
Archives of Mechanics • Archiwum Mechaniki Stosowanej • 29, 1, pp. 105-113, Warszawa 1977 

Bifurcation in a process of deformation of elastic-plastic 
body at finite homogeneous deformations 

A. N. SPORIHIN and A. V. SKATCENKO (VORONEZ) 

FUNDAMENTAL equations governing the behaviour of an elastic-plastic body under homogeneous. 
deformation are solved within the framework of the theory of dynamic stability, finite 
subcritical plastic deformations being taken into account. The problem of stability of homo-­
geneous elastic-plastic bodies in a rectangular coordinate system is studied, on the example 
of the surface instability phenomenon. 

W ramach teorii statecznosci dynamicznej rozwi~o podstawowe r6wnania r74d74ce za-· 
chowaniem si~ cial spr~zysto-plastycznych poddanych 1jednorodnej deformacji z uwzgl~dnie­
niem skonczonych plastycznych odksztalcen podkrytycznych. Na przykladzie zjawiska nie-. 
statecznosci powierzchniowej przedyskutowano zagadnienie statecznosci jednorodnych cial 
spr~iysto-plastycznych w prostokl!tnym ukladzie wsp6lrz~dnych. 

B paMKax TeopHH .rtHHaMHtiecKoH ycroiitiHBOCTH perneHbi OCHOBHbie ypaBHeHH.R, orrHCbiBaiOI.qHe 
IIOBe,ne,neHHe yrrpyro-IIJiaCTHlleCKHX TeJI IIO,I:tBeprHYTbiX O,I:tHOpO,I:tHOH ,ne$opMai.Uill C YlleTOM 
KOHelJHbiX IIJiaCTHtieCKHX ,noKpHTHtieCKHX .ne<PopMarulli. Ha rrpHMepe .RBJieHH.R rroBepxHoCTHOH 
HeyCTOHliHBOCTH o6cym,neHa 3a,naqa yCTOHliHBOCTH O,I:tHOpO,I:tHbiX yrrpyro-IIJiaCTHtieCI<HX TeJI'I 
B Ilp.RMOyrOJibHOH CHCTeMe KOOp,I:tHHaT. 

THE first examinations concerning stability deformations of the perfectly-plastic material 
at large subcritical deformations were presented in the papers [1, 2]. In particular, the 
steady flow of the axisymmetric cylinder subjected to large plastic deformations was 
considered. Then, in the paper [3], deformation stability of the elastic-viscoplastic work-· 
hardening material was investigated in a three-dimensional formulation. In a case 
of the homogeneous subcritical state, the general solution of the stability equations in 
a system of rectangular coordinates was obtained. The independent investigations or· 
the deformation stability of the plates and shells at finite plastic deformations were 
presented, among others, in the papers [4-7]. The general relations were derived on the 
basis of formal transformations of the equilibrium equations and additivity of the elastic.: 
and plastic strains rates. 

1. 

Let us consider the· three states of the deformed elastic-plastic body, moving witlli 
respect to a certain system of coordinates xa: the initial state corresponding to the lack 
of stresses, the state of total deformation and the state which is obtained from a given 
deformed state by removing all the internal sresses. The three states mentioned above 
may be considered as the continuous manifolds the particular points of which are deter--
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106 A. N. SPORIHIN AND A. V. SKATCENKO 

mined uniquely by the same Lagrangian coordinates X 1
• Let us denote the components 

of the metric tensors in these three sates by g,1, g;1 and Ktb respectively. It is well known 
[8] that for an arbitrary state of the finitely deformed elastic-plastic body the three pairs 
of the strain tensors may be introduce.d, namely the plastic, elastic and total strain tensor 
with the components 

(1.1) e l r:. • ) 
Etj = T v;ij-KiJ ' 

1 1:. o ) 
Cjj = T \Oij-gij • 

The formulae (1.1) imply 

(1.2) 

Notice that in the case of finite deformations the additivity property does not hold for 
the components having different structure of indexes in the accompanying system of 
coordinates since Eq. (1.2) relates the components of the tensors in different bases. Taking 
this fact into account, from Eqs. (1.2) one may obtain the components with a mixed struc­
ture of the indices 

(1.3) 
A• A • • • • A • 

e; = ej' + e~'-2ef'e!'. 

The plastic flow rule is assumed in a form similar to that of [9] 

.(1.4) 
• . • . I • k . 
P' = el!'- -ekP g'· ei J 3 J' 

.. I 3 · i .... I 2 f) i · 
ak = q;(eu), au = V TS{Si, eu = V 3 e, ei. 

The elastic strains are related to the stresses by Hooke's law 

(I 5) "ei I [(1 )"i "k '] . EJ = E +x ai- xakgl. 

The condition of plastic incompressibility is 

(1.6) gg- 1 = 1, g = detllgtJII. 

Following [10], the equations of motion and the boundary conditions may be written 
in the form 

( ) "i r"" "i r"" ,.., " .1- "i p" 1.7 aJ,i- tJak+ tkaJ+flFJ = flJb aJni = b 

where Tf.J denote the Christoffel symbols of the second kind and eF1, e}j ·and PJ are the 
mass forces, the inertia forces and the surface forces, respectively. 

Since the relations (1.4) describe completely the plastic deformation under simple 
loading [9], our further considerations will be restricted to the case of homogeneous 
subcritical stress-strain state in a body and solely the simple tension (compression) will 
be studied, i.e. 

(1.8) e{ = 0, i =I: j; e{ = const, i = j. 
It is obvious that if the metric tensor of the deformed state is assumed as the unity, then 
the components of the metric tensor in the undeformed state may be presented in the form 

(1.9) Ku = A1 2
', K22 = Ai 2

, K33 = A3 2
, Kti = 0 (i ~ j). 
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Besides, the following relations result from the Eqs. (1.1) and (1.2) 

(1.10) 2ef = 1- A1 2
, 28~ ·= 1- A2 2

, 28~ = 1- A3 2
• 

Superposing the small additional motion determined by the displacement vector yw'(Xi, t) 
(y is small parameter) on the basic motion described by the relations (1.1)-(1.7), the 
linearized equations may be derived. With the accuracy to the linear terms we have: 

The elastic, plastic and total strains 

•f!·i = 2_AS.'.i+B!J?i!oms•·n 
eJ 2 J e-.i en ,., 

(1.11) 1 ( 1 I ) 
B = eu Keu - qy{Eu) ' 

The metric and strain tensors 

(1.12) 

The velocity and acceleration vectors 

(1.13) 

The condition of plastic incompressibility 

(1.14) :p•k-2,., ~P'k _ 0 tv _ !Pk-1 + !Pk+1_2~PA:-1 :Pk+1 
<:;. k <Ak<> k- '<Ak-<>k-1 <>k+l <>k-1<>k+1' 

The summation here is modulo three. 
The equilibrium equations and the boundary conditions for the stress tensor increments 

are, respectively, 

(1.15) 
A,m PnAI AI 

(]; n,. + (]' n,. = P~t 
where ni and p~ are the increments of the unit normal vector and of the surface load, respec­
tively. Since the far advanced plastic flow is considered, the elastic strains may be neglected 
as small in comparison to large plastic deformations. This assumption allows us to 

identify the metric tensors g;i and Kii and all quantities with the corresponding indices 
which will be omitted in further considerations. Thus, excluding e~'j and ee'J form Eqs. (1.11) 
and taking into account Eqs. (1.12) and (1.8), one obtains 

(1.16) 

where 

2 . 
aki = (ikj- T aiikm) (1-2e1), 

(1.17) 
_ 1-2e) 

Gi;- 3A+2(1+x) (1-2e~)/E' 

..1 [ 3 k 1 +X] i t . 2(1 +X) j X _k 1 
"ki = yA+(l-2ek)-y- gt+Bek~+ 

3
E e1-E(1-2e-")-yA. 
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Assuming linearized law relating the stresses and the displacements in the form of Eqs. 
(1.16), the unloading is disregarded. Such approximate approach has been assumed in a 
majority of papers concerning stability. Thus, Eqs. (1.15) written in terms of variations~ 
together with Eqs. (1.16), lead to the closed-form system of equations. The undisturbed 
state of the body will be stable or unstable, depending on the behaviour of the disturbances 
in time. 

2. 

Consider a slow steady-state process of deformation of the three-dimensional bodies. 
The inertia forces in the basic state are neglected. Choosing the accompanying system 
of coordinates in such a way that in the moment of linearization it coincides with the fixed 
Cartesian coordinate system x« as an arbitrary three-axial subcritical stress-strain state~ 
one obtains from Eqs. (1.15) and (1.16) the following Eqs.: 

L;iwj = 0 (j, i,j = 1, 2, 3), 

(2.1) 

2 . . 
Fii = a;i+Gii+ 

3
A (ei-e~). 

The Eqs. (2.1) represent the system of differential equations expressed in terms of displace­
ments. General solution of this system may be presented in the form 

(2.2) w~ = (L22L33-L23L32)rl>, w~ = (L31L23-L2tL33)C/J, 

w~ = (L2tL32-L3tL22)r/>. 

The function C/J is determined from the equation 

n+m+p+/=6 

(2.3) ~~ 
~ 

(n, m, p, 1-even), 
n.m,p,l 

where 
A6,o,o,o = auG21G31, A4,2,o.o = a11G2tG32+aua22G3t+G12G2tG3t-G3tFt2F2t' 

A2,2';2,o = au a22 a33 + au G23 G32 

(2.4) 

A2,o,o 4 = e2(qu + G21 + G31), A4,o,o,2 = -Q(all G21 + G31 G21 +au G31), 

A2,2,o,2 = -e(aua22+G12G2t +a22G31 +a32G21 +au G32+Gt2G31 -F12F21). 

The values of the remaining constants An,p,m,l appearing in Eq. (2.3) may be evaluated 
from the Eqs. (2.4) in the following manner. For example, to evaluate A 2 , 0 , 4 , 0 it is necessary 
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to exchange in the right-hand side of the expression A4 , 2 , 0 , 0 the indices with 2, 2 with 
3 and 3 with 1. 

Notice that in the particular case of homogeneous subcritical state, the results analogous 
to [11] ~ay be obtained, i.e., general solutions of the equations of static and dynamic 
stability for the elastic-plastic bodies subject to large deformations may be written down. 

3. 

Consider the surface instability of the half-space (x3 < 0) at compression under "dead" 
load acting along the axes Ox1 and Ox2 (0 ~ x1 ~ a; 0 ~ x 2 ~b). Since the boundary 
of the half-space is free of load then, according to Eq. ( 1.15), the following boundary 
conditions are obtained at x 3 = 0 

(3.1) a'3 = 0, a'~ = 0, a'i = 0. 

The conditions (3.1), when expressed in terms of the function f/>, together with the relations 
(1.16) and (2.2) lead to 

(3.2) 

Here 

'•+m+p+l=4 

2 
n,m,p,l 

n+m+p+l=2 

2 A2 n,m,p,l 

n,m,p,l 

n+m+p+1=4 11 
n,m,p,l 

At n,m,p,l 
a4 a 

ox'J.ox~ox~ot 1 ox3 (/) = o. 

Al.o.o.o = a31 G21 G31, At2.o.o = a31 (G21 G32 + G3t a22) -a32F21 G31, 

Ato.2,o = a31(a33G21 +G23G3t)-a33G21F3t, 

A~.4.o,o = G32(a31a32-a32F21), A~,2,2,o = a31(a22a33+G23G32) 

-a3t F23F32 +a32(F31 F23 -a33F21) +a33(F21 F32 -a22F31), 

A~.o.4.o = a33G23(a31 -F3t), 

A~.2.o.2 = e[a32F21 -a31(a22 +G32)], 

Ato.o,2 = -ea3t (G21 +G31), 

A~.o.2.2 = e[a33F31 -a3t (G23 +a33)], 

(3.3) Ag,o,o,4 = e2a3t, Ato.o.o = - (F21 G3t + F31 G21), 

A~.2.o,o = F21(F32-G32)-a22F31, A6.o.2.o = F3tF23-a33F21-F31G23, 

A~.o.o,2 = eCF21 +F31), Al.o.o.o = G21(G31 -£31), 

At2.o.o = G2tG32+F2tF32+a22(G3t-F31), Ai.o.2.o = a33G21 +G23(G3t-F31), 

AA,4,o,o = a22 G32, AA.2.2,o = a22 a33 + G23 G32- F23 F32, 

AA.o,4,0 = a33G23' A!.o.o,2 = e(F3l -G21 -G31), 

AA,2.0,2 = - e(a22 + G32), A6.o.2,2 = - e(a33 + Gl3)' A5.'),0,4 = r/. 
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The solution of the Eq. (2.3) is sought for in the form 

(3.4) lP = /(x3)cosk : x1 sinn ; x2 expst. 

The choice of such form of solution ensures the fulfilment of the hinge-support boundary 
conditions at x 1 = (0; a) and x2 = (0; b) in the integral sense. 

The Eqs. (2.3}-(2.4) and (3.4) lead to the following differential equation determining 
f(x3) 

(3.5) 

where 

(n- even), 

C6 = Ao,o,6,o, c ... = -(Ao,2,4,oN2+A2,o ..... oK2-Ao,o ..... 2S2), 

C2 = A2,2,2,oK2N 2+Ao,4,2,oN4+A .... o.2,oK4+Ao,o.2,4S4 

- A2,o,2,2K2S 2- Ao,2,2,2N 2S 2
, 

(3.6) Co = - (A6,o,o,oK6 + A4,2,o,oK4N 2 + A2,4,o,oK2N 4+ Ao,6,o,oN6- Ao,o,o,6 S6 

+Ao,2.o .... N 2S4+A2,o,o .... K 2S4-A .... o.o.2K4S 2-Ao,4,o,2N4S 2-A2,2,o,2K2N 2S2), 

From the general solution of Eq. (3.5) we choose the solution satisfying at x3 --+ - oo the 
damping conditions. 

Substituting the solution mentioned above into the boundary conditions (3.2) and 
taking into account the Eq. (3.4) we obtain by the usual procedure the equation which 
determines the critical value of the co!ij.pression 

(3.7) detllalill = 0 (i,j = 1, 2, 3), 

where 
a31 = Al,o,o,oK4 +A1,2,o,oK2N2 -Ato.2,oK21}T+A~ ..... o.oN4 

-A~.2,2,oN21Jf+Ato,4,o1Jt-Ato.o,2K2S2 -A~.2.o,2N2S2 + A~.o.2,2S21JT+A~.o.o .... s4, 

(3.8) 
a21 = ( -Ato.o,oK2 -A~.2.o,oN2 +A~.o.2,o1Jf+A~.o.o,2S2)1};, 

a11 = (Al,o.o,oK4+A1,2,o,oK2N 2 

- Al,o,2,oK21Jl + AA ..... 'o,oN4- AA.2,2,oN21Jf + AA,o,4,o 1Jt 

-Al.o.o,2K2S 2-AA,2,o,2N2S2+AA.o,2,2S21Jf+AA.o.o .... S4)1Jit 

1Jl are the characteristic roots of the Eq. (3.5) (all different from each other). 

4. 

In the analogous way the plane strain problem may be considered. The compressive 
dead load is acting in the plane x1 Ox2 along the axis Ox1 • Let the body occupy the lower 
half-space x2 < 0. The general solution of the system of Eqs. (2.1) in this case has the 
form 

(4.1) 
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The function f1J is determined by the equation 

(4.2) 

where 

n+m+l=4 

2 Bn,m,l 

n,m ,l 

(n, m, e- even), 

(
4

.
3
) B4,o,o = auG21, B2,2,o = G12G21 +aua22-F12F21, Bo,4,o = a22G12, 

B2,o,2 = -e(au +G21), Bo.2.2 = -e(a22+G12), Bo,o,4 = e2
• 

111 

The boundary conditions on this part of the surface x 2 = 0 which is free of loading are: 
expressed in terms of the function f1J at x 2 = 0 as 

[ 
a2 a2 a2 J a 

(G2t-Fit)-- +a22-- -e-- ---f!J = 0 oxi ox~ ot2 ox2 ' 
(4.4) 

[ 
a2 a2 a2 ] a 

a2tG2t"TT+a22(a21-F2t)~-a2te-0 2 -~-f!J = 0. 
vX1 vX2 t vX1 

The solution of Eq. (4.2) is chosen in the form 

(4.5) 

which ensures the fulfilment of the hinge-clamped conditions at x = 0; I. As it follows from 
the Eqs. (4.2) and (4.5), the function f(x2 ) satisfies the equation 

(4.6) (n -even), 

where 

(4.7) 
M = mn 

1 . 

Then, as in Sect. 3, the equation for evaluation of the critical value of compression 
is found to be 

(4.8) detllPtill = 0 (i ,j = 1, 2), 

where 

PH= [-(G21-F2t)M2 +a22~f-eS2]~i' 
(4.9) 

P2i = -a2tGuM2 +a22(a2t-F2t)~f-a2teS2 , 

~f, are the roots of the characteristic equation (4.6). The Eqs. (3.7) and (4.8) contain the: 
quantity s. Following [12], the stability condition is assumed in the form 

(4.10) max{ReSt} < 0, 

where Stare the roots of the characteristic equation (3.7) and Eq. (4.8). 
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However, Eqs. (3.7) and (4.8) may be reduced, with an arbitrary degree of accuracy, 
to a polynomial, the general form of which for the arbitrary value. of k may be writ­
ten as 

(4.11) 

Applying the Rauss-Hurvitz criterion one finds out that s = 0. Thus, to evaluate the 
critical values of the strain, the condition s = 0 should be introduced into Eqs. (3. 7) and 
(4.8). This result is connected with the fact that the boundary-value problem (1.15)-(1.16) 
{time factor is distinguished) subjected to the conservative loads is self-adjoint. 

0.6 

0.5 

O.J v=O.J 

0.2LL-U--U--L-----L----~----~----~--
0 0.001 0.01 0.02 0.04 aoo 0.08 0.1 c0 

FIG. 1. 

The solution of the characteristic equation (4.8) shows that, for weakly work-hardening 
·materials (e0 ~ 0.1), the surface instability may arise. The dependence of the cri'tical 
degree of compression on the work-hardening parameter 0 ~ e0 ~ 0.1 for different values 
of the plastic yield limit k0 (e0 = eE-I, E is Young modulus, k 0 = CfrE- 1

) is shown in 
Fig. 1. The relation between au and eu is chosen in the form au = Cfr+eeu. As it is seen 
from this figure, the value of critical strain decreases with the increase of the work-hardening. 
The surface instability phenomenon appears in a fully developed process of the plastic 
flow (e0 is small) at very large deformations. However, the numerical values of critical 
loads, computed for this case, are unreal. Therefore the surface instability practically 
does not occur that confirms the results of the paper [3]. 

References 

1. S. ZAHORSKI, On plastic instability in some cases of simple flow, Bull. Acad. Polon. Sci., Serie Sci. Techn., 
12, 11, 1964. 

2. S. ZA.HORSKI, Kinematic stability in the case of slow steady plastic flow, Arch. Mech. Stos., 16, 6, 1964. 
3. A. H. CrroP:&IXHH, B. r. TPOCZ>HMOB, 0 n/t.acmu11.eCKOU HeycmOU1/.U80Cmu 8 HeKomopbZX C/ly11.aR.X npocmozo 

me11.eHu.R, IIMM, 38, Bhm. 4, 1974. 
4. C. T. APHAPATHAM, P. H . .UrooH, Ycmou11.UBocmbynpyzo-nAacmu11.ecKou '£1UilUHopu11.ecKou o6oA011.KU npu 

oceBoM c:HCamuu, IlpHI<JI. Mex. I, 1969. (Tpy.n;hi AMepHKaHcKoro o6I.Qecrsa :mrn<eHepos MexaHHKoB). 

5. S. T. ARIARATNA.M, R. N. DVBEY, Some cases of bifurcation in elastic-plastic solids ;,., plane strain, 
Quart. Appl. Math., 27, 3, 1969. 

http://rcin.org.pl



BIFURCATION IN A PROCESS OF DEFORMATION OF ELASTIC-PLASTIC BODY 113 

6. R. N. DUBEY, S. T. ARIA:RATNAM, Bifurcation in elastic-plastic solids in plane stress, Quart. Appl. Math., 
27, 3, 1969. 

7. L. M. MURPHY, L. H. LEE, Inelastic buckling of axially compressed cylindrical shells subject to edge 
constraints, Int. J. Solids and Struct., 7, 9, 1971. 

8. JI. H. CE,Il;os, BBeoeHue s MexaHuKy cn11oumou cpeobl, M. <l>H3MaTrH3., 1962. 
9. A. A. ilJihiOIIlHH, J!JzacmU<mocmb, M-JI. rocreXH3,1l;aT., 1948. 

10. A. E. GREEN, R. S. RIVLIN, R . T. SCHIELD, General theory of a small elastic deformation superposed 
on finite elastic deformations, Proc. Roy. Soc. A, 211, 1104, 1952. 

11. A. H. rY3h, YcmOU'lUBOcmb ynpyzux meA npu KOHe'lHblX oet}jopMOf.IUilX, HaYJ<OBa ,ll;yMI<a, KHeB 1973. 
12. B. B. EoJIOTHH, HeKoHcepsamuBHble 3aoa!lu meopuu ynpyzoil ycmoil'lUBocmu, M. <l>H3MaTrH3., 1961. 

UNIVERSITY OF VORONE2, 
VORONEZ, USSR. 

Received December 29, 1975. 

8 Arch. Mech. Stos. nr 1/77 

http://rcin.org.pl




