
development of this theory is the introduction of two basic and independent kinematical 
vector fields- the vector field representing the velocities of the fluid particles and that 
representing the angular velocities of the fluid particles. The basic field equations are 

(p,-y)V2 u-2yV x ti-Vp+ l = o, 

(4.1) ('Y}+ r+O)VV. Q-OV X V X Q+2yQ-yV X u+l = 0, 

V·u = o. 
The coefficient y links together the velocity and the angular velocity fields and may be 
termed by the coupling constant since its vanishing uncouples the differential equations 
and produces the classical Navier-Stokes equation. The matrix form of the system of 
equations ( 4.1) is 

(4.2) 

where the matrix A is given by 

[

Ltl 

(4.3) A = ;rY -X] 
0 ' 
0 

and where L1 = (p,-y)d2 , L 2 = (Od2+2y). 
After some working, the inverse matrix A- 1 is obtained in the form 

~d~-~z ~Y x 
L3d 2 L3 Gf2 

(4.4) A-1 = yY L 1 L4l+ {2y2 -(rJ+r)Lt}Z 
0 

L3 L3L4 

-X' 
0 (p-y) ([2 

so that with the aid of (4.2) we obtai.n 

-- L 2 d21-L2Z 2yY X -1 u 
L3d2 L3 d2 

(4.5) [j yY L1 L4l + {2y2
- (17 + r)Lt} Z 

0 -l 
L3 L3L4 

-X' 
0 (p,- y) 0 p (j2 

where L3 = L 1 L 2+2yd2 and L4 = L 2+(1]+r)d2. 



SINGULAR SOLUTIONS IN MJCROCONTINUUM FLUID MECHANICS 

The representations for u, li and p are now given by 

u = (OV2 +2y)V2i[Jl- (OV2 +2y)V V. ~1 +2y[(f}+ T+0)V2 +2y]V X t/)2 + VP, 

(4.6) Q = yV2(V X cb"l) + (,u- y) V2 [(f} + T +0) V2 + 2y]q)2 

121. 

+[2y2 - (f}+ T)(,u-y)V2]V V. ~h 

where~~, ({> 2 , 1p statisfy the equations 

V4 [0(,u-y)V2 +2y,u]l/)t = -J, 
(4.7) V2[(f}+T+0)V2 +2y][O(,u-y)V2 +2y,u]</) 2 = -J, 

V2 P = 0. 

Again, as in the classical case (2.12), V2p =V· J. The theory of asymmetric hydromechanic 
gives rise to two independent fundamental singular solutions of the field equations; namely 
the velocity and rotational fields in an unbounded medium due to a concentrated body· 
force as well as a concentrated body couple. 

(a) Concentrated force 

Let/= F~(x-y), l = 0. 
Using (2.3), the solution of (4.7) is found to be 

(4.8) 

where 

- F [ r (1-e-.M)], 
cf>t = 8nA.2 O(y- ,u) ,uyr 

~2 = 0, P= 0, 

.P = 2yp, 
O(y- ,u) . 

Substitution of ( 4.8) into ( 4.6) gives 

-- 1 [')' F . ')' (F· r)- (2y-OA.2
) {-v -v F-(1- e-Ar)}] 

U- ---r---r- X X 
4nA.2(y- ,u) (} r (} r 3 (JA,2 r ' 

- 1 - -1- e-.tr 
!J=--FxV---

8n,u r ' 
(4.9) 

Except for minor changes in viscosity coefficients, the results (4.9) agree with those given 
in [12] for micropolar fluids whose field equations are similar for creeping flow. It is of 
interest to note that comparison with (3. 7) shows that the velocity and pressure fields are 
identical in form to those in Stokes' theory. 

(b) Concentrated couple 
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Here we take f = 0, 7 = it5(x-y). 
ln this case the solution of the system ( 4. 7) is given by 

<Pt = 0, 

·(4.10) i[,2 = L [-1-+ e-ar + e-l.r J 
4n0(1]+r+O)(,u-y) a 2 J. 2r a 2 (a 2 -A.2)r ).2 (). 2 -a2)r' 

P= 0, 

2 . 
where a2 = - y . 

?J+r+O 

Substituting (4.10) into (4.6), we obtain the following singular solutions for a con
centrated couple: 

(4.11) 

_ 1 - -1- e-l.r 
u =--VxL---

8nt-t r ' 

ti Le-).r vv.f [ 2y2 2y2 +A.2 (1]+-r)(j.t-y) 
= 4n0r + 4nO(j.t-y)(1]+r+0) a 2 ).2r + ).2 (). 2 -a2) 

p = 0. 

· 5. Conclusions 

r 

Fundamental singular solutions of two basic and apparently different linear theories 
of microcontinuum fluid mechanics are obtained with the aid of a matrix inversion tech
nique. Except for minor changes in material constants, the velocity and pressure fields 
.are found to be similar in both theories in the case of a concentrated body force acting 
in an unbounded medium. Moreover, this pressure is identical to that obtained in the 
·classical Navier-Stokes theory; hence the presence of couple stresses does not affect the 
pressure field . 
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