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Note on displacement in shakedown of elastic-plastic-creeping 
structures 

S. DOROSZ (WARSZAWA) 

THIS COMMUNICATION is a complement to an earlier paper which deals with an upper bound 
to maximum deflections of elastic-plastic structures at shakedown and is the extension of the 
results to creeping deformations. The residual deformations are estimated on the basis of to
tal dissipation work during the shakedown process. 

Komunikat jest kontynuacj(l wczesniejszej pracy podaj(lcej g6rne oszacowanie ugi~ spr~zysto
plastycznych konstrukcji w stanie przystosowania i przedstawia rozszerzenie tych wynik6w 
w przypadku uwzgl~dnienia pelzania materialu. Resztkowe ugi~ia S<l oszacowane na pod
stawie analizy calkowitej energii dysypowanej w procesie przystosowania. 

Coo6~eHHe HBJI.ReTc.H npo~oJDKeHHeM 6onee paHHeii pa6oTbi npHBOM~eii aepxmoro ouem<y 
OCTaTO'tiHbiX ynpyro-IIJiac:1'WieCKHX nporH60B KOHCTpYKUHH B COCTO.HHIDI npHCDOC06JieHWI 
H npe~craBJUieT pacwHpeHHe 3TRX pe3yJibTaToB B CJiy'tlae YlleTa noJI3Y'tJ:eCTH MaTepHana. 
OcraTO'tiHbie nporH6br oueHeHbi Ha ocHoae aHaJIH3a noJIHoii 3HeprHH ~cCHnoBaHHOH a npo
ueccenpHcnoco6neHHH. 

1. Introduction 

SoME STRUCTURES are subjected to cycles of temperature variation as well as to cycles. 
of repeated loading. The shakedown performance becomes important because, by re
stricting the cyclic loading to the shakedown limit, the designer is assured that after initial 
plastic deformation further deformation is in the elastic range, the possibilities of incre
mental collapse or reversed plasticity are thus avoided. 

When the operating conditions exceed approximately 0.3 Tm, where Tm is the melting 
temperature, the effects of creep must be taken into account. Nowadays a great effort 
is being made in order to know better the behaviour of elastic-plastic-creeping structures 
under cyclic actions. Except for a few simple idealized cases, the analytical solutions of 
such problems are in general very difficult to solve, even numerical solutions present con
siderable problems. Therefore various types of bounding techniques on displacements 
and on total dissipation work have been studied and developed. These techniques have 
been reviewed in [2, 4, 5]. 

This communication is complementary to an earlier paper [1] which dealt with an upper 
bound to maximum deflections of elastic-plastic structures at shakedown and its pur~ 
pose is to extend the results to account also for the creeping deformations. The method 
which has been obtained leads to an estimate of the residual deformation of the structure 
on the basis of the total dissipation work during the shakedown process. Illustrations of 
the applications are left to a further paper. 
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2. Simplified material model 

A useful first assumption which has been generally accepted is the separation of the 
total Strain E;j, into the SUm of the elastic Strain efj, the creep Strain erj, and the plastic 
·strain ef.; . The elastic strain e11 is linked with stress by Hooke's law: 

(2.1) 

where A 11k1 is a symmetric, positive definite elasticity tensor. 
The elastic domain is specified by the yield function f(ail) = 0 which also plays the 

role of the plastic potential function. The plastic strain rate is therefore 

{

0 for f(a11) < 0, 

(2.2) erj = ; __![_ 
"' for f(atJ) = 0, 

aalj 

where l is a non-negative scalar multiplier. 
The creep strain rate ef1 is expressed by the law attributed to Norton 

12.3) • c - A'.n< ) a(})( alj) 
'\ Etj- 'If' <1tJ - - --, 

aal) 

'Where <P is a convex homogeneous function of degree one, n is the creep constant. It may 
'be noted that the bound proved below does not explicitly involve the form of(/), 

The creep rate energy dissipation per unit volume is defined by 

(2.4) 

It is assumed that the material is isotropic, incompressible and the strain rates are inde
fPendent of hydrostatic pressure. 

The actual displacements u1, strain eil and stresses ail at any instant t can be decom
posed in the following way: 

{2.5) 

(2.6) 

{2.7) 

u1 = uf+uf, 

atJ = at+ afJ' 

e,1 = ef1 + ef; + ef1+ ef1 , 

in which the displacements uf, strains ef1 and stresses afJ specify the response of the body 
·in a linearly elastic regime, while uf, a~, denote the residual displacements, strains and 
stresses, respectively, caused by the incompatible creep strains efJ and plastic strains erj. 

At any instant t the following equilibrium requirements apply within the body of volume 
Vand on the surface part SP subjected to quasistatic variable repeated load P1(x, t): 

·(2.8) afJ. 1+X1 = 0 m V, atn1 = P1 on S1, 

{2.9) a~.J = 0 in v, af)nj = 0 on sl, 
where xi denotes the body forces. 

The following equations are satisfied: 

(2.10) E } (E E) · 
Etj = 2 Ut,J +u j,J In v, 
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(2.11) 

(2.12) 

R+c+P l(R+R) · e11 e11 e11 = T u1,1 u1,1 m 

uf = ur = 0 on s-sp. 

3. Displacement bounding 

V, 

339 

The method which is of interest here falls into an approximate technique of calculation 
of the displacement at a specified point x0 of the body for the shakedown. Making use 
of the well-known reciprocal relation of the elasticity extended to the case of non-com
patible strains which are identified here with the creeping and plastic strains [1], we derive 
the following expression: 

(3.1) f P,u,dSp = f Crl}ef}dV+ f al}(eYJ+efj)dV, 
~ v v 

which provides a relation for displacement at the considered point, when P1 becomes a con
centrated point force, where aiJ(X, Xo) stands for the elastic stress field in a fictitiOUS purely 

elastic structure having the same geometry and loaded by the concentrated force P1 at 
point x0 • Such a problem is in general very difficult to solve; for this reason bounding 
technique will be developed. 

The actual displacement u1 can be estimated by the extremal magnitudes uf and uf 
as follows: 

(3 .2) 

(3.3) 

maxu, ~ maxuf +maxuf, 

minu, ~ minuf +minuf. 

Bounds to uf are straightforward or mostly existing analytical solutions. To evaluate uf 
which is represented by the second integral on the right hand side of Eq. (3.1), we invoke: 

If the yield condition contains the origin of the coordinate system, then there exist 
two constants " and p such that 

(3.4) "II efjll ~ au ef., ~ pi I ef1ll, 
where 

(3.5) I
. f 0'1} erj "= n lleflll ' 

and 

(3 .6) 

in which the optimization is to be performed over the whole hypersurface f(a11) = 0. 
The assumption concerning the Norton law Eq. (2.3) permits the dissipation of 

creep energy to be bounded in a similar way: 

(3. 7) rllefJII ~ a,JefJ ~ ~llefJII, 
where 

(3.8) 
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(3.9) 

in which the optimization is to be performed over the whole hypersurface tP( all) = 0. 
Also, if at t = 0 there is no plastic strain and no creep strain, efj = ei1 = 0, then 

t t 

(3.10) llsf111 = (e~e:j)~ = J :t (ef.,ef.,)~dt ~ J lle(jl!dt 
o e 

and, in a similar way, 
t 

(3.11) llsf111 ~ f llef1lldt. 
0 

Thus the above inequalities permit the residual displacements to be bounded as follows: 

(3.12) f P,ufdST = f afj( efJ + ef.J)dV ~ f llatJII . (II EtJII +II ef.JII)dV 
s, y y 

( llatJII) I It ·c d d ( lla,JII) J Jt ·p d dV ~ max -- Gll£11 t V +max -"- G11 eu t , 
y y YO y YO 

where lla,111 denotes (a11 , au)1
'
2

• 

We see that the integrals on the right-hand side of the inequality (3.12) are the total 
creep energy and the plastic energy, respectively, dissipated during the shakedown pro
cess. By substituting the bound of the total energy dissipated at shakedown, given in [3] 
or [5], the inequality (3.12) provides a bound on the residual displacement at the con-

sidered point x 0 when P1 becomes a concentrated point force. All the terms appearing on 
the right-hand side of the inequality (3.12) can be calculated provided the solution of the 
shakedown problem is known. 

The bound obtained may provide a useful addition to shakedown analysis and seems 
that it could have application where a safe bound is sufficient. 

For this general bound, a more extensive investigation for various creep law and load 
conditions will appear in a separate paper. 
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