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Bifurcation in a process of deformation of elastic-plastic
body at finite homogeneous deformations

A.N. SPORIHIN and A.V. SKATCENKO (VORONEZ)

FUNDAMENTAL equations governing the behaviour of an elastic-plastic body under homogeneous.
deformation are solved within the framework of the theory of dynamic stability, finite
subcritical plastic deformations being taken into account. The problem of stability of homo--
geneous elastic-plastic bodies in a rectangular coordinate system is studied, on the example
of the surface instability phenomenon.

W ramach teorii statecznosci dynamicznej rozwigzano podstawowe rownania rzadzace za--
chowaniem si¢ cial sprezysto-plastycznych poddanych /jednorodnej deformacji z uwzglednie-
niem skorniczonych plastycznych odksztalceni podkrytycznych. Na przykladzie zjawiska nie--
statecznosci powierzchniowej przedyskutowano zagadnienie statecznoéci jednorodnych ciat
sprezysto-plastycznych w prostokatnym ukladzie wspolrzednych.

B pamkax TeopHH QUHAMHUYECKON YCTOMUMBOCTH PellieHb! OCHOBHEIE YPABHEHUA , OITUCHIBAIOLLHE
NoBeJEICHHE YIPYTo-IJIACTHYECKHX TeJ IMOABEPrHYTHIX OfHOpoaHoll nedopmaipm ¢ yyerom
KOHEUHBIX IJIACTHYECKHX JOKPHUTHYecKHX Aecdopmanmii. Ha npumepe ABiIeHHA NMOBEPXHOCTHOH
HEYCTOHUMBOCTH obCy)/leHa 3a/jaya YCTOMUHBOCTH OQHOPOIHBIX YIPYro-IUIACTHYECKHX Tein
B NIPAMOYTOJBHONH CHCTEME KOODIMHAT,

THE first examinations concerning stability deformations of the perfectly-plastic material
at large subcritical deformations were presented in the papers [1, 2]. In particular, the
steady flow of the axisymmetric cylinder subjected to large plastic deformations was
considered. Then, in the paper [3], deformation stability of the elastic-viscoplastic work--
hardening material was investigated in a three-dimensional formulation. In a case
of the homogeneous subcritical state, the general solution of the stability equations in
a system of rectangular coordinates was obtained. The independent investigations of
the deformation stability of the plates and shells at finite plastic deformations were
presented, among others, in the papers [4-7]. The general relations were derived on the
basis of formal transformations of the equilibrium equations and additivity of the elastic:
and plastic strains rates.

1.

Let us consider the three states of the deformed elastic-plastic body, moving with:
respect to a certain system of coordinates x*: the initial state corresponding to the lack
of stresses, the state of total deformation and the state which is obtained from a given
deformed state by removing all the internal sresses. The three states mentioned above
may be considered as the continuous manifolds the particular points of which are deter--



106 A. N. SPORIHIN AND A. V. SKATCENKO

mined uniquely by the same Lagrangian coordinates X*. Let us denote the components
of the metric tensors in these three sates by g;;, 2;; and g,;, respectively. It is well known
[8] that for an arbitrary state of the finitely deformed elastic-plastic body the three pairs
of the strain tensors may be introduced, namely the plastic, elastic and total strain tensor
with the components

L e E o o 1 on: s
(L.1) efy =5 @u—gy), &= @Gu—g) &= @y—&.
The formulae (1.1) imply
(1.2) &ij = &5j+ef.
Notice that in the case of finite deformations the additivity property does not hold for
the components having different structure of indexes in the accompanying system of
coordinates since Eq. (1.2) relates the components of the tensors in different bases. Taking
this fact into account, from Eqgs. (1.2) one may obtain the components with a mixed struc-
ture of the indices

(1.3) & = &+ ehi—2emet
The plastic flow rule is assumed in a form similar to that of [9]
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o, = glel), 'l/mS S}, en= l/%t’f’e}

The elastic strains are related to the stresses by Hooke’s law

(1.4) &= el

(1.5) B = o [(1+ %)~ witgll.
The condition of plastic incompressibility is

(1.6) gg' =1, g = det]lgll.

Following [10], the equations of motion and the boundary conditions may be written
in the form

(1.7) & — I G+ Tk +oF, = of;, &imi= Py,

where I'f; denote the Christoffel symbols of the second kind and QF’}, gﬁ'and ﬁ, are the
mass forces, the inertia forces and the surface forces, respectively.

Since the relations (1.4) describe completely the plastic deformation under simple
loading [9], our further considerations will be restricted to the case of homogeneous
subcritical stress-strain state in a body and solely the simple tension (compression) will
be studied, i.e.

(1.8) eh=0, i#j; & =const, i=]j.
It is obvious that if the metric tensor of the deformed state is assumed as the unity, then
the components of the metric tensor in the undeformed state may be presented in the form

(1.9) €11 =472, B =123% Zaa=13% guy=0 (@(i#]).
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Besides, the following relations result from the Egs. (1.1) and (1.2)

(1.10) 28l =1-272, 283=1-232, 283 =1-43%

Superposing the small additional motion determined by the displacement vector yw'(X?, t)

(y is small parameter) on the basic motion described by the relations (1.1)-(1.7), the

linearized equations may be derived. With the accuracy to the linear terms we have:
The elastic, plastic and total strains

B = (s —nilell, o= A8+ B,

J

Ke,  @(&) dé,

&) = &g 40— 2gpmest —2gmget,

L]
Cu=~Cu

: 1 !
(1.11) A=-.£"-,B=—_l—( < ) o

Oy

The metric and strain tensors

(1L12) 2l = Viwj+Vywj,  28% = 2*(V,wi+V,w)) (g—28]), 28} = gl
The velocity and acceleration vectors

(1.13) V) = Wi+ 0. Viw™, 9 = Wi+0,Viw™

The condition of plastic incompressibility
(1.19) EPE—208P% = 0, oy = P51+ 8PkT1 - 28Pk-1 gPkt !,

The summation here is modulo three.
The equilibrium equations and the boundary conditions for the stress tensor increments
are, respectively,

(1.15) V.61 — 07 Vi Vit + 07 Vi Vi ™+ 0'Fi+ 0F; = 0+ 0 Vi ™ +0'5;,
;" m+ 0T = P:,
where 71} and p} are the increments of the unit normal vector and of the surface load, respec-

tively. Since the far advanced plastic flow is considered, the elastic strains may be neglected
as small in comparison to large plastic deformations. This assumption allows us to
identify the metric tensors g;; and g;; and all quantities with the corresponding indices
which will be omitted in further considerations. Thus, excluding ¢*’} and %} form Eqs. (1.11)
and taking into account Eqs. (1.12) and (1.8), one obtains

(1.16) o} = gja;,8"Vow, + (1—-¢)) G;g" (Viw)+ V;w)), (Ki,jZa),
where
2 1 d
akj = (tlj_TajTtm) (1 _28})! len Tin = et”dn” ad‘ det”dll“l
1—2¢)
1.17) Gy = J
LU 34+2(1+%) (1 —26)JE’
3 1 . 1
dyy = [.2_A+(1-2e§) Ex]g{+3eie}+2(1+x)e’——-(l ~2¢))— - 4.
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Assuming linearized law relating the stresses and the displacements in the form of Eqgs.
(1.16), the unloading is disregarded. Such approximate approach has been assumed in a
majority of papers concerning stability. Thus, Egs. (1.15) written in terms of variations,
together with Egs. (1.16), lead to the closed-form system of equations. The undisturbed
state of the body will be stable or unstable, depending on the behaviour of the disturbances
in time.

2.

Consider a slow steady-state process of deformation of the three-dimensional bodies.
The inertia forces in the basic state are neglected. Choosing the accompanying system
of coordinates in such a way that in the moment of linearization it coincides with the fixed
Cartesian coordinate system x* as an arbitrary three-axial subcritical stress-strain state,
one obtains from Egs. (1.15) and (1.16) the following Egs.:

) Li.iw}=0 (J‘I)f_—-_ 1!253)!
a2 02 02
- L= 6ij(Min‘ax‘:'_9_E;}_f)+(l_aij)Fij_a;;a_xj;
. KijsZn, My = {au,i=n; Gi,i#n},

I
Fij = aU+G;,‘+§(sg—e§).

The Egs. (2.1) represent the system of differential equations expressed in terms of displace-
ments. General solution of this system may be presented in the form

(2.2) wi = (LazL33—Ly3L32)®, w; = (L3yLy3—LyyL33)®,
w3 = (Lay Ly;— Ly, Ly,)D.
The function @ is determined from the equation

ntm4p+1=6 35
2 \ R
o o Avmrd Gpemaager © =0 @mpyImeven),
n.m,p,

where
A6,0,00 = @11G21G3;,  Ag 200 = 811G G32+a,1833G3,+G12G2Gsy — G35, FraFoy,

Az,2,2,0 = @11822833+0;,G23G3,
5 +G13G21G32+a22G13G13+833G12 G2y +G12G23G31 —ay Fa3F32
G +F21 F3pF13—a33F 3 Fay+ F3y Fi3 Fa3—32F13F3y,  Ao,0,06 = —0%
Az,0004 = 92(q11+621+631)s As0,02 = —0(a,,Gz,y +G31 Gz +a,,Gs1),
Az.2,02 = — 0811822+ G126, +2,G31 +832G2y +ay, Gaz+G12Gsy — FiaFay).

The values of the remaining constants A, , . appearing in Eq. (2.3) may be evaluated
from the Egs. (2.4) in the following manner. For example, to evaluate 4, o,4,0 it is necessary
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to exchange in the right-hand side of the expression Ay, ,,0,0 the indices 1 with 2, 2 with
3 and 3 with 1.

Notice that in the particular case of homogeneous subcritical state, the results analogous
to [11] may be obtained, i.e., general solutions of the equations of static and dynamic
stability for the elastic-plastic bodies subject to large deformations may be written down.

Consider the surface instability of the half-space (x3 < 0) at compression under “dead”
load acting along the axes Ox; and Ox; (0 < x; < a;0 < x, < b). Since the boundary
of the half-space is free of load then, according to Eq. (1.15), the following boundary
conditions are obtained at x; = 0

(3.1) 03=0, ¢3=0, o3=0.
The conditions (3.1), when expressed in terms of the function @, together with the relations
(1.16) and (2.2) lead to

ntm+p+i=4

£ ¢ o -0
ambl axlxgoxiol 0%, @
nm,pl
ntm+p+i=2 a2 2
2 _— - =
@3 Z Anmpd axroxmox5ott x, 6x26x3¢' %
n,m,p,l
n+m+p4l=4 54 5
b |
Y =0.
nmpt Gt oxgaEon axy O
nm,pl

Here
A200.0 = 831G, Gsy, A3 3.0,0 = 431(G21 G32+G3,822)— 3, F, Gy,
A3,0,2,0 = @31(833G21+G23G31)—a33G21 Fay,
Ass.0,0 = G32(a31a3:—a3,F1),  A32,2.0 = 831(322033+G13G35)
—a3, Fy3 F33+a35(F31 F3—a33 F21) +a33(Fay F32— a5, F3y),
A5.0.4.0 = 833G23(a3; —Fs1), 430,02 = —0a31(G21+G3y),
A3 20,2 = 0[a32F31—a31(a2:+Gs,)l,  A30,2,2 = 0[a33F3y —a3,(G23+a33)],
(3.3) Ao.0.6 = 0%a31,  AFo0.00 = —(F21Ga1+F3,Gay),
Af.200 = F31(Fs32~G32) =2 Fsy,  A}o.2.0 = F31 Faz—a33F2 —F3,Gas,
A3 0.0.2 = 0(F21+F3,), Alooo = G21(Gs—Fa),
A32,00 = G21G32+Fy  F33+a35(Gsy —F3y), A} o,2.0 = 833G21+G23(Ga1— Fai),
Ads00 = @22Gsz,  Ab 22,0 = 822833+ G23G32—Fa3F3a,
Aé.o.‘t.o = @33Gy3, Aé,n.o,z = 0(F3; —G21—G31),

Aflﬂ-z-ﬂ.z = —0(a;:+Gs3),  Apo.2.2= —0(a33+Ga3), Ac’:,o.o.-‘- = 0%
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The solution of the Eq. (2.3) is sought for in the form
s
b

The choice of such form of solution ensures the fulfilment of the hinge-support boundary
conditions at x; = (0;a) and x, = (0; b) in the integral sense.
The Eqgs. (2.3)-(2.4) and (3.4) lead to the following differential equation determining

S(x3)

(3.4) @D =f(x3)cosk%x, sinn— x,expst.

6
) . d™f
3.5 C, =0 (n—even),
(33) 2 =0 (n—even)

where
Cs = Ao,0,6,05 Ca= —(Ao0,2,4,0N*+A42,0,4,0K>—A40,0,4,25%),
Cy = A3,2,2,0K*N*+ 40,4,2,0N*+44,0.2,0K*+40,0,2,45*

—A2,0,2,2K?S*— Ao, 3,2, N*S?,
(3.6) Co = —(A6,0,0,0K°+44,2,00K*N*+43,4,0,0K>N*+A0,6,0,0N®—A0,0,0,6 Ss
+Ao,2,0,4N?8*+A42,0,0,4 K>S*— A4,0,0,2K*S* — A0,4,0,2N*S* — A3,3,0,. K’N?*5?),
K= k—”—, N = n—:—‘-.
a b

From the general solution of Eq. (3.5) we choose the solution satisfying at x; — —co the
damping conditions.

Substituting the solution mentioned above into the boundary conditions (3.2) and
taking into account the Eq. (3.4) we obtain by the usual procedure the equation which
determines the critical value of the compression

(3.7 detllall =0 (i,j=1,2,3),
where
as = A3,0,0,0K*+A43,2,0,0K>N*— 43 6,2,0K*n} + A3 4,0,0N*
—A3.2,2,0N*n7 + A3 0,4,0M — A3,0,0.2K*S* — A3 2,0.2N*S* + A3 0,2,2 5*1i + 43 ,0,0,4 5%
az = (—A3,0,0,0K* =43 2,00N*+ 43.0,2,0m7 + 43,0,0,25%) 1i;
i = (43,0,0,0K*+A4},2,0,0K*N?
—A},0,2,0K*0F + Ab,4,0,0N*— Aj2,2,0N* 0+ Ab 0,407
—A3,0.0,2 K28 — A3,2,0,2 NS+ 45,0,2,28°0F + Ab,0,0.4 5*) s
n? are the characteristic roots of the Eq. (3.5) (all different from each other).

(3.8)

In the analogous way the plane strain problem may be considered. The compressive
dead load is acting in the plane x; Ox, along the axis Ox, . Let the body occupy the lower
half-space x, < 0. The general solution of the system of Egs. (2.1) in this case has the
form

(41) u = Lzz¢, U = —L31¢,
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The function @ is determined by the equation

ntm+l=4

a‘
42) % Bumi s @ =0 (1., e—even),

where
Bio,0=a11Gay,  Biao=G12Gy+a,8,,—F 3 F3y, Byao = a::G,,
Bio,2 = —0(a1,+G21),  Bo,2,2 = —0(@22+G12), Bp,o,4 = 0%

The boundary conditions on this part of the surface x, = 0 which is free of loading are:
expressed in terms of the function @ at x, = 0 as

4.3)

L 0 @ e
(4.9) [(G““F“) oy T g T Ja PO

02 i 2? 0
[021 G2 ox? +az»(az; "le)m '_0219?] "'a;l—qj = 0.

The solution of Eq. (4.2) is chosen in the form
@4.5) @ = f(x,)sin fg’f X, eXpst,
which ensures the fulfilment of the hinge-clamped conditions at x = 0; /. As it follows from.

the Egs. (4.2) and (4.5), the function f(x,) satisfies the equation

4

4.6) Z D, d‘;:g (n —even),
n=0

where
D, = Bo.4.o» D, = Bo.z.zSZ—Bz.z.o Mz,
4.7
. Dy = By,4,oM*—B;,0, M*S*+ By 0,45% M= ifﬂ- .

Then, as in Sect. 3, the equation for evaluation of the critical value of compression
is found to be
4.8) det||gill =0 (,j=1,2),
where
49) Bii = [—(G21 —F2)) M* + a3, &7 — 057,
Bai = —a21Gay M?+a2,(a2;, — F2,) 8 — a3, 057,

&} are the roots of the characteristic equation (4.6). The Egs. (3.7) and (4.8) contain the
quantity s. Following [12], the stability condition is assumed in the form

(4.10) max {ReS;} < 0,

where s; are the roots of the characteristic equation (3.7) and Eq. (4.8).
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However, Egs. (3.7) and (4.8) may be reduced, with an arbitrary degree of accuracy,
to a polynomial, the general form of which for the arbitrary value of k& may be writ-

ten as
k

(4.11) D tas? = 0.

n=0

Applying the Rauss-Hurvitz criterion one finds out that s = 0. Thus, to evaluate the
critical values of the strain, the condition s = 0 should be introduced into Egs. (3.7) and
(4.8). This result is connected with the fact that the boundary-value problem (1.15)-(1.16)
(time factor is distinguished) subjected to the conservative loads is self-adjoint.

06
A Ko=-3-10"*
i
05}
03
02 L

0 0001001 002 0.04 006 008 01 ¢g
FiG. 1.

The solution of the characteristic equation (4.8) shows that, for weakly work-hardening
‘materials (¢, < 0.1), the surface instability may arise. The dependence of the critical
degree of compression on the work-hardening parameter 0 < ¢, < 0.1 for different values
of the plastic yield limit k, (¢, = cE~!, E is Young modulus, k, = orE~?') is shown in
Fig. 1. The relation between o, and e, is chosen in the form o, = op+ce,. As it is seen
from this figure, the value of critical strain decreases with the increase of the work-hardening.
The surface instability phenomenon appears in a fully developed process of the plastic
flow (¢, is small) at very large deformations. However, the numerical values of critical
loads, computed for this case, are unreal. Therefore the surface instability practigally
does not occur that confirms the results of the paper [3].
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